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Rechnen in endlichen Körpern
(Beispiele elementarer Zahlentheorie)

Einleitung

Wir gehen von einem Restklassenkörper K ungerader Ordnung aus. Dann gilt also
| K | =p mit p Primzahl und p + 2.

Bekanntlich lässt sich jede Primzahl/?+ 2 entweder in der Form/? 4a + 1 oder aber
in der Formp 4a— 1 mit aeN darstellen. Im ersten Fall ist — 1 Quadrat in K, im
zweiten dagegen nicht. Mit K* K\{0} schreiben wir - 1 e K*2 bzw. - 1 £ K2 [ 1 ], [3].

Das Problem

Wie viele Lösungen (x2,y2) mit x,yeK* besitzt die Gleichung

x2-y2=l. (1)

Die Lösung des Problems

Die Gleichung (1) besitzt genau a—l Lösungen der genannten Art.

Mit den bei der Behandlung diophantischer Gleichungen in N üblichen Verfahren
[2] schreiben wir x2—y2=(x—y)(x+y)= 1 und setzen x—y= v und x+y= w. Es gilt
v9weK*. Weiter erhalten wir

1 l + v2 1-v2
w=—, x=——, y^-z—v 2v 2v

a) Sei v ein behebiges Element aus K*. Dann folgt mit jc (1 + v2)/(2v) und
y=(l — v2)/(2 v) durch Einsetzen und Ausrechnen sofort x2—y2= 1.

b) Seien nun umgekehrt x,yeK* mit x2—y2= 1 gegeben. Dann existiert mindestens
ein veK* so, dass x (1 + v2)/(2 v),y=(l- v2)/(2 v).
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Beweis: Es gibt jedenfalls mindestens ein veK* so, dass x2=(v+y)2. Daraus folgt
sofort x2-y2=v2+2vy und mit x2-y2= 1 weitery= (1-^/(2v). Einsetzen dieses
Ergebnisses liefert schliesslich

2 / 1-V2\2 /1 + V2\2
t l + V2

c) Wir wissen v+0. Wegen x + 0 und y+0 sind vermutlich weitere Werte von v
unbrauchbar. Welche?

Ausy=0 folgt v2« l,also v= ±1.
Aus x 0 folgt v2=-l, also v=±V -l. Im Falle p 4a-l tritt dies wegen
— 1 ^ K2 nicht ein, wohl aber im Falle p 4 a + 1.

Deshalb gilt
für/? 4a - 1: Restliche Werte veK\{0, ±1}, ihre Anzahl nx=p- 3 4a-4,
für/?=4a + l: Restliche Werte veK\{0, ±1, ±V -1 }, ihre Anzahl n2=p-5

4a-4.
d) Der Übergang von v nach - v liefert äquivalente Lösungen (x2,/2). Gibt es noch
weitere äquivalente Lösungen? Zur Beantwortung dieser Frage müssen wir
feststellen, für welche re K* mit r+ v gilt:

1 + r2 l + v2
^ l-r2 l-v2

—— ± —— und —— + —2r 2v 2r 2v

(Die Äquivalenzen

1 + r2 l-v2 l-r2 l + v2

2r 2v 2r 2v

können nicht auftreten.)

Sei etwa (l + r2)/(2r)=(l + v2)/(2v). Dann folgt rv(r-v) (r-v) und mit r+v
weiter r—l/v. Auf diese Weise fortfahrend, ergeben sich neben r= — v nur noch
zwei brauchbare Werte, nämlich r= l/v und r= — l/v.
Von den in Abschnitt c angegebenen Werten für v kann also jeweils nur der vierte
Teil verwendet werden.
Für die Gesamtzahl der Lösungen (jc2,j>2) unserer Gleichung (1) ergibt sich also in
jedem Fall

1 1

j»i- j«2«a-l.

Erste Erweiterung

x -f=a2 mit aeK*. (2)
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Auch diese Gleichung besitzt genau a—l Lösungen (x2,y2) mit x,yeK*.

Der Beweis ergibt sich durch Division mit a2. Denn dann erhält man

(.)-(.)-'¦
also eine Gleichung der Form (1).

Zweite Erweiterung

x2-y2=a mit a$K2. (3)

Diese Gleichung besitzt im Falle p 4a—l, also — l^K2 genau a—l, im Falle

p 4a+l, also — 1 eK*2genau a Lösungen (x2,y2) mit x,y eK*.

Für den ersten Fall ergibt sich der Beweis durch Multiplikation mit — 1. Dann
erhält man -x2+y2=-a. Weil nach [2] aus -l^K2 und a$K2 folgt -aeK*2,
handelt es sich um eine Gleichung der Form (2).
Im zweiten Fall muss der Beweis zu (1) wiederholt werden. Dabei ändert sich das

Ergebnis c. Die Anzahl brauchbarer Werte für v beträgt nämlich dann genau 4a.

Zahlenbeispiele

p=4a—1
a 5, /7=19, K*2={1,4,5,6,7,9,11,16,17}
A:2^>;2 a2GK*2

a2 Lösungen
1 (5,4), (6,5), (7,6), (17,16)
4 (11,7), (9,5), (5,1), (1,16)
5 (16,11), (11,6), (9,4), (6,1)
6 (17,11), (11,5), (7,1), (4,17)
7 (16,9), (11,4), (5,17), (4,16)
9 (16,7), (1,11), (6,16), (7,17)

11 (17,6), (16,5), (1,9), (9,17)
16 (17,1), (1,4), (4,7), (6,9)
17 (4,6), (5,7), (7,9), (9,11)
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x2-¦y2=a<tK2
a Lösungen

2 (11,9), (9,7), (7,5), (6,4)
3 (9,6), (7,4), (4,1), (1,17)
8 (17,9), (9,1), (5,16), (6,17)

10 (17,7), (16,6), (11,1), (7,16)
12 (17,5), (16,4), (4,11), (9,16)
13 (17,4), (1,7), (5,11), (11,17)
14 (1,6), (4,9), (6,11), (11,16)
15 (16,1), (1,5), (5,9), (7,11)
18 (4,5), (5,6), (6,7), (16,17)

/? 4a+l
a 4, />=17, K*2={1,2,4,8,9,13,15,16}
x2-y2 a2eK*2

a2 Lösungen
1 (16,15), (9,8), (2,1)
2 (15,13), (4,2), (1,16)
4 (13,9), (8,4), (2,15)
8 (16,8), (9,1), (4,13)
9 (13,4), (1,9), (8,16)

13 (15,2), (4,8), (9,13)
15 (16,1), (2,4), (13,15)
,16 (1,2), (8,9), (15,16)

x2-f=atK2
a Lösungen

3 (16,13), (4,1), (1,15), (2,16)
5 (13,8), (9,4), (1,13), (4,16)
6 (15,9), (8,2), (2,13), (4,15)
7 (16,9), (15,8), (9,2), (8,1)

10 (1,8), (2,9), (8,15), (9,16)
11 (15,4), (13,2), (2,8), (9,15)
12 (16,4), (13,1), (4,9), (8,13)
14 (16,2), (15,1), (1,4), (13,16)

Ausblick

Wir gehen jetzt vom Restklassenkörper ungerader Ordnung/» über zum Galois-Feld
GF(q) ungerader Ordnung q =pe mit e e N.
Anzahl der Lösungen (x2,^2) von (1) und (2) mit x,ysGF(q)*

für -1£K2 :|(p'-e-2), für - leK*2:y (pe-e-4).
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Anzahl der Losungen (x2,y2) von (3) mit x,yeGF(q)*

fur -1^.K2 —(tf-e-2), fur -leK*2 j(pe-e)

Die Überprüfung dieser Ergebnisse, die Auffindung der Losungsanzahlen für die
Gleichung x2-y2=0 sowie die Untersuchung für Galois-Felder gerader Ordnung
überlassen wir dem Leser

Herbert Zeitler, Math Institut der Universität Bayreuth, Bayreuth
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Linear Operators satisfying the chain rule

In computational calculus the derivative is treated as a formal Operator satisfying
certain functional relationships This leads to the question of which properties ofthe
derivative charactenze that Operator on the elementary functions, l e the rational,
loganthmic, exponential, tngonometnc and inverse tngonometnc functions In this
note we will show that, provided we rule out trivial cases, any Operator, which acts
on a suitable collection of functions containing the elementary functions and which
is both linear and satisfies the chain rule formula must agree with the derivative on
the elementary functions
We begin by descnbing the functions on which our Operators act If/and g are two
real-valued functions with domains contained in R, the real numbers, and ceR, let
/+&> fg> cf> f°g> f/g denote the usual pomtwise Operations of addition,
multiplication, scalar multiplication, composition, and division, each defined on its
natural domain (the largest set on which the resultmg formula makes sense) Let F
denote any set of real-valued functions with non-empty domains contained m R
satisfying the following properties
1 Fis closed under addition, multiplication and scalar multiplication
2 If/and g are in F, then/og and f/g are also in F whenever their natural domains
are non-empty
3 i(x)==x and u(x)= 1 are in F Observe that any such F is an algebra of real-
valued functions which contains the rational functions In what follows we shall use
the facts that for all/e F,fo i e F9 sind ifwe set t (x) x + r, with reR,foteF
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