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Rechnen in endlichen Kérpern
(Beispicle elementarer Zahlentheorie)

Einleitung

Wir gehen von einem Restklassenkorper K ungerader Ordnung aus. Dann gilt also
| K| =p mit p Primzahl und p+2.

Bekanntlich lésst sich jede Primzahl p+ 2 entweder in der Form p=4a + 1 oder aber
in der Form p=4a — 1 mit a e N darstellen. Im ersten Fall ist — 1 Quadrat in K, im
zweiten dagegen nicht. Mit K* = K\{0} schreiben wir — 1eK*2 bzw. — 1¢ K?[1], [3].
Das Problem

Wie viele Losungen (x2, y*) mit x,y e K* besitzt die Gleichung

xt—yr=1. (1

Die Losung des Problems
Die Gleichung (1) besitzt genau a — 1 Losungen der genannten Art.

Mit den bei der Behandlung diophantischer Gleichungen in N iiblichen Verfahren
[2] schreiben wir x2—y*=(x—y)(x+y)=1 und setzen x—y=v und x+y=w. Es gilt
v,we K*. Weiter erhalten wir

1 . 1+2 1—y2
w=——, —— N = .
y 2y Y 2v

a) Sei v ein beliebiges Element aus K*. Dann folgt mit x=(1+v%/(2v) und
y=(1—7?/(2 v) durch Einsetzen und Ausrechnen sofort x>— y?=1.

b) Seien nun umgekehrt x,ye K* mit x2—y?=1 gegeben. Dann existiert mindestens
ein ve K* so, dass x=(1+3)/Q2v), y=(1—-v?)/Q2 ).
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Beweis: Es gibt jedenfalls mindestens ein ve K* so, dass x2=(v+y)2 Daraus folgt
sofort x2—y?=v2+2vy und mit x2—y?=1 weiter y=(1—v?)/(2v). Einsetzen dieses
Ergebnisses liefert schliesslich

P (v+1—-v2)2_ 1+v2\2 i _+1+v2
2v _(Zv)’ aso x== 2v

c) Wir wissen v+0. Wegen x+0 und y#+0 sind vermutlich weitere Werte von v
unbrauchbar. Welche?

Aus y=0 folgt v*=1, also v= % 1.

Aus x=0 folgt v’=—1, also v=+V —1. Im Falle p=4a—1 tritt dies wegen
— 1¢ K2 nicht ein, wohl aber im Falle p=4a + 1.

Deshalb gilt

fir p=4a—1: Restliche Werte ve K\{0, + 1}, ihre Anzahl ny,=p—3=4a—4,

fir p=4a+1: Restliche Werte veK\{0,+1,+V —1}, ihre Anzahl ny=p—5
=4q-—4,

d) Der Ubergang von v nach — v liefert iquivalente Losungen (x2,y?). Gibt es noch
weitere dquivalente Losungen? Zur Beantwortung dieser Frage miissen wir fest-
stellen, fiir welche re K* mit r+ v gilt:

1+72 1+ ng 1P _ 1=V
2r - 2y " 2r T 2v

(Die Aquivalenzen

1+72 __ 1-¥ 3 -7 _ 1+
2r T 2 un 2r T 2y

kdnnen nicht auftreten.)

Sei etwa (1+7%)/Q2r)=(1+v?)/(2v). Dann folgt rv(r—v)=(r—v) und mit r+v
weiter r=1/v. Auf diese Weise fortfahrend, ergeben sich neben r= —v nur noch
zwei brauchbare Werte, nimlich r=1/v und r= — 1 /.

Von den in Abschnitt ¢ angegebenen Werten fiir v kann also jeweils nur der vierte
Teil verwendet werden. '

Fiir die Gesamtzahl der Losungen (x2,y?) unserer Gleichung (1) ergibt sich also in
jedem Fall

1 1
“an= —4-n2=a—l.
Erste Erweiterung

x2—y?=qa* mit aeK*. ()
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Auch diese Gleichung besitzt genau a. — 1 Losungen (x%,y?) mit x,ye K*.

Der Beweis ergibt sich durch Division mit a2. Denn dann erhilt man
% 2 2
(Y-
a a

also eine Gleichung der Form (1).

Zweite Erweiterung

x?—y*=a mit a¢K>2. 3)

Diese Gleichung besitzt im Falle p=4a—1, also —1¢K?* genau a—1, im Falle
p=4a+1,also — 1cK*? genau a Losungen (x*,y*) mit x,ycK*.

Fiir den ersten Fall ergibt sich der Beweis durch Multiplikation mit — 1. Dann
erhialt man — x2+y?= —a. Weil nach [2] aus —1¢K? und a¢K? folgt —acK*?,
handelt es sich um eine Gleichung der Form (2).

Im zweiten Fall muss der Beweis zu (1) wiederholt werden. Dabei dndert sich das
Ergebnis c. Die Anzahl brauchbarer Werte fiir v betrdgt nimlich dann genau 4a.

Zahlenbeispiele

p=4a-1

a=5, p=19, K*?2={1,4,5,6,7,9,11,16,17}
x2—-y2=azel(*2

Losungen

1 (54), (6,5), (7,6), (17,16)
4 AL7, 9,5, 5,1), (1,16)
5 (16,11), (11,6), (94), 6,1)
6
7

17,11), (@1L5), (@1, 4,17)

(16,9, (114, (5,17, (4,16)

9 (16,7, (1,11), (6,16), (7,17)

11 (17,6), (16,5, (1,9), 9,17)
16 (17,1, (14), 4,7, 6,9)

17 (4,6), .7, (1,9, 9,11)
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x2—y?=a¢K?

a Losungen

2 (L9, O, (15, (649
3 096), (7.4), @,1), (1,17)
8 (179, @O, (516, (617)
10 (17,7, (16,6), (L1, (7,16)
12 (17,5, (164), (4,11, (9,16)
13 (174, (@7, (6,11, (1L17)
14 (L6, (49, (611, (1L16)
15 (161, (5, (59, (711
18 45, (56, (67, (16,17)
p=4a+1

a=4, p=17, K*?*={1,2,4,8,9,13,15,16}
x}—yr=a?cK*?

a* Losungen

1 (16,15, 98), (2,1

20 (1513), (42), (1,16

4 (13,9, (34, (2,15)

8 (168), (9,1, (413

9 (134), (19, (8,16)

13 (152), (@4.}3), 9,13)

15 (16,1), (4), (13,15

16 (12, (89), (1516)
x2-—y2=a¢K2

a Losungen

3 (16,13), (41, (1,15, (2,16)
5 (13,8, (94), (1,13), (4,16)
6 (159, B2, (213, @415
7 (169), (158), (92, (&)
10 (1,8, (2,9), 8,15, (9,16
11 (154), (132), (298, (915
12 (164), (13,1), (49), (813)
14 (162), (151), (14,  (13,16)
Ausblick

Wir gehen jetzt vom Restklassenkérper ungerader Ordnung p iiber zum Galois-Feld
GF(q) ungerader Ordnung g =p° mit ec N.

Anzahl der Losungen (x2, %) von (1) und (2) mit x, ye GF (¢)*

1
fir —1¢K?2 :I(p"-—e——Z),

1
—1eK*2:— (p°—e—4).

4
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Anzahl der Lésungen (x2,y?) von (3) mit x, ye GF (g)*

1 1
fir —1¢K? :Z(p‘—e—2), fur —leK*Z:z(p"-—e).

Die Uberpriifung dieser Ergebnisse, die Auffindung der Losungsanzahlen fiir die
Gleichung x2—y?=0 sowie die Untersuchung fiir Galois-Felder gerader Ordnung
iiberlassen wir dem Leser.

Herbert Zeitler, Math. Institut der Universitit Bayreuth, Bayreuth
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Linear operators satisfying the chain rule

In computational calculus the derivative is treated as a formal operator satisfying
certain functional relationships. This leads to the question of which properties of the
derivative characterize that operator on the elementary functions, i.e., the rational,
logarithmic, exponential, trigonometric and inverse trigonometric functions. In this
note we will show that, provided we rule out trivial cases, any operator, which acts
on a suitable collection of functions containing the elementary functions and which
is both linear and satisfies the chain rule formula must agree with the derivative on
the elementary functions.

We begin by describing the functions on which our operators act. If fand g are two
real-valued functions with domains contained in R, the real numbers, and ce R, let
f+g, fz, cf, fog, f/g denote the usual pointwise operations of addition, multi-
plication, scalar multiplication, composition, and division, each defined on its
natural domain (the largest set on which the resulting formula makes sense). Let F
denote any set of real-valued functions with non-empty domains contained in R
satisfying the following properties.

1. Fis closed under addition, multiplication and scalar multiplication.

2. If fand g are in F, then fog and f/g are also in F whenever their natural domains
are non-empty.

3. i(x)=x and u(x)=1 are in F. Observe that any such F is an algebra of real-
valued functions which contains the rational functions. In what follows we shall use
the facts that for all fe F, foie F; and if we set t(x)=x+r, with re R, fote F.
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