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Der Grundgedanke dieses Beweises ist also, zu zeigen, dass diejenigen Paare (a,b),
deren Schrittzahl T'(a,b) die Abschitzung von Dixon (Lemma 2) erfiillen, den
Hauptbeitrag zu dem gesuchten Mittelwert liefern.

Zum Abschluss seien noch einige numerische Ergebnisse angegeben, wie man sie
mit einem programmierbaren Taschenrechner errechnen kann. Die Zahlen der
Tabelle sprechen wohl fiir sich.

N ) Ty 1—3 log2 logN
n
100 3.98 3.88
200 4.55 447
300 4.89 481
400 5.13 5.05
500 5.31 5.24
1000 5.90 5.82

Der Wert fiir n= 1000 wurde durch Simulation (Monte-Carlo-Methode) gewonnen
(7] Hans Kilian, Dortmund
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Regular graphs containing a given graph

In the first book on graph theory ever written, Dénes Konig [4] proved that for every
graph G, of order p and maximum degree d, there is a d-regular graph H containing
G as an induced subgraph. Paul Erdés and Paul Kelly [1] solved the extremal
problem of determining for a given graph G, the exact minimum number of points
which must be added to obtain such a supergraph H. Our purpose is to study the
corresponding problem where G is a subgraph of H which is not necessarily induced.
We prove that at most d+ 2 new points are needed, and that this bound which is
independent of p is best possible.
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Let G be a graph of order p and maximum degree 4 (G)=d. We follow the notation
and terminology of [3]. What is the least possible order of a graph H which is regular
of order d and which contains G as a subgraph? One can regard the problem in the
following way. The graph G is given together with a set 7 of m new isolated points
(m standing for more). A graph H is formed from G and I by adding joins
(new lines) between two points in 7, two points of G or between points in I and G.
It is desired to make H regular of degree d and to have m as small as possible. In
figure 1 we illustrate such a completion for two graphs, G, G, whose lines are drawn
solid. The new lines of H,, H, are drawn dashed.

Denote the degree of v; in G by d,, and call f;=d— d; the deficiency of v, that is, the
number of joins needed to complete v, to degree d. Finally, call the numbers s=)_ f;
the total deficiency.
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Theorem. If G is a graph of order p with maximum degree d, then it has a d-regular
supergraph H with d+ 2 new points, and this is best possible. :
Proof: If there are two nonadjacent point v;,¥; in G with d,,dj<d, join them by a
new line. Continue this process until no such point pairs remain and write G’ for the
resulting spanning supergraph of G. Let d’ (1) be the degree of point # in G’. Thus
4(G’)=d and for every pair of nonadjacent points u, v, either d’ (u)=d or d’ (v)=d.
Hence the subgraph P induced in G’ by all points u with d’ (1) < d must be complete,
and its order # is at most d— 1.

We prove the theorem only in the case that both p and d are odd, since the other
cases can be readily proved similarly. In this case, it follows at once that the total
deficiency s is odd.

First we note that as d is odd, K, ; has a 1-factorization ([3], p.85) into d l-factors
F,,F,,...,F; We now put H'=G'UK;,u{w}, so that H has d+2 new points.
Let e,e,,...,e, be the deficiencies in H’ of the points u;,u,,...,u, of P. Then the
removal of [e;/2] lines of F, from H’ results in 2 [e;/2] points of degree d—1 in H".
Join u; with these points of degree d— 1 for each u; in P. Join u; with w if ¢; is odd.
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As the result of this procedure, all the points of H’ other than w have-degree d and
the degree r of the point w is odd, since the total deficiency s is odd. Finally we
remove any (d—r)/2 lines of the 1-factor F,, , from H’ and join w with the resulting
d—r points of degree d— 1. The graph so constructed is d-regular, contains G, and
has order p+d+2.

We now show by a family of examples that d+ 2 is best possible. Let G be obtained
from the complete graph K, ; with p>5 by subdividing just one line by the
insertion of a new point of degree 2; the graph G, in figure 1 illustrates p=5. Then
we can readily see that if p is odd, at least d+2 new points are needed to construct
a d-regular supergraph of G. [

Remark 1. The smallest d-regular supergraph H will of course depend on the
structure of G and its order can range between p and p+d+2.

Remark 2. When pr is even, the minimum order of an r-regular supergraph H will
range between p and p+d+ 1. Thus the bound in the theorem is decreased by 1 in
this case.

The strengthening of the theorem in the following statement is easily accomplished
by a proof which we omit as it is entirely analogous.

Corollary. Let G be a graph of order p with maximum degree d, and r be an integer

such that d<r<p—2. Then G has an r-regular supergraph of order at most p+r+1 or
p+r+2ifpriseven or odd, respectively. [

Jin Akiyama, Hiroshi Era and Frank Harary,

Nippon Ika University, Kawasaki, Japan; University of Michigan, Ann Arbor, USA
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A remark on a paper by A. Grytczuk

In [3] Grytczuk showed that if c,(n) denotes the Ramanujan trigonometric sum,
then
> lea(m)| =22 (/&) (i, m), (1)
dik
where w (m) denotes the number of distinct prime divisors of m. In this note we
prove a generalization of (1).
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