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On minimum area quadrilaterals and triangles circumscribed
about convex plane regions

1. Introduction

Throughout this note, by a convex plane region we will mean a closed bounded
convex plane set with an interior point. For every such set K and for every integer
n_>3, let pn(K) denote the maximum area n-gon contained in K and let Pn(K)
denote the minimum area n-gon containing K9 and let

and

v„(*)-

\Pn(K)\
\K\

\Pn(K)\
\K\

where \A\ denotes the area of the region A. Since <f>n(Kx)—</>n(K2) and \pn(Kx)
— y/n (K2) whenever Kx and K2 are affinely equivalent, and since every K is affinely
equivalent to some Kx contained in the rectangle [0,2] x [0,1] and with | Kx | 1, we
will restrict the domain of the functions <f>n and y/n to the set _3T whose elements are

convex plane regions of area 1 contained in the rectangle. The set JTfurnished with
the Hausdorff distance formula becomes a compact metric space, while </>„ and \pn

turn out to be continuous functions from Cf into the real line. Therefore, for every
/i_>3, there exist a K^ and a Ä^ax such that ^„(^^^„(K^) for every K and

y/n(K)<z M#£_ax) for every K. Let aH-<l>H(K*^ and bn~ yn(Knm2iX).

The values an are known for every n _> 3, namely

n 2n
ö„=— sm—=</>n(Sx)9

Ln n

where Sl is the unit circle; moreover, if <f>n(K)=*an9 then Kis affinely equivalent to
Sl (see [5], or [6], p.36). It is also known that 63=2, and if ij/3(K)*=2 then K is a
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parallelogram (see [3]). However, the values of bn for n_>4 are apparently unknown.
Chakerian and Lange [2] (see also Chakerian [1]) proved that bA<>V2 and they
posed the problem of whether b4<VY. As we will prove in section 2 of this note,
b4< VY indeed. But the exact value of bA (and all bn's for n>4) still remains
unknown.
In section 3, we are concerned with triangles whose one side is parallel to a
prescribed direction. Hodges [4] proved that if K is a convex plane region of area 1

and if 0 is a direction in the plane, then K contains a triangle of area _>3/8 with one
side parallel to 0. Moreover, the number 3/8 in this Statement cannot be replaced by
a greater one, as the case of the regulär hexagon shows, 0 being parallel to one of
its sides. Note that

3VT 3

ü^"Tn~>J^

so, with the constraint that one of the sides of the triangle in K be parallel to 0,
the area of the triangle is not guaranteed to be as large as that without that
constraint. However, when the same constraint is imposed on triangles containing
K9 the conclusion is the same as without that constraint. In fact, section 3 contains
the proof of the following theorem: If Kis a convex plane region of area 1 and if 0
is a direction in the plane, then K is contained in a triangle of area <, 2 with one
side parallel to 0. Obviously, the number 2 cannot be replaced by a smaller one,
since 63=2.

ll Circumscribed quadrilaterals

Lemma (see [2], theorem 1, p.58, or [6], p.6). Let K be a convex plane region and
n_>3 a given integer. Let P be a convex n-gon of minimum area containing K. Then

the midpoints ofthe sides ofP belong to K.

Proof: Suppose that AB is a side of a minimum area n-gon containing K and that
the midpoint M ofAB does not belong to K. Then some sub-segment ofAB centered
at M, name it U9 misses K completely and one of the segments AM or BM, say AM,
misses K completely. Choose a point C in U so that M lies between A and C. Now, a

rotation of the side AB about C by a sufficiently small angle of the appropriate
orientation will result in diminishing ofthe area ofthe n-gon containing K.

Theorem 1. Every convex plane region of area 1 is contained in a quadrilateral of
area smaller than VY.
Proof: As mentioned in the Introduction, it is known that b4<> VY, i.e. every convex
plane region of area 1 is contained in a quadrilateral of area <, VY. To prove the
theorem, assume to the contrary that there exists a convex plane region K of area 1

such that the smallest area quadrilateral ß0 circumscribed about K has area of
VY. By the lemma, the midpoints A,B9C9D of the sides of Q0 belong to K. Ob-



El. Math., Vol. 38, 1983 59

B R

Figure 1

viously, they form a parallelogram S of area VT/2. Assume for simplicity that S is

a square (S can be turned into a square by an area-preserving affine
transformation). Let lx and l2 be two lines tangent to K and parallel to AB, and let mx
and m2 be two lines tangent to K and parallel to BC. These four lines bound a

rectangle R which contains K; let LX,L2,MX,M2 denote the sides of R with Lxclx
and Mx<zzmx for /'= 1,2 (see fig. 1). Since, on one hand, the area of R is at least VY,
but, on the other hand, every side of JR contains a point from K, a simple calculation
shows that the area of R is exactly VT and that R is a square (compare the proof of
theorem 6 in [2]). Now, let Kx be the convex hüll of the union of the square S and
the intersection of the boundary of R with K, Kx Conv [S u (BdR n K)]. The area of
Kx is at least 1 and Kx is a subset of K, therefore Kx K, and thus K is a polygon
(with at most 8 sides, but that is irrelevant). Notice that every side of R either
contains a whole side of S or it touches K at one point only. Therefore one of the
sides Lx or L2, say Ll9 touches K at one point only, and one of the sides Mx or M2,
say MJ9 touches K at one point only. Those two points of tangency are vertices of K
and midpoints of (adjacent) sides of R (the lemma is applied here again, since the
area of R is VT, the minimum). Now, a rotation of the side Lx about its midpoint
by a sufficiently small positive angle will turn the square R into a trapezoid T which
still contains K Sind whose area is still VT (the minimum). But this contradicts
the lemma: one of the sides of T touches K at one point only which is not the

midpoint ofthat side.

Corollary. There exists a positive number a < VY such that every convex plane region
K is contained in a quadrilateral ofarea at most a- | K\. In other words, b4< VY.
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Problem: Is b4=y/4(P), where P is the regulär pentagon? In other words, is it true
that every convex region K is contained in a quadrilateral of area at most

/. 4 n n \(l+ytanTsmy)|*|;

3. Circumscribed triangles with a constraint

Theorem 2. IfK is a convex plane region ofarea 1 and if0 is a direction in the plane,
then K is contained in a triangle ofarea at most 2 with one side parallel to 0.

Proof: Let lx and l2 be the two lines parallel to 0 and tangent to K. Let Tx (for i= 1,2)
be a triangle containing K, with one side on lx and of minimum area. Let bx be the
length of the side of Tx which lies on lx and let hx be the altitude of Tx, perpendicular

Figure 2

to 0. Let At be a point at which lx touches Kx) and let Bx and Cx be the midpoints
of the sides of Tx which are not parallel to 0 (see fig. 2). A similar argument to that
in the proof of the lemma from section 2 can be used here to show that Bx and Cx

belong to K. Thus the hexagon H^AXB2BXA2CXC2 is contained in K. Now, the

area of H equals to the sum of the areas of the quadrilaterals AXB2BXC2 and

A2CxB2Bl9 that is, \H\ (hxb2+h2bx)/$. Since HczK, we get (hxb2+h2bx)/%<> l.

X)lxnKconsists of a Single pomt At, for almost all directions 0
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This inequahty, as easily verified, implies hxbxh2b2<, 16, that is, \TX\ • |r2|_*4.
Therefore either | Tx | <, 2 or | T2 \ <, 2, which completes the proof.

Remark: If for some 0, \TX\ • \T2\=4, then K is a polygon with at most 6 sides.

W. Kuperberg, Auburn University, Auburn, Alabama, USA
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Das Gegenstück zur logarithmischen Spirale in der ebenen

isotropen Geometrie

Die logarithmische Spirale der euklidischen Ebene wurde von Descartes und
Toricelli um 1638 entdeckt und erhielt ihren Namen 1704 von Varignon. Wegen
vieler markanter Eigenschaften [1-4, 9-11] gehört sie mit zu den interessantesten
ebenen Kurven, und es erweist sich als lohnend, ihr Gegenstück in der isotropen
Ebene zu studieren. Die isotrope Geometrie wurde wesentlich von K. Strubecker
gefördert und durch Beiträge in neuerer Zeit weiterentwickelt. Sie besitzt eine von
der eukhdischen Geometrie abweichende Metrik. Wir verzichten auf die
Darstellung dieser Grundlagen und verweisen statt dessen auf die Literatur [7]. In der
Arbeit über die äquiforme Geometrie der isotropen Ebene [5] hat K. Strubecker
auf die isotropen logarithmischen Spiralen hingewiesen. Wir behandeln diese
Kurvenklasse im Rahmen der Bewegungsgeometrie, wobei viele klassische
differentialgeometrische Ergebnisse ihre isotrope Entsprechung finden.

1. Definition und einfache Eigenschaften

Jede Isogonaltrajektorie eines Geradenbüschels mit eigentlichem Trägerpunkt Z
heisst logarithmische Spirale. Besitzt Z die Koordinaten (b,d), dann wird eine
logarithmische Spirale beschrieben durch die Differentialgleichung

y-d/=ö+^-—, a9b9deR9 a+0, x + b; (1)

dabei ist a der Schnittwinkel der Isogonaltrajektorie mit den Büschelgeraden. Die
Differentialgleichung (1) besitzt die allgemeine Lösung

y a(x-b)\n\x-b\+c(x-b) + d9 ceR. (2)
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