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Umkreis des Dreiecks liegt. Die Miquelschen Punkte der parallelen Geraden bl und
b2 liegen dann auf dem Umkreis des Basisdreiecks einander gegenüber. Ihre
Simsongeraden schneiden sich daher rechtwinklig auf dem Feuerbachkreis (siehe
Abschnitt 2).

E. A. Bockemüller und W. Kleinschmidt,
DFVLR, Institut für Flugmechanik, Braunschweig
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Kleine Mitteilungen
On a number-theoretical problem of Erdös

P. Erdös asked ([1], problem A 15) for the least prime number/? for which there exist

a,kx,k2 and k3 such that

kx k2 k3

T[(a + i)= Il^ + fc. + O^ TI(a + kx + k2+i)=l(modp), (l)

i.e.

(a + kx)\/a\ (a + kx + k2)\/(a + kx)\
==(a + kx + k2+k3)\/(a + kx + k2)\=l(modp). (2)

Evidently (1) is equivalent to

k\ k2 k$

_£ind(tf + f)= Y md(a + kx + i)= Y ind(a + kx + k2+i)
i-X /=1 i-X

0(mod/>-l). (3)

With a table of indices I found that (in the form (2))

5!=ll!/5!sl5!/ll! l(modl7)



102 El. Math., Vol. 38, 1983

and even

4! 8!/4!=ll!/8! 21!/ll!=l(mod23).

For the last chain see comments on F11 in [1]. It seems that longer chains can be
obtained in the same way.

Andrzej Makowski, Institute of Mathematics, University ofWarsaw
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Bemerkung zum Beitrag von R. Mortini, El. Math., Vol. 38 (1983), S. 49-51

Es handelt sich um die Summation der Potenzreihe YTnpxn, wop= 1,2,3,... und
| x | < 1 ist. Direkter als in dem genannten Beitrag könnte man folgendermassen
vorgehen, und dies dürfte doch wohl bekannt sein.
Aus der geometrischen Reihe

00 i

erhält man durch differenzieren nach jc und multiplizieren mit x die Gleichung

00 v

?""-(i-JF-
Bezeichnen wir diese Operation, d.i. differenzieren nach x und multiplizieren mit x,
kurz mit A, so fuhrt ihre /?-fache Wiederholung zu

00 N / 1 \***•-*(—)• (i)

Wegen

J 1 V jx j j_\(i-xy) (i-xy+l (i~jcy+1 (i-xy
7—1,2,... folgt durch Induktion

_»/ * \ a\ a2 ap+i
AP [ \ Ä i 1 ± L. I 1\l-xl l-x (l-x)2 (l-x)p+x
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Schreibt man dies in der Form

/ 1 \ Hp(x)
AP\JZ^)= (i-^)^i- Hp(x) c0+cxx+.-+cpxp,

so folgt mit (1) die Gleichung

(l-x)p+xYnpxn=Hp(x).
l

Ein Koeffizientenvergleich ergibt c0=0 und für die übrigen cn die von Mortini
gegebene «geschlossene» Form

'U1, ..,//>+ln=Y (-iy(^-)(i-jy, n=i,2,...,P.
7=o v y /

Und aus

_ x(x-l)^W + x(/7+l)ifp(x)
(T^cK+ 2

kann man sofort die Rekursionsformel für Hp ablesen.
Albert Pfluger, Zürich
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Aufgaben

Aufgabe 882. Für n 2 und n 3 ermittle man Lösungen (xx,...,xn; yx,...,yn)eC2n
der Gleichung

!,(*A)-(!/')/(!>¦)
in Gestalt zyklischer Parameterdarstellungen, d.h.:

*<r(i)=/(w<7(i> •••>"*(«))> 7<r(/)==g(w<T(i>---^<T(„)); i=l,...,n

für behebige zyklische Permutationen o der Indizes 1, ...,n.
I. Paasche, München, BRD
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