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Anzahl der Lésungen (x2,y?) von (3) mit x, ye GF (g)*

1 1
fir —1¢K? :Z(p‘—e—2), fur —leK*Z:z(p"-—e).

Die Uberpriifung dieser Ergebnisse, die Auffindung der Losungsanzahlen fiir die
Gleichung x2—y?=0 sowie die Untersuchung fiir Galois-Felder gerader Ordnung
iiberlassen wir dem Leser.

Herbert Zeitler, Math. Institut der Universitit Bayreuth, Bayreuth
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Linear operators satisfying the chain rule

In computational calculus the derivative is treated as a formal operator satisfying
certain functional relationships. This leads to the question of which properties of the
derivative characterize that operator on the elementary functions, i.e., the rational,
logarithmic, exponential, trigonometric and inverse trigonometric functions. In this
note we will show that, provided we rule out trivial cases, any operator, which acts
on a suitable collection of functions containing the elementary functions and which
is both linear and satisfies the chain rule formula must agree with the derivative on
the elementary functions.

We begin by describing the functions on which our operators act. If fand g are two
real-valued functions with domains contained in R, the real numbers, and ce R, let
f+g, fz, cf, fog, f/g denote the usual pointwise operations of addition, multi-
plication, scalar multiplication, composition, and division, each defined on its
natural domain (the largest set on which the resulting formula makes sense). Let F
denote any set of real-valued functions with non-empty domains contained in R
satisfying the following properties.

1. Fis closed under addition, multiplication and scalar multiplication.

2. If fand g are in F, then fog and f/g are also in F whenever their natural domains
are non-empty.

3. i(x)=x and u(x)=1 are in F. Observe that any such F is an algebra of real-
valued functions which contains the rational functions. In what follows we shall use
the facts that for all fe F, foie F; and if we set t(x)=x+r, with re R, fote F.
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A chain rule operator on F is a linear operator, D, on F such that if foge F and
(Df)ogeF, then D (fog)=((Df)og) (Dg). Any linear operator, P, on F which
satisfies P (fg)=(Pf)g+f(Pg) is called a derivation. The derivative on F;, the set of
all functions whose domains consist of all but a finite number of points of R and
which are differentiable on their domains, is both a chain rule operator and a
derivation, as is the zero operator defined by (0f) (x)=0 on F,, the set of all real-
valued function whose domains are contained in R. The example D=2 (d/dx) on F,
shows that not every derivation is a chain rule operator. We shall prove, however,

Theorem. Any chain rule operator on F is a derivation on F.

In order to prove this theorem and to understand its consequences we need the
following computational formulas. Let s denote the function s (x)=x2.

Lemma. If D is a chain rule operator which is not the zero operator:
a) Di=u, b) Du=0, c) Ds=kiforsomekeR.

Proof:

a) Since foi=f, the chain rule implies: (1) Df= (Df)(Di) for all fe F. Setting f=1i in
(1) yields Di=(Di)? so that (Di)(x)=1 provided (Di)(x)#0. Thus we need only
show that for any re R, (Di) (r)#0. Since D is not the zero operator, (1) implies that
there must exist some ae R such that (Di)(a)#0. Set t(x)=x+a—r and ! (x)
=x—a+r. Then t,t 'eF, i=tor! and Di=((Df)or™!) (Dr™"). Evaluating this at
X=a yields 0+ (Di)(a)=(Dt)(r) (Dt ") (a). Thus, (Df)(r)#0, so setting f=¢ in (1)
and evaluating at x=r gives (Di) (r)#0.

b) For any ce R, uo(ci)=u implies that Du= ((Du)o(ci)) cu. Set c=0.

c) Applying the chain rule to so(ci)=c?%, yields (2) c2Ds=/((Ds)o(ci)) cu.
Evaluating (2) at x=1 shows, c¢(Ds)(1)=(Ds)(c) provided c¢#0. This proves the
result with k= (Ds) (1), if the argument of Ds is not 0. To complete the proof, note
that setting c=2 in (2) and evaluating at x=0 shows 4(Ds)(0)=2(Ds)(0) so
(Ds)(0)=0=kO0.

We are now in a position to prove our theorem. If D is the zero operator the result is
immediate. Otherwise, computing both sides of D (so(f+g)) =D (sof+2fg+s0g)
separately using the chain rule and the lemma yields: D (fg)=(k/2) (f(Dg)+(Df)g),
where k is the constant appearing in the lemma. Finally, using the fact that ui=1,
1= D (ui)=(k /2) (u(Di)+ (Du)i) =k /2. Therefore, k=2.

Several observations follow almost immediately from the theorem. First, note that at
the end of the proof of the theorem we established that Ds=2i (since k=2). Also,
ie F implies r=1/i, with domain R— {0}, is in F and applying the product rule to ri
shows Dr= —1/s. This, combined with the product and chain rules, gives a quotient
rule for chain rule operators. In addition, we can obtain a formula for Df"! by
applying D to the identity i=fof!. We summarize these results as:
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Corollary 1. If D is a chain rule operator on F, then
(D)g—f(Dg)
D ==
a) D(f/g) g

b) (Df ) (f(x)) =1/(Df) (x) provided (Df) (x)#0.

whenever f/g e F,

It is convenient to call chain rule operators other than the zero operator, non-trivial
chain rule operators. The example

Dfe lim LOHRZSE)

h—>0+ h

provides a familiar operator other than the derivative which is a non-trivial chain
rule operator.

Finally, we characterize the action of chain rule operators on elementary functions,
as promised in the first paragraph.

Corollary 2. Suppose F contains all the elementary functions and D is a non-trivial
chain-rule operator such that if fe F is differentiable at x € R, then x is in the domain
of Df. Then De= de/dx whenever e is an elementary function.

Proof: A straightforward induction argument using the theorem and the lemma
shows that dp/dx=Dp for any polynomial p. Corollary 1, part a, and this result
imply that dr/dx = Dr for any rational function r. Next we compute Dexp, Dsin and
Dcos. Applying D to both sides of the identity exp (x+ y)= exp (x) exp (»), consider-
ing x as a variable and y as an arbitrary constant yields (Dexp) ()= (Dexp)(0)
exp (y). Similarly, applying D to the identities for sin(x+y) and cos(x+y) shows
(Dsin) (y)= (Dsin) (0) cos (¥) +sin (y) (Dcos)(0) and (Dcos)(y)=(Dcos)(0) cos(y)
— (Dsin) (0) sin (). Furthermore, applying D to the identity sin? (x)+ cos?(x)=1 and
evaluating at x=0 gives (Dcos)(0)=0. We have shown (Dsin) (y) = (Dsin) (0) cos (y),
(Dcos) (y)= — (Dsin)(0) sin (y). To see that (Dexp)(0)=1, use Taylor’s theorem to
write exp (x)= 1+ x + E (x) where E (x)=Z (x) x2. Then E and Z are in F. Moreover
Z (x) is differentiable at 0 (cf. [1], p. 125), thus (DZ)(0)e R. Now (DE)(x)=(D2Z)
(x)x*+2xZ(x), so that (DE)(0)=0. Thus (Dexp)(0)=1+(DE)(0)=1. A similar
argument shows (Dsin)(0)=1. The remainder of the proof follows by straight-
forward calculations using these results, Corollary 1 and the definitions of the
logarithmic, trigonometric and inverse trigonometric functions in terms of the
exponential, sine and cosine functions.

Richard L. Rubin, Florida International University, Miami, Florida
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