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Umkreis des Dreiecks liegt. Die Miquelschen Punkte der parallelen Geraden b; und

b, liegen dann auf dem Umkreis des Basisdreiecks einander gegeniiber. IThre Sim-

songeraden schneiden sich daher rechtwinklig auf dem Feuerbachkreis (siche
Abschnitt 2).

E.A. Bockemiiller und W. Kleinschmidt,

DFVLR, Institut fiir Flugmechanik, Braunschweig
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On a number-theoretical problem of Erdos

P. Erdos asked ([1], problem A 15) for the least prime number p for which there exist
a, kla k2 and k3 such that

ki ky ky
I_Il(a+i)5 l:Il(a+k1+i)E _];[l(a+k1+k2+i)sl(modp), (1)

1.e.

(a+k)! /a'=(a+k+ky)! [(a+ky)!
_=.(a+k1+k2+k3)!/(a+k1+k2)!El(modp). (2)

Evidently (1) is equivalent to

kl k2 k3
Zlind (a+i)= Zlind (a+k;+i)= Zlind (a+k+ky+i)
1= 1= [=

=0 (modp—1). 3)

With a table of indices I found that (in the form (2))

5!1=11!/5!=15!/11'=1(mod 17)
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and even
41=8!/41=11!/81=21!/11!=1 (mod 23).

For the last chain see comments on F11 in [1]. It seems that longer chains can be
obtained in the same way.
Andrzej Makowski, Institute of Mathematics, University of Warsaw
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Bemerkung zum Beitrag von R. Mortini, El. Math., Vol. 38 (1983), S.49-51

Es handelt sich um die Summation der Potenzreihe ZTO n?x", wo p=1,2,3,... und
|x| <1 ist. Direkter als in dem genannten Beitrag konnte man folgendermassen
vorgehen, und dies diirfte doch wohl bekannt sein.

Aus der geometrischen Reihe

1—-x

o0
5 xn-
0

erhélt man durch differenzieren nach x und multiplizieren mit x die Gleichung

o8] B X )
Y nx"= (1—~x)2

1

Bezeichnen wir diese Operation, d.i. differenzieren nach x und mu1t1p11z1eren mit x,
kurz mit 4, so fiihrt ihre p-fache Wiederholung zu

Swn-s(:L) o

- X

Wegen

(A=xy )~ (A=xy*T~ Q=xy*1 " (1-xy
j=1,2,... folgt durch Induktion

1 a; a ap+1
AP == + —_— .
(1 ) d—x2 * Tt
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Schreibt man dies in der Form

1 H,(x)
Ap(l—x>= (1=x)P*+1’ H,(x)=cotcix+ - +c,xP,

so folgt mit (1) die Gleichung
[0.0]
(1=x)P*13 n?x"=H,(x).
1

Ein Koeffizientenvergleich ergibt ¢o=0 und fiir die iibrigen ¢, die von Mortini
gegebene «geschlossene» Form

n=l . 1
e= 3 (- 1y(£f,—-)(n—jy’, n=12,...p.

j=0 J

Und aus

Hpiy(x) 1 _d Hy(x)
(1—x)P+2 ”A<Ap( 1——x)) ~*dx ((l—x)l"” )
x(x=DH,(x)+x(@+1)H,(x)

(1—x)P+2

kann man sofort die Rekursionsformel fiir H, ablesen.
Albert Pfluger, Ziirich
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Aufgaben

Aufgabe 882. Fiir n=2 und n=3 ermittle man Lésungen (x,..., X»; V1,...,Vn) € C2"
der Gleichung

$nin= ($)/ (3,7

i=1
in Gestalt zyklischer Parameterdarstellungen, d. h.:

xa(,-)=f(u,,(1),...,u,,(,,)), y,,(f)=g(ua(1),...,ua(,,)); i= 1,...,n

fiir beliebige zyklische Permutationen ¢ der Indizes 1, ..., n.
I. Paasche, Miinchen, BRD
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