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orientierten Grundriss §,” von §, in den orientierten Grundriss §’ des Sehstrahls §
bringt, positiv, daher geht in der Einschneidesituation der orientierte Aufriss §” aus
§’ durch eine positive Drehung hervor; da weiters laut Angabe «3§,’,§'<90° und
¥3§,”7,8”<90° gilt, ist das Mass x§,5” des Drehwinkels grosser als 90°. Mit dem
orientierten Aufriss §” von § ist, bis auf Schiebungen parallel s”, die Lage des
Einschneideaufrisses auf dem Zeichenblatt bestimmt.

W. Kickinger, TU Wien
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On the successive remainders of the exponential series

In [3], Gautschi proved some results on the successive remainders of the exponential
series and he made two conjectures.

The aim of this note is to complete Gautschi’s results and to prove his second
conjecture. -

Let us recall that a sequence (a,,) is called totally monotone if, Vn,k =0

(- 1) dkaq,>0

where 4 is the forward difference operator: 4a,=a,, —a,.
A characterization of totally monotone sequences is due to Markov who showed that
a necessary and sufficient condition for (a,) to be totally monotone is that

1
a,= |[t"dg(®) n=0,1,...
0

where g is bounded and non decreasing in [0, 1]. We shall write (a,)e TM.
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We have

O PEAN i
= —_— —-—+... +
" 2! n! (n+1)!

bn(x)

where ¢, (x)=¢e*® 0<6,(x)<1.
Gautschi proved some results on the sequences (¢,) and (,) which are collected in
the following theorem.

Theorem 1. Vx>0, (¢,—1)eTM. Vx<0, (1-¢,)eTM. Vx#0 then ¥V n,
(= 1)*4%0,>0 for k=0, 1 and 2 and lim §,=0.

n— oo

The problem which now arises is to know whether or not (6,) is totally monotone.
Gautschi gives a numerical example showing that for x>0, (8,) is not totally mono-
tone and he makes the conjecture that (4,) is totally monotone for x <0. We shall
prove this conjecture for x <0 and complete Gautschi’s results for x > 0.

The core of the proof is a theorem due to Brezinski [1, 2].

Theorem 2. Let ¢ (t)=) .2, c;t' be a power series with a radius of convergence R and
such that Vi, ¢;> 0. Let (x,)e TM with xo< R. Then (c(x,)) e TM.

We now can prove

Theorem 3.V x<0, (6,)e TM.

Proof: We have
2 3

— —N=t4+ — 4+ —+ ...
Log(1—19) +2+3+

This series converges for —1<r<1.

For x<0, 0<¢,<1. Thus 0<1—g¢o<1 and, by theorem 2, (—Log(1—(1—-¢,)))
e TM. That is (— Log¢,= — x 0,) e TM and the result follows since x<0. il

Let us now look at the case x> 0.

Theorem 4.V x>0,3N (x):Vn=>N(x)
1
0,= [ "N do (1)
0

where 0 is a normalized function of bounded variation in [0, 1].

Proof: For x>0, (¢,—1)eTM. Thus Vn, ¢,>1. Since lim,_ ,60,=0 we have
lim,_,  ¢,=1.ThusVx>0,3N=N(x)such thatVr>=N, ¢,<2.
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We have

1+¢ AR
Log(— ) =2(t+—+—+---
°g(1-—t) ( 3 5T )

which converges for |7] < 1.
Since 0< ¢,— 1< 1 for n> N it follows from theorem 2 that (a,),» ye TM where

4@ D) |  bn
I—(ga—1) E2-g,

a,=Log
But

a,=Log¢,—Log(2—¢,)
or

Log¢,=x0,=a,—b,
with

b= —Log (1-(#,— 1)) .

From theorem 2, (b,),>y€ TM which shows that (6,),- 5 is the difference of two
totally monotone sequences. The result stated in the theorem follows from a known
result originally due to Jordan (see, for example, [4], theorem 2b, p.103, and
theorem 4b, p. 109). 1

Let us now characterize the index N (x) of the previous theorem.

We have
x x2
=1+ e
én(x) nt2 T mr)(med) T
© X 2 1 x
l+ -+ cee = i 5
On< n+2 (n+2> M 1-x/(n+2) if w2 <!

Let N be the smallest index such that x/(N+2)<1and Va>=N

1
I—x/(N+2) ~

¢nS¢N< 2.

We find N>2(x—1). Thus N (x) is the smallest integer greater or equal to 2 (x—1).
As shown by the numerical examples this value of N can be over-estimated by one.
Numerical examples suggest that the sequence (8,,),-  is totally monotone.

Claude Brezinski, Université de Lille I, Villeneuve-d’Ascq, France
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Rechnen in endlichen Kérpern
(Beispicle elementarer Zahlentheorie)

Einleitung

Wir gehen von einem Restklassenkorper K ungerader Ordnung aus. Dann gilt also
| K| =p mit p Primzahl und p+2.

Bekanntlich lésst sich jede Primzahl p+ 2 entweder in der Form p=4a + 1 oder aber
in der Form p=4a — 1 mit a e N darstellen. Im ersten Fall ist — 1 Quadrat in K, im
zweiten dagegen nicht. Mit K* = K\{0} schreiben wir — 1eK*2 bzw. — 1¢ K?[1], [3].
Das Problem

Wie viele Losungen (x2, y*) mit x,y e K* besitzt die Gleichung

xt—yr=1. (1

Die Losung des Problems
Die Gleichung (1) besitzt genau a — 1 Losungen der genannten Art.

Mit den bei der Behandlung diophantischer Gleichungen in N iiblichen Verfahren
[2] schreiben wir x2—y*=(x—y)(x+y)=1 und setzen x—y=v und x+y=w. Es gilt
v,we K*. Weiter erhalten wir

1 . 1+2 1—y2
w=——, —— N = .
y 2y Y 2v

a) Sei v ein beliebiges Element aus K*. Dann folgt mit x=(1+v%/(2v) und
y=(1—7?/(2 v) durch Einsetzen und Ausrechnen sofort x>— y?=1.

b) Seien nun umgekehrt x,ye K* mit x2—y?=1 gegeben. Dann existiert mindestens
ein ve K* so, dass x=(1+3)/Q2v), y=(1—-v?)/Q2 ).
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