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Bemerkungen zur Geometrie des Dreiecks

1. Einleitung
Bei der Untersuchung der Eigenschaften von Verfolgungsbahnen und des

Übertragungsverhaltens von Gelenkmechanismen ergaben sich Besonderheiten, die

eng mit Sätzen über Dreiecke zusammenhängen. Im folgenden werden zwei
Ergebnisse mitgeteilt.
Fällt man von einem Punkt des Umkreises die Lote auf die Dreiecksseiten, so

hegen die drei Fusspunkte auf der Simsongeraden ([1, 2]). Die Gesamtheit aller
Simsongeraden des Dreiecks besitzt eine dreispitzige Hypozykloide als Einhüllende
(Steiners Dreispitz) mit dem Mittelpunkt des Feuerbachkreises als Zentrum.
Betrachtet man die Hüllkurve als Ort der Schnittpunkte infinitesimal benachbarter
Simsongeraden, so liegt es nahe, nach dem Ort der Schnittpunkte zweier Simsongeraden

mit konstantem Schnittwinkel zu fragen. Im Abschnitt 2 wird die
zugehörige Kurvenschar abgeleitet und untersucht.
Im Abschnitt 3 werden die Scharen gleichseitiger Dreiecke betrachtet, deren Ecken
auf den verlängerten Seiten eines Basisdreiecks liegen. Die Mittelpunkte dieser
gleichseitigen Dreiecke bilden ein Paar paralleler Geraden, die auf der Eulerschen
Geraden des Basisdreiecks senkrecht stehen.

2. Verallgemeinerung des Steinerschen Dreispitzes

Satz 1. Auf dem Umkreis eines Dreiecks ABC seien zwei Punkte Px und P2 mit dem

Zentriwinkel 8 gegeben, und es sei S der Schnittpunkt der zugehörigen Simsongeraden.
Durchläuft das Punktepaar PXP2 bei konstantem ö den Umkreis, so beschreibt S eine
verlängerte Hypozykloide. Mit S als Parameter hat man eine Schar von verlängerten
Hypozykloiden, deren Festkreisradius das Dreifache des Rollkreisradius ist. Für ö n
erhält man den Feuerbachkreis, für ö 0 den Steinerschen Dreispitz, der zugleich
Einhüllende der Schar ist.

Zum Beweis wird eine von Dorrie [3] angegebene Darstellung für die Simsongerade
w eines Punktes P zugrunde gelegt. Es seien yx,yi,y3 un(i 9 die Polarwinkel der
Ecken A,B9C des Dreiecks und des Punktes P bezüglich einer Polarachse mit dem
Umkreismittelpunkt als Pol. Die Polarachse wird so gewählt, dass

Vl + V2+y3=2flW

ein ganzzahliges Vielfaches von 2 n ist. In einem kartesischen Koordinatensystem
mit dem Mittelpunkt des Feuerbachkreises als Ursprung, dessen x-Achse zu dieser
Polarachse parallel ist, nimmt die Gleichung der Simsongeraden die Form

w=jcsin-- + ycos—- — sin—-2^222
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an, wobei R der Radius des Umkreises ist. Hieraus folgt unmittelbar wie bekannt,
dass die zu Px und P2 gehörenden Simsongeraden sich unter dem Winkel 8/2
schneiden ([1,4]). Sind

<PX <P+Y' <P2=(P~
8

die zu dem Punktepaar PXP2 gehörenden Winkel auf dem Umkreis, so lauten die

Gleichungen ihrer Simsongeraden

.1/ 8\ 1/ 8\ R 3 8\W^Siny^+yj+^COSy^+yj-yBny^+yj,

.1/ S\ 1/ 8\ R 3 / 8\W2=XSm~ (<p- yj + ^COSy [cp- y j - y S1U y [<p - yj
Für die Koordinaten x undy des Schnittpunktes von wx und w2 erhält man

^= 2^ [sinT (^+ f) cosT ("- t) ~sinf (^- f) ^T (^+f])'

y= db [sini ('- f) sini (f+ f) _sinf ('+ f) sini ('- f)]
oder nach elementarer Umformung, wobei sich der Nenner sin8 weghebt,

R i\ s
^ ix — 2cos — cos(p + cos2 <p

ÄL 8 i
y= \2 cos — sin#> — sm2 <p

Setzt man

,_ i* 8
1

R 8 R
ö 3 —cos —, 0 cos c==

2 2 2 2 2

so erhält man daraus mit

x (a — b)cos(p + ccos—-—<p,b

y=(a — b)smq> — csm—-— (p
b

die Parameterdarstellung einer verlängerten Hypozykloide mit a als Radius des

Festkreises, b als Radius des erzeugenden Kreises und cp als Drehwinkel.
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Fig. 1 zeigt die Kurvenschar in Abhängigkeit vom Parameter 8, wobei der
Übersichtlichkeit halber das Achsenkreuz weggelassen ist. Die oben definierte x-Achse
läuft durch eine der drei Spitzen des Steinerschen Dreispitzes.

Ö«0°

90° 20° 170° 120°

180°

Figur la-d. Steinerscher Dreispitz als Einhüllende der verlängerten Hypozykloiden mit dem Schar¬

parameter ö.

Für 8 0 erhält man als Grenzfall die Steinersche dreispitzige Hypozykloide, die
zugleich Einhüllende der Schar ist. Es seien nämlich

R R
xs= y (2 cos 9 + cos2 9), ys — (2 sin 9 - sin2 3)

und

x= — I 2cos—cos^ + cos2#? 1, y= — 2cos —sin^~sin2^ 1

die Gleichungen des Steinerschen Dreispitzes und einer Scharkurve. Aus der
Forderung, dass in den Berührungspunkten die Koordinaten und die Steigungen beider
Kurven übereinstimmen, folgen drei Gleichungen, die durch die Werte

__ /_

9 n> 120°± —, <p n> 120°+— (n 0,l,2)
3 6

erfüllt werden.
Für &= 120° ergibt sich eine Kurve, bei der die drei Doppelpunkte im Mittelpunkt
des Feuerbachkreises zusammenfallen. Ihre Berührungspunkte halbieren den
zugehörigen Halbbogen des Steinerschen Dreispitzes, während ihre Schnittpunkte mit
dem Feuerbachkreis zusammen mit denjenigen Punkten, in denen dieser den Dreispitz

berührt, den Feuerbachkreis in neun gleiche Bögen teilt (siehe Fig. ld).
Der Fall 8 120° ist ferner durch folgende Eigenschaft ausgezeichnet. Die
Simsongeraden dreier Punkte, die auf dem Umkreis mit dem Winkelabstand 8 120°
aufeinander folgen, bilden ein gleichseitiges Dreieck, dessen Ecken auf der
verlängerten Hypozykloide mit 8 120° hegen. Genau eines dieser Punktetripel besteht
aus den Boutinschen Punkten, deren Simsongeraden den durch sie gehenden
Umkreisradien parallel sind [2]. Ihre Lage auf dem Umkreis in dem oben definierten
Koordinatensystem ist durch die Werte <pn*=*n • 120°(n 091,2) bestimmt, ihre drei
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Simsongeraden gehen daher durch den Mittelpunkt und die Spitzen des Steinerschen

Dreispitzes.
Im Fall 8=n, wenn also Px und P2 Endpunkte eines Umkreisdurchmessers sind,
geht die Scharkurve in den Feuerbachkreis über, der im Intervall 0^cp 2n zweimal

durchlaufen wird. Die zugehörigen Simsongeraden schneiden sich dann auf
dem Feuerbachkreis unter einem rechten Winkel [4]. Das Maximum des Abstands
einer Scharkurve vom Zentrum berechnet sich zu

rM. ,(<5)=y(l+2cOSy)

Daraus folgt für die drei betrachteten Fälle

>Max(0)* 'Max^-^)- ^Max(^)= - ^: 3

3. Scharen gleichseitiger Dreiecke auf einem Basisdreieck

Im älteren Schrifttum werden Dreiecke untersucht, die zu einem gegebenen Dreieck
in einer besonderen Beziehung stehen [1]. Unter einem Indreieck versteht man ein
Dreieck, dessen Ecken auf den verlängerten Seiten eines im folgenden Basisdreieck

genannten gegebenen Dreiecks liegen. Die Gesamtheit aller gleichseitigen In-
dreiecke weist, wie gezeigt werden soll, einige bemerkenswerte Eigenschaften auf.

Satz 2. Die Mittelpunkte der zum Basisdreieck ABC gleichsinnig orientierten
gleichseitigen Indreiecke liegen auf einer Geraden bx, die Mittelpunkte der gegensinnig
orientierten Indreiecke auf einer Geraden b2. Die beiden Geraden sind parallel und
stehen senkrecht aufder Eulerschen Geraden.

Zum Beweis werden auf das Basisdreieck bezogene Flächenkoordinaten /,{/= 1,2,3)
eingeführt [5]. Es bezeichne G die Fläche des Basisdreiecks ABC. Aus Figur 2 ent-

6i' 6

«*'- 6 Y - 60°

Ö3~ 6 -ß 60°

A"

c

52

B^AC" C

Figur 2. Gleichseitige Indreiecke mit Mittelpunkt P und Umkreisradius r im Basisdreieck ABC; AA'B'C
gleichsinnig, äA"B"C" gegensinnig orientiert (Symbole P und r nicht eingezeichnet).
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nimmt man die Koordinaten des Mittelpunktes P eines gleichsinnig orientierten
gleichseitigen Indreiecks A'B'C mit dem Umkreisradius r

tx(P)=~asin8, t2(P)=^bsin(8 + y-60°),

t3(P)=~csin(8-ß + 60°),

die der linearen Gleichung

sin(a-60°) sin(^-60°) sin(y-60°)
t y l 1_ i _ Q

sina sm/? smy

genügen. Ist ein Winkel 60°, so geht die durch diese Gleichung gegebene Gerade bj
durch die zugehörige Ecke.
Man zeigt entsprechend, dass die Mittelpunkte der gegensinnig orientierten
gleichseitigen Indreiecke auf der zu bj parallelen Geraden b2

sin(a + 60°) sin(^ + 60°) sin(y + 60°)tx—^ -+t2—^t-7—-+t3——. -=0
sma sm/> siny

liegen. Der Trivialfall eines gleichseitigen Basisdreiecks, in dem die Geraden
entarten, bleibe ausser Betracht.
Unter Verwendung kartesischer Koordinaten zeigt man, dass die Eulersche Gerade

tx cosa sin(/? — y) + t2cosß sin(y — a)+ t3cosy sin(a — ß) 0

auf den Geraden bj und b2 senkrecht steht.
Sind ferner F und / die Mittelpunkte des Feuerbachkreises und des Inkreises
und g die Gerade durch Fund /, so folgt für den Winkel xp zwischen den Eulerschen
Geraden und g die Beziehung

a—ß ß—y y—a
Sln sm sin

' tan xp
(cosa — cos60°) (cos/? — cos60°) (cosy - cos60°)

Die Geraden bx und g sind also parallel, wenn einer der Winkel des Basisdreiecks
60° ist, wobei bj mit g zusammenfallt.
Ein enger Zusammenhang besteht mit dem bekannten Satz, dass der Feuerbachkreis

und der Inkreis sich in einem Punkt berühren. Sind nämlich Bx die Schnittpunkte

von g mit bx(i= 1,2), so lässt sich zeigen, dass die Umkreise der gleichseitigen
Indreiecke mit Bt als Mittelpunkten Inkreis und Feuerbachkreis im gleichen Punkt
berühren.
Ferner lässt sich zeigen, dass den Schnittpunkten einer Geraden mit den verlängerten

Seiten eines Dreiecks ein Miquelscher Punkt [6] zugeordnet ist, der auf dem



El Math Vol 38, 1983 101

Umkreis des Dreiecks liegt. Die Miquelschen Punkte der parallelen Geraden bl und
b2 liegen dann auf dem Umkreis des Basisdreiecks einander gegenüber. Ihre
Simsongeraden schneiden sich daher rechtwinklig auf dem Feuerbachkreis (siehe
Abschnitt 2).

E. A. Bockemüller und W. Kleinschmidt,
DFVLR, Institut für Flugmechanik, Braunschweig
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Kleine Mitteilungen
On a number-theoretical problem of Erdös

P. Erdös asked ([1], problem A 15) for the least prime number/? for which there exist

a,kx,k2 and k3 such that

kx k2 k3

T[(a + i)= Il^ + fc. + O^ TI(a + kx + k2+i)=l(modp), (l)

i.e.

(a + kx)\/a\ (a + kx + k2)\/(a + kx)\
==(a + kx + k2+k3)\/(a + kx + k2)\=l(modp). (2)

Evidently (1) is equivalent to

k\ k2 k$

_£ind(tf + f)= Y md(a + kx + i)= Y ind(a + kx + k2+i)
i-X /=1 i-X

0(mod/>-l). (3)

With a table of indices I found that (in the form (2))

5!=ll!/5!sl5!/ll! l(modl7)
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