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Die Potenzreihe ^n z,meN
Ein kurzer Weg zur Berechnung dieser Potenzreihe soll im folgenden dargelegt
werden.
Gegeben sei der p-te Differenzenoperator Dp, welchen man folgendermassen
definieren kann:

D a„=a~—ö« i.
DP+xan=Dx(DPan) (p^l),

wobei die an,neZ, irgendwelche komplexe Zahlen sind.
Mit Hilfe des Prinzips der vollständigen Induktion (nach /?) zeigt man, dass sich Dp
schreiben lässt als

^=Z(-iyPWr (A)

Ebenfalls mit Hilfe der vollständigen Induktion nach/? zeigt man folgendes:

Aus*hm Vuy l und a„n=0 für «eN folgt (B)

(^-zyfJanzn=fJ(DPan)z\
/i=0 n 0
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Diese beiden Resultate ermöglichen uns nun, den Wert der Potenzreihe
00

_£ nmzn
«=i

zu berechnen.

Behauptung:

.?,""<"-<£^ <i2i<»-

wobei

^w-£r*i_-
w-i In J

mit

n-l[:}-%<-<;>-»" «¦<->¦

Beweis:

(l-z)m+1 £ «"_"- £ £>m+1(nm)z',+ £z)m+1(an)7"
n-l n=m + l n-1

mit
\nm falls «eN,

ün
(0 falls -neNu{0}.

Weil nm ein Polynom m-ten Grades ist, verschwindet Dm+ x

(nm) für jedes /w,falls nur
n>m.
Damit erhalten wir folgendes Ergebnis:

oo m m rn—1 /m+l\ _(l-zr+I X «mz"= S D^{an)zn Y. E (-iy( (n-^z».
n-1 n-1 n=»l l/«0 \ J /

Man beachte dabei, dass der Summationsindexy nur bis n—l läuft, denn tf _„ 0 für
«eNu'O}. D

Die Koeffizienten haben nun folgende Eigenschaften:

[;;/]-(m+1-»>[:]+(„+,>[^],
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während die Polynome Hm(z) folgender Rekursion genügen:

Hm+x(z) (l-z)zH'm(z) + (m+l)zHm(z) (meN). (4)

Beweise: (1) und (2) bestätigt man durch direktes Ausrechnen. (3) folgert man aus

(4), indem man z 1 setzt. Nun zu (4). Setze := 0. Dann gilt:

=i, {[:h„-.]}"+£ <-»[:]-
^ + __

T m %]z"-mzm+i
«=i Ln-1 J

-..{[^-[.-.^-^—'[.-.J-.tt.-,]—*•

Raymond Mortini, Mathematisches Institut, Universität Karlsruhe
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Aufgaben

Aufgabe 876. Es sei n weder eine Primzahl noch eine Primzahlpotenz. Mit p(n),
Px(n),P(n) sei der kleinste bzw. zweitgrösste bzw. grosste Primfaktor von n

bezeichnet, /? (n) < Px (n) < P (n). Man zeige:

Z'p(n)/nP(n)<co. (1)
n

£'i>,(«)/nP(n)= oo. (2)
» P. Erdös


	Die Potenzreihe [Formel]

