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. . m n
Die Potenzreihe ' n z ,meN

Ein kurzer Weg zur Berechnung dieser Potenzreihe soll im folgenden dargelegt
werden.

Gegeben sei der p-te Differenzenoperator D?, welchen man folgendermassen
definieren kann:

Dlan=an_an—-l,
DFtla,=DY(DPa,)  (p21),

wobei die a,, ne Z, irgendwelche komplexe Zahlen sind.
Mit Hilfe des Prinzips der vollstdndigen Induktion (nach p) zeigt man, dass sich D”?
schreiben lésst als

P
ra= 3 (~1¥ () ay. (A)
Jj=0 J
Ebenfalls mit Hilfe der vollstindigen Induktion nach p zeigt man folgendes:

Aus’lim ¥|a,| =1 und a_,=0 fir neN folgt (B)

n—oe

(1-—2)y 20 a,z"= i (DPa,)z".
n= n=0
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Diese beiden Resultate ermoéglichen uns nun, den Wert der Potenzreihe
0
> nmz
n=1

zu berechnen.

Behauptung:
& nmzn Hm(z) I I 1
= a—gra U2<h;
wobel
m rm
H,(2)= Z [ ]z"
n=1 n
mit

[:1]:="2]("1)"(mﬂ)(n—j)’" (n<m).

j=0 J

Beweis:

0 o) m
(1_z)m+l Z nmzt= Z Dm+1(nm)zn+ Z Dm+l(an)zn
n=1 n=1

n=m+1
mit
' 2= n™ falls neN,
" |0 falls —neNu{0}.

Weil n™ ein Polynom m-ten Grades ist, verschwindet D™*!(n™) fiir jedes m,falls nur
n>m.
Damit erhalten wir folgendes Ergebnis:

-t § wmar= 8 Dt =3 {8 (")) o

n=1] J

Man beachte dabei, dass der Summationsindex j nur bis n— 1 lduft, denn a_, =0 fiir
neNu {0} O

. . m
Die Koeffizienten [ i

[;n:ll]=(m+1—")[’:]+(n+l)[n':1], )

[r:]=[m-n:z+l]’ | @

,,21 [m] =m!, 3

] haben nun folgende Eigenschaften:

n
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wihrend die Polynome H,,(z) folgender Rekursion geniigen:
H,.,2=(1-2)zH,,(2)+(m+1)zH,,(2) (meN). 4)

Beweise: (1) und (2) bestitigt man durch direktes Ausrechnen. (3) folgert man aus

(4), indem man z= 1 setzt. Nun zu (4). Setze [r(r)t ]:= 0. Dann gilt:

(1-2)z ’gl I:':: nZ" '+ m+1)z nz: [r:] "

I
Mz

n=1 {[r:] B :n’fl]} nz"+ nin:,l (m+1) [’:] o+l

mr m
DY [ ]z”—mz”'+1
n

= :21 {[':] - [n'—’jl]} nz"+ ,ﬁz (m+1)[n’f1]z" + nz’::l [n’jl]z"+zm+‘
I S P U

n=1 n
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Aufgaben
Aufgabe 876. Es sei n weder eine Primzahl noch eine Primzahlpotenz. Mit p(n),

P,(n), P(n) sei der kleinste bzw. zweitgrosste bzw. grosste Primfaktor von n be-
zeichnet, p (n) < P, (n) < P (n). Man zeige:

nZ’p ()/nP(n)< . )

>/ P (n)/nP((n)=o0. @)
n P. Erdos
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