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On minimum area quadrilaterals and triangles circumscribed
about convex plane regions

1. Introduction

Throughout this note, by a convex plane region we will mean a closed bounded
convex plane set with an interior point. For every such set X and for every integer
n>3, let p,(K) denote the maximum area n-gon contained in K and let P,(K)
denote the minimum area n-gon containing K, and let
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where |A4| denotes the area of the region 4. Since ¢,(K;)=4¢,(K;) and y,(K))
=y, (K,) whenever K, and K, are affinely equivalent, and since every X is affinely
equivalent to some K, contained in the rectangle [0,2] X [0,1] and with |K;| =1, we
will restrict the domain of the functions ¢, and y, to the set 2#” whose elements are
convex plane regions of area 1 contained in the rectangle. The set 2% furnished with
the Hausdorff distance formula becomes a compact metric space, while ¢, and y,
turn out to be continuous functions from 2¢” into the real line. Therefore, for every
n>3, there exist a K3;, and a K}, such that ¢,(K)>¢,(K%;,) for every K and

Wn(K)<y, (KL, for every K. Let a,= ¢, (Kp,i) and b, =y, (Kpay)-
The values a, are known for every n> 3, namely
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where S is the unit circle; moreover, if ¢, (K)=a,, then KX is affinely equivalent to
S! (see [5], or [6], p.36). It is also known that b;=2, and if y;(K)=2 then K is a
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parallelogram (see [3]). However, the values of b, for n>4 are apparently unknown.
Chakerian and Lange [2] (see also Chakerian [1]) proved that b,<V2 and they
posed the problem of whether by<V/2 . As we will prove in section 2 of this note,
by<V2 indeed. But the exact value of b, (and all b,s for n>4) still remains
unknown.

In section 3, we are concerned with triangles whose one side is parallel to a
prescribed direction. Hodges [4] proved that if K is a convex plane region of area 1
and if @ is a direction in the plane, then K contains a triangle of area >3 /8 with one
side parallel to 6. Moreover, the number 3 /8 in this statement cannot be replaced by
a greater one, as the case of the regular hexagon shows, 6 being parallel to one of
its sides. Note that
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so, with the constraint that one of the sides of the triangle in K be parallel to 6,
the area of the triangle is not guaranteed to be as large as that without that
constraint. However, when the same constraint is imposed on triangles containing
K, the conclusion is the same as without that constraint. In fact, section 3 contains
the proof of the following theorem: If K is a convex plane region of area 1 and if 4
is a direction in the plane, then K is contained in a triangle of area <2 with one
side parallel to 6. Obviously, the number 2 cannot be replaced by a smaller one,
since b3=2.

2. Circumscribed quadrilaterals

Lemma (see [2], theorem 1, p.58, or [6], p.6). Let K be a convex plane region and
n>3 a given integer. Let P be a convex n-gon of minimum area containing K. Then
the midpoints of the sides of P belong to K.

Proof: Suppose that AB is a side of a minimum area n-gon containing K and that
the midpoint M of A B does not belong to K. Then some sub-segment of 4 B centered
at M, name it U, misses K completely and one of the segments AM or BM, say AM,
misses K completely. Choose a point C in U so that M lies between 4 and C. Now,a
rotation of the side 4B about C by a sufficiently small angle of the appropriate
orientation will result in diminishing of the area of the n-gon containing K.

Theorem 1. Every convex plane region of area 1 is contained in a quadrilateral of
area smaller than \/2 .

Proof: As mentioned in the Introduction, it is known that by < V2, ie. every convex
plane region of area 1 is contained in a quadrilateral of area <V/2. To prove the
theorem, assume to the contrary that there exists a convex plane region K of area 1
such that the smallest area quadrilateral Q, circumscribed about K has area of
V2. By the lemma, the midpoints 4, B, C,D of the sides of Q, belong to K. Ob-
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viously, they form a parallelogram S of area \/2 /2. Assume for simplicity that $ is
a square (S can be turned into a square by an area-preserving affine trans-
formation). Let /; and /, be two lines tangent to K and parallel to 4B, and let m,
and m, be two lines tangent to K and parallel to BC. These four lines bound a
rectangle R which contains K; let L,,L,, M;, M, denote the sides of R with L,c/;
and M;cm; for i= 1,2 (see fig. 1). Since, on one hand, the area of R is at least V2,
but, on the other hand, every side of R contains a point from K, a simple calculation
shows that the area of R is exactly /2 and that R is a square (compare the proof of
theorem 6 in [2]). Now, let K; be the convex hull of the union of the square S and
the intersection of the boundary of R with K, K;= Conv[S U (BdR n K)]. The area of
K, is at least 1 and K| is a subset of K, therefore K;=K, and thus K is a polygon
(with at most 8 sides, but that is irrelevant). Notice that every side of R either
contains a whole side of S or it touches K at one point only. Therefore one of the
sides L, or L,, say L, touches K at one point only, and one of the sides M, or M,,
say M;, touches K at one point only. Those two points of tangency are vertices of K
and midpoints of (adjacent) sides of R (the lemma is applied here again, since the
area of R is /2, the minimum). Now, a rotation of the side L, about its midpoint
by a sufficiently small positive angle will turn the square R into a trapezoid T which
still contains K and whose area is still /2 (the minimum). But this contradicts
the lemma: one of the sides of T touches K at one point only which is not the
midpoint of that side.

Corollary. There exists a positive number a<\/ 2 such that every convex plane region
K is contained in a quadrilateral of area at most a - | K|. In other words,by<V 2 .
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Problem: Is by=w4(P), where P is the regular pentagon? In other words, is it true
that every convex region K is contained in a quadrilateral of area at most
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3. Circumscribed triangles with a constraint
Theorem 2. If K is a convex plane region of area 1 and if 0 is a direction in the plane,
then K is contained in a triangle of area at most 2 with one side parallel to 0.

Proof: Let /; and /; be the two lines parallel to § and tangent to K. Let T; (for i=1, 2)
be a triangle containing K, with one side on /; and of minimum area. Let b; be the
length of the side of T; which lies on /; and let ; be the altitude of 7}, perpendicular
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Figure 2

to 6. Let 4; be a point at which /, touches K') and let B; and C; be the midpoints
of the sides of T; which are not parallel to @ (see fig.2). A similar argument to that
in the proof of the lemma from section 2 can be used here to show that B; and C;
belong to K. Thus the hexagon H=A4;B,B,A,C,C, is contained in K. Now, the
area of H equals to the sum of the areas of the quadrilaterals 4,B,B,C, and
A,CyB,B,, that is, | H| =(h,b,+hyb,)/8. Since Hc K, we get (h;b,+hyb;)/8< 1.

1) ;;~ K consists of a single point 4;, for almost all directions 8.
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This inequality, as easily verified, implies kb, h,b,< 16, that is, |T,| - | T,| <4.
Therefore either | 7| <2 or | T,| <2, which completes the proof.

Remark: If for some 8, | T,| - | T,| =4, then K is a polygon with at most 6 sides.
W. Kuperberg, Auburn University, Auburn, Alabama, USA
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Das Gegenstiick zur logarithmischen Spirale in der ebenen
isotropen Geometrie

Die logarithmische Spirale der euklidischen Ebene wurde von Descartes und
Toricelli um 1638 entdeckt und erhielt ihren Namen 1704 von Varignon. Wegen
vieler markanter Eigenschaften [1-4, 9-11] gehort sie mit zu den interessantesten
ebenen Kurven, und es erweist sich als lohnend, ihr Gegenstiick in der isotropen
Ebene zu studieren. Die isotrope Geometrie wurde wesentlich von K. Strubecker
gefordert und durch Beitrdge in neuerer Zeit weiterentwickelt. Sie besitzt eine von
der euklidischen Geometrie abweichende Metrik. Wir verzichten auf die Dar-
stellung dieser Grundlagen und verweisen statt dessen auf die Literatur [7]. In der
Arbeit iiber die dquiforme Geometrie der isotropen Ebene [5] hat K. Strubecker
auf die isotropen logarithmischen Spiralen hingewiesen. Wir behandeln diese
Kurvenklasse im Rahmen der Bewegungsgeometrie, wobei viele klassische differen-
tialgeometrische Ergebnisse ihre isotrope Entsprechung finden.

1. Definition und einfache Eigenschaften

Jede Isogonaltrajektorie eines Geradenbiischels mit eigentlichem Trigerpunkt Z
heisst logarithmische Spirale. Besitzt Z die Koordinaten (b,d), dann wird eine
logarithmische Spirale beschrieben durch die Differentialgleichung

y'=a+ {c_——i;’ a,b,deR, a#0, x%b; (D

dabei ist a der Schnittwinkel der Isogonaltrajektorie mit den Biischelgeraden. Die
Differentialgleichung (1) besitzt die allgemeine Losung

y=a(x—b)ln|x—b|+c(x—b)+d, ceR. 2
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