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As the result of this procedure, all the points of H’ other than w have-degree d and
the degree r of the point w is odd, since the total deficiency s is odd. Finally we
remove any (d—r)/2 lines of the 1-factor F,, , from H’ and join w with the resulting
d—r points of degree d— 1. The graph so constructed is d-regular, contains G, and
has order p+d+2.

We now show by a family of examples that d+ 2 is best possible. Let G be obtained
from the complete graph K, ; with p>5 by subdividing just one line by the
insertion of a new point of degree 2; the graph G, in figure 1 illustrates p=5. Then
we can readily see that if p is odd, at least d+2 new points are needed to construct
a d-regular supergraph of G. [

Remark 1. The smallest d-regular supergraph H will of course depend on the
structure of G and its order can range between p and p+d+2.

Remark 2. When pr is even, the minimum order of an r-regular supergraph H will
range between p and p+d+ 1. Thus the bound in the theorem is decreased by 1 in
this case.

The strengthening of the theorem in the following statement is easily accomplished
by a proof which we omit as it is entirely analogous.

Corollary. Let G be a graph of order p with maximum degree d, and r be an integer

such that d<r<p—2. Then G has an r-regular supergraph of order at most p+r+1 or
p+r+2ifpriseven or odd, respectively. [

Jin Akiyama, Hiroshi Era and Frank Harary,

Nippon Ika University, Kawasaki, Japan; University of Michigan, Ann Arbor, USA
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A remark on a paper by A. Grytczuk

In [3] Grytczuk showed that if c,(n) denotes the Ramanujan trigonometric sum,
then
> lea(m)| =22 (/&) (i, m), (1)
dik
where w (m) denotes the number of distinct prime divisors of m. In this note we
prove a generalization of (1).
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Let s be an arithmetic function and if m is a natural number, let

_fh@m if nim
hm (1) { 0 else

Define
Hu,(m= Y um/dyhd)y=3 pm/dh,d). )

di(m,n) dim

Note that H;(n)=h(1) and ifa> 1, then

H po(n)=h, (0= h, (p* ")
h(@)—h@*") if p°in
={—h(p"—1) if p*ln.
0 if p*~'n

We now show that H,,(n) is a multiplicative function of m if h(m) is also. To do
this it will suffice to show that A,(d) is a multiplicative function of d, since, by (2),
H,,(n) is then a convolution of two multiplicative functions. If (m,n)=1 and k is a
natural number, then mn|k if and only if m|k and n{k. Thus, by the definition of
h,(mn), we have

_fh(mn) if mnlk_fh(@m)h(n) if m|k and nlk
hi(mm)= {O else - {0 else

={hk(m)hk(n).

Thus h; (d) is a multiplicative function of d if 4 is multiplicative.

Theorem. If h is a multiplicative function such that
h(p?)—h(@E*~H=0 A3)

forall a= 1 and primes p, then for all positive integers k and m, we have

1 Hy(n)| =2 k/Cnm) p ((k,n)) . @)
dik

Proof: Since H(n) is multiplicative so is | Hz(n)| and thus so is the left hand side of
(4) (M), theorem 265). Since, for n fixed and (k,/)=1, we have (kI ,n)=(k,n)(l,n)
(see [5], p.17) and since h is multiplicative we see that the right hand side of (4) is
also a multiplicative function of k. To prove the theorem it therefore suffices to
show that (4) holds when k is a prime power, k= p°.

Note that, by (3), h(p9)=h(@* H=>---2h(1)=0, since & multiplicative implies
h(1)=1o0rh(1)=0.
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Suppose p®||n. If0< b < a, then

L b
JZ:O'H;»'(n)l ==h(1)+j§)l (h@EY=h (@ Y) + | Hpor (n)|

=h()+h@EH—h()+h(E®)=2hrY). (5)
If 5> a, then
I:OIHpi(nN=h(1)+j21(h(pi)—h(pi_l))=h(pa), (6)

If we compare (5) and (6) with the right hand side of (4), in each of the two cases
we see that they agree. This proves our theorem.

Examples:

1. Let r be a positive integer and

CPm= > dkexp(21zin(x1+"'+xr)/k)-

In [2], theorem 1, Cohen proves that

cD(n)= duk/d).
{0 (n) d{%’n) u (k/d)
Thus, if we take h (n)=n", we have, by the theorem,

31 CP (n)| =22 K/&m) (ke myr,
dk

The case r=1 is (1), the result of Grytczuk.
2. Let h(n)=d(n), the divisor function. Then d satisfies the hypotheses of the
theorem and in this case

1 if p%n
H,(n)=1—a if p*!|n.
0 if palyn

The theorem states that in this case
> | Hy(n)| =29/&m) d((k,n)) .
dlk

It might be interesting to note that the evaluation of the sum )’ 4, H (n) is much
easier even if A is not known to be multiplicative. Indeed it follows immediately
from the Mobius inversion formula ([4], theorem 266) that

H,(n)= ; p(m/dyh(d)= "2, p(m/d)h,(d)
d|(m,n) d\m
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if and only if
hk) if k|n
>, Hy(n)=h, (k)=
dik 0 else

Finally we remark that it may be possible to generalize our result further to the
class of functions considered by Anderson and Apostol in [1]. We hope to return to
this in a later paper.
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v

Nachtrag

P. Liiuchli: Das Gitterspiel, El. Math. 37, 109-113 (1982).

Nach Drucklegung des Aufsatzes stellte ich aufgrund eines neuen Buches [2],
dessen Manuskript mir freundlicherweise von den Autoren zur Verfiigung gestellt
wurde, fest, dass das «Gitterspiel» von C. Berge schon 1907 von Wythoff beschrie-
ben wurde [3]. Ferner hat Coxeter [1] eine sehr elegante Verbindung zum goldenen

Schnitt gezogen.
P. Lauchli
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