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As the result of this procedure, all the points of H' other than w have degree d and
the degree r of the point w is odd, since the total deficiency s is odd. Finally we
remove any (d—r)/2 lines of the 1-factor Ft+l from H' and join w with the resulting
d—r points of degree d— 1. The graph so constructed is d-regular, contains G, and
hasorder/?+-</+2.
We now show by a family of examples that d+ 2 is best possible. Let G be obtained
from the complete graph Kp_x with /?_>5 by subdividing just one Une by the
insertion of a new point of degree 2; the graph G2 in figure 1 illustrates/? 5. Then
we can readily see that ifp is odd, at least d+ 2 new points are needed to construct
a «/-regulär supergraph of G. D

Remark 1. The smallest d-regular supergraph H will of course depend on the
strueture of G and its order can ränge betweenp andp + d+2.
Remark 2. When pr is even, the minimum order of an r-regular supergraph H will
ränge between/? and/?4-d+ 1. Thus the bound in the theorem is decreased by 1 in
this case.
The strengthening of the theorem in the following Statement is easily accomplished
by a proof which we omit as it is entirely analogous.

Corollary. Let G be a graph of order p with maximum degree d, and r be an integer
such that d<> r<p—2. Then G has an r-regular supergraph of order at mostp + r+l or
p + r+2 ifpr is even or odd, respectively. D
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A remark on a paper by A. Grytczuk

In [3] Grytczuk showed that if ck(n) denotes the Ramanujan trigonometric sum,
then

X\Cd(n)\=2<°WW(k,n)9 (1)
d\k

where co (m) denotes the number of distinct prime divisors of m. In this note we

prove a generalization of (1).
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Let h be an arithmetic function and ifm is a natural number, let

*-«-{T L"""
Define

Hm(n)= X ß(m/d)h(d)=Z/^(m/d)hn(d). (2)
<-|(m,n) </|m

Note that Hx(n) h(l) and if a_> 1, then

Hpa(n)=hn(p«)-hn(pa-x)
f htp^-htp0-1) if /?fl|rt
-AO?""1) if /?fl_1ll«.

10 if pa~xXn

We now show that Hm(n) is a multiplicative function of m if h(m) is also. To do
this it will suffice to show that hn(d) is a multiplicative function of d, since, by (2),
Hm(n) is then a convolution of two multiplicative functions. If (m,n)= 1 and /c is a
natural number, then m n \ k if and only if m \ k and n \ k. Thus, by the definition of
hk(mn), wehave

t x fh(mn) if mw|A: ih(m)h(n) if m|fc and /t|Ä:
**<«»)-fo eise =\0 eise

Thus A*.(*/) is a multiplicative function ofdifh is multiplicative.

Theorem. Ifh is a multiplicativefunction such that

h(p°)-h(pa-x)^0 (3)

for ö// ö^ 1 andprimesp, thenfor allpositive integers k and m, we have

£ \Hd(n)\ =2<°(k/^)h((k9n)) (4)
d\k

Proof: Since Hd(n) is multiplicative so is | Hd(n)\ and thus so is the left hand side of
(4) ([4], theorem 265). Since, for n fixed and (k9t)=l, we have (kl,n) (k,n)(l,n)
(see [5], p. 17) and since h is multiplicative we see that the right hand side of (4) is
also a multiplicative function of k. To prove the theorem it therefore suffices to
show that (4) holds when k is a prime power, k=pa.
Note that, by (3), A^^AO?""1)^ •• £_A(1)>0, since h multiplicative implies
A(l)=lorA(l)=0.
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Suppose pb || n. If0 <, b < a, then

X \Hp(n)\ A(1) + £ (h(p>)-h(p'-x)) + \H^(n)\

h(l) + h(pb)-h(l)+h(pb) 2h(pb). (5)

If/?_>fl, then

£ \H,(n)\ =A(1)+ J (h(p*)-h(p*-x)) =h(p«). (6)
;=0 y=l

If we compare (5) and (6) with the right hand side of (4), in each of the two cases

we see that they agree. This proves our theorem.
Examples:
1. Let r be a positive integer and

C$(n)= Yj exp(2nin(xx+--+xr)/k).
xh ,xrmodk
(*,, ,*r,fc)=l

In [2], theorem 1, Cohen proves that

CV(n)= Y drp(k/d).
d\(k,n)

Thus, ifwe take A (n)=nr, we have, by the theorem,

X I Cf(n)\ =2ö>(*/<*'',» (k9n)r.
d\k

The case r= 1 is (1), the result of Grytczuk.
2. Let h(n) d(n), the divisor function. Then d satisfies the hypotheses of the
theorem and in this case

1 if pa\n
Hpa(n)=\-a if pa~l\\n.

0 if pa-xXn

The theorem states that in this case

YJ\Hd(n)\=2^k^k^)d((k,n))
d\k

It might be interesting to note that the evaluation of the sum YLd\kHd(n) is much
easier even if A is not known to be multiplicative. Indeed it follows immediately
from the Mobius inversion formula ([4], theorem 266) that

Hm(n)= Y p(m/d)h(d)=yZ^(^/ä)hn(d)
d\Jm,n) d\m
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ifand only if
(h(k) if k\n

YHd(n) hn(k)=\
<"* 10 eise

Finally we remark that it may be possible to generalize our result further to the
class of functions considered by Anderson and Apostol in [1]. We hope to return to
this in a later paper.
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Nachtrag

P. Läuchli: Das Gitterspiel, El. Math. 37, 109-113 (1982).

Nach Drucklegung des Aufsatzes stellte ich aufgrund eines neuen Buches [2],
dessen Manuskript mir freundlicherweise von den Autoren zur Verfügung gestellt
wurde, fest, dass das «Gitterspiel» von C. Berge schon 1907 von Wythoff beschrieben

wurde [3]. Ferner hat Coxeter [1] eine sehr elegante Verbindung zum goldenen
Schnitt gezogen.

P. Lauchh
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