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Schreibt man dies in der Form

1 H,(x)
Ap(l—x>= (1=x)P*+1’ H,(x)=cotcix+ - +c,xP,

so folgt mit (1) die Gleichung
[0.0]
(1=x)P*13 n?x"=H,(x).
1

Ein Koeffizientenvergleich ergibt ¢o=0 und fiir die iibrigen ¢, die von Mortini
gegebene «geschlossene» Form

n=l . 1
e= 3 (- 1y(£f,—-)(n—jy’, n=12,...p.

j=0 J

Und aus

Hpiy(x) 1 _d Hy(x)
(1—x)P+2 ”A<Ap( 1——x)) ~*dx ((l—x)l"” )
x(x=DH,(x)+x(@+1)H,(x)

(1—x)P+2

kann man sofort die Rekursionsformel fiir H, ablesen.
Albert Pfluger, Ziirich
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Aufgaben

Aufgabe 882. Fiir n=2 und n=3 ermittle man Lésungen (x,..., X»; V1,...,Vn) € C2"
der Gleichung

$nin= ($)/ (3,7

i=1
in Gestalt zyklischer Parameterdarstellungen, d. h.:

xa(,-)=f(u,,(1),...,u,,(,,)), y,,(f)=g(ua(1),...,ua(,,)); i= 1,...,n

fiir beliebige zyklische Permutationen ¢ der Indizes 1, ..., n.
I. Paasche, Miinchen, BRD



104 El. Math., Vol. 38, 1983

Losung (nach den Losungen des Aufgabenstellers sowie von Hj. Stocker,
Widenswil, von der Redaktion bearbeitet):
n=2: Die gegebene Gleichung lasst sich umformen zu

(x1+x2) (x1y2+ X21) =112 (11 2) -
Aus dem Ansatz
X1+x2=y1+)s, X1Y2t X2 )1=y1)2
gewinnt man die Lésung
flupuw)=ulf—uy),  glunu)=u.
Der Ansatz
X1+ Xx2=y1)s, X1y2txX21=y1+ )2
liefert die weitere Lésung
flupu)=@i—uy—u) /(1 —wy),  glu,u)=u.

n=3: Losungsansitze liefert die Dreiecksgeometrie. So ergibt z.B. die Hohen-
Berithrstreckenformel

2 sah=(XsaY)/ (Zha)

die folgende Losung:

S, u3) =y [y + g+ us) (— g+ up+us) (uy — g+ u3) (g + up— u3)] =172
g (uy, up, uz3)=(—u+uy+uy) ™.
Fiir beliebiges neN erhilt man triviale Losungen in der Gestalt f=s,g=V n s,

wobei s eine in den Variablen uy,...,u, symmetrische Funktion ist.
Einen weiteren Beitrag sandte W. Janous (Innsbruck, A).

Aufgabe 883. Fiir komplexe z mit |z| <1 ist die Summe

Z mnzm+n(1 +Zm+n)(1 _zm+n)—-3,

(m,n)=1

erstreckt iiber alle Paare (m, n) teilerfremder natiirlicher Zahlen geschlossen auszu-
werten.

M. Bencze, Sacele, Rumiinien
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Solution: Since
[.9]
@+AHA=-073= > & for |11<l1,
d=1
the given sum S can be rewritten as

s= 3 mnidzzmd+nd
ey

(mn)=1

=3 3 pgrte

d=1 (p,q)=d

by absolute convergence for |z| < 1.
A.A. Jagers, Enschede, NL

Eine weitere Losung sandte P. Bundschuh (K6ln, BRD).

Aufgabe 884. Fiir beliebige x;.eR,i=1,...,x; k=1,...,m zeige man, dass

m ;s on 2,12 - 12
(B (B} <5 (22)"

Z.A.L. Geocze, Vigosa, Brasilien

Losung: Mit x;:= (x;;,...,X;,,) € R™ und der euklidischen Norm

m 1/2
hx;l = (2 x%k)

lautet die zu beweisende Ungleichung

n n
125 1< 1=l
= =

d.i. die Dreiecksungleichung fiir n Vektoren.
W. Janous, Innsbruck, A
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Weitere Losungen sandten U. Abel (Giessen, BRD), K. Bickel (Freiburg, BRD),
P. Bundschuh (Kéln, BRD), B.C. Carlson (Ames, Iowa, USA), L. Filep (Nyiregy-
haza, Ungarn), A.A. Jagers (Enschede, NL), L. Kuipers (Sierre), Kee-wai Lau
(Hongkong), V.D. Mascioni (Origlio) (2 Losungen), Chr.A. Meyer (Ittigen),
A. Miller (Zirich), H.-J. Seiffert (Berlin), Hj. Stocker (Wadenswil), M. Vowe
(Therwil).
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Neue Aufgaben

Die Losungen sind getrennt nach den einzelnen Aufgaben in Maschinenschrift
erbeten bis /0. Februar 1984 an Dr. H. Kappus. Dagegen ist die Einsendung von
Losungen zu den mit Problem...A, B bezeichneten Aufgaben an keinen Termin
gebunden.

Bei Redaktionsschluss dieses Heftes sind noch ungeldst: Problem 601A (Band 25,
S.67), Problem 625B (Band 25, S.68). Problem 645 A (Band 26, S.46), Problem
672 A (Band 27, S.68), Aufgabe 680 (Band 27, S.116), Problem 724 A (Band 30,
S.91), Problem 764 A (Band 31, S.44), Problem 862 A (Band 36, S.68), Problem
872 A (Band 36, S.175).

Aufgabe 898. Let fe C" [0, 1] with
P O0)=O1)=0 for k=01,...,n—1.

Show that for p>1

jl' /@) 1Pdx=Q2n+1)"¢(Qn+1)!/n)? }f(x)dx p
0 0

where a:=min {1, p/2}. When does equality hold?
M. S. Klamkin und A. Meir, Edmonton, CDN

Aufgabe 899. Es seien a |, a,,a; die Innenwinkel eines ebenen Dreiecks mit Inkreis-
radius r und Umkreisradius R. Man zeige, dass

ﬁ(3ai/n)>2r/R.

Wann genau steht das Gleichheitszeichen? L
V.D. Mascioni, Origlio

Berichtigung zu Aufgabe 893.
(Band 38, S.24): In der ersten und vierten Zeile ist m durch x zu ersetzen. Der Passus
«fur x£0 (mod p)» in der zweiten Zeile ist iiberfliissig.
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