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The lattice polytope problem

It has long been known ([6], p.50) that the only regulär polygons that can be
embedded in the cubic lattice of En are the square (for n ^ 2), the triangle and the

hexagon (both for n ^ 3) However, the analogous results for polytopes of higher
dimension have not yet been fully described ([3], p.46). In the present paper, we
shall determine exactly which regulär polytopes can be embedded in which regulär
polytopal lattices.

We shall be using the Standard Schläfli notation, specifically:
(i) The symbol \n) denotes a regulär «-gon;
(ii) the regulär w-dimensional polytope represented by {ax,a2, ,an_x) is a

convex configuration of congruent \ax,a2, ,a„_2}'s, to be called cells, which fit
together m such a way that each (/i-2)-dimensional/ace belongs to two cells,
and each (n — 3)-dimensional edge toan_x cells.

(Thus the cube, having three Squares meeting at each vertex, will be denoted by
{4.3}.)

This notation is extended in the natural way to include the regulär lattices; {6,3},
for example, refers to the hexagonal tihng ofthe plane.

The complete set of regulär polytopes is given in Coxeter ([2], p. 292-295):

in.E2:!«},withH>3;
in E3: {3,3}, {3,4}, {4,3}, {3,5}, {5,3};
inf*: {3,3,3}, {3,3,4}, {3,4,3}, {4,3,3}, {3,3,5}, {5,3,3};
in£":with«^5, {3„_,}, {3„_2,4}, {4,3„_2}.
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The regulär lattices are ([2], p. 296):

in E2: {4,4}, {3,6}, {6,3};
in E3: {4,3,4};
in^ {4,3,3,4}, {3,4,3,3}, {3,3,4,3};
in J^, with «^5: {4,3„_2,4}.

Lattice polytopes are already known for the following lattices:

{4,4} - The only regulär polygon constructible on a square lattice is the square itself
[4]-

{4,3„_2,4}, n^ 3 - As was mentioned earlier, no polygon besides the triangle, square
and hexagon can be embedded in a cubic lattice of any dimension. This implies
similar negative results for the polytopes containing regulär pentagons - {3,5},
{5,3}, {3,3,5}, {5,3,3}. Furthermore, a regulär Ai-dimensional simplex can be
inscribed in an /t-dimensional cubic lattice if and only if n+l is an odd square,
the sum of two odd Squares, or a multiple of four [6]. The 24 permutations of
(± 1, ± 1,0,0) in Cartesian coordinates serve as the vertices of a {3,4,3} ([5], p. 51).

The remaining polytopes are embedded routinely:

{6}: (- 1,0,1,0„_3), with the first three coordinates permuted;
{3*-1}> with 2^/c< n— 1: any k permutations of (1,0„_ x);

{3*_2,4}, with 3^k^n: any k permutations of (1,0„_i) and their negatives;
{4,3k.2},with2^k^n: (±lh0n.k).

{3,6} - Here, the only lattice polygons are the triangle and the hexagon [1].

Of the three remaining lattices, {6,3} is the most easily dealt with. Since the
hexagonal lattice is contained in the triangulär lattice (fig. 1), no polygons can be
inscribed in {6,3} that are not inscribable in {3,6}. (The triangle and the hexagon
are readily found.)

For the last two lattices, we shall need the following preliminary results:

Figure 1
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Lemma 1. The points in E4 with two odd and two even coordinates form a {3,4,3,3}
lattice ([2], p 158)

Lemma 2. The points in E4 whose coordinates are integers of the same parity form a
{3,3,4,3} lattice

Proof of lemma 2 Since the unit cells of the f3,4,3,3} lattice have the same
orientation in space ([2], p 156), we can reach any of them by a translation ofthe cell
centered at the ongm - the one with vertices (± 1, ± 1,0,0) and permutations The
images of these 24 points under translation through (a,b,c,d) will have the required
two odd and two even coordinates if and only if a,b,c,d are integers of the same

parity The points (a,b,c,d), bemg the centers of the translated cells, will form a

reciprocal {3,3,4,3} lattice
It follows from lemmas 1 and 2 that if a polytope can be embedded in {3,4,3,3}
or in {3,3,4,3}, then it can also be embedded in the cubic lattice {4,3,3,4}
Conversely, by doubhng the Cartesian coordinates of a polytope embedded in
{4,3,3,4} and translating the resultmg figure either through (1,1,0,0) or through
(0,0,0 0), we will obtain a similar polytope which satisfies the respective parity
requirements of {3,4,3,3} or (3,3,4,3} Therefore

Theorem. The same polytopes can be embedded in each ofthe regulärfour-dimensional
lattices

With this result, the lattice polytope problem is completely solved

Gregg N Patruno, 373 Giffords Lane, Staten Island, NY, USA
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Aufgaben

Aufgabe 879. Welche Beziehung besteht zwischen dem Abstand und dem Wmkel
irgend zweier windschiefer Erzeugenden eines emschahgen Drehhyperboloids7

W Wunderlich, Wien, A
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