Zeitschrift: Elemente der Mathematik

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 37 (1982)

Heft: 6

Rubrik: Aufgaben

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 12.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

und $t^- \ge 0$ durch

$$\prod_{1}^{w} (\sin((x-y_{j})/2))^{m_{j}} = t^{-}(x),$$

so dass die einzigen NS von t^+ und t^- in I mit den NS von 1-t bzw. 1+t zusammenfallen. Definiere weiterhin $t=t^+\cdot t^-\geq 0$. Wegen $\left(\sin\left((x-c)/2\right)\right)^2\in T_1$ mit $c\in \mathbb{R}$ und der Addition der Polynomgrade bei der Multiplikation trigonometrischer Polynome folgt, unter Beachtung der Voraussetzung $N(t)\leq 2n$, dass t aus T_n ist. Ferner gibt es ein $d^+>0$ aus T_n und ein $d^->0$ aus T_n mit der Eigenschaft $1-t=t^+\cdot d^+$ und $1+t=t^-\cdot d^-$. Dies folgt aus einer bekannten Produktdarstellung nichtnegativer Elemente aus T_n , vgl. [3], VI. Abschnitt, Aufgabe 40 (Lösung). Setze nun

$$a' = \min \{d^+(x)/t^-(x)\} > 0, \qquad a'' = \min \{d^-(x)/t^+(x)\} > 0, \qquad x \in I,$$

wähle $a \in (0, \min\{a', a''\})$ und bilde u = t + at und v = t - at. Offenbar ist dann $u \neq t \neq v$, aber $t = 0 \cdot 5u + 0 \cdot 5v$. Es bleibt zu zeigen, dass u und v aus K sind: Für $x = z_i$ bzw. $x = y_j$ ist natürlich $|u(x)| \le 1$ und $|v(x)| \le 1$. In den anderen Fällen folgt einerseits aus $a < d^+(x)/t^-(x)$, dass $at(x) < d^+(x) \cdot t^+(x) = 1 - t(x)$ gilt, also u(x) < 1, und andererseits folgt aus 0 < a, dass $-at^+(x) < d^-(x)$ gilt. Somit ist $-at(x) < d^-(x) = 1 + t(x)$, also -1 < u(x). Der Fall $|v(x)| \le 1$ wird analog behandelt.

Wir stellen diesen Satz dem Satz von Konheim und Rivlin [4], der algebraische Polynome betrifft, ergänzend zur Seite.

H.-J. Rack, Universität Dortmund

LITERATURVERZEICHNIS

- 1 J.T. Marti: Konvexe Analysis. Birkhäuser, Basel, Stuttgart 1977.
- 2 A.W. Roberts und D.E. Varberg: Convex Functions. Academic Press, New York, London 1973.
- 3 G. Pólya und G. Szegő: Aufgaben und Lehrsätze aus der Analysis, II, 3. Auflage. Springer, Berlin, Göttingen, Heidelberg, New York 1964.
- 4 A.G. Konheim und T.J. Rivlin: Extreme points of the unit ball in a space of real polynomials. Am. Math. Monthly 73, 505-507 (1966).
- © 1982 Birkhäuser Verlag, Basel

0013-6018/82/060164-02\$1.50+0.20/0

Aufgaben

Aufgabe 869. Es seien zwei Kreise k_1 und k_2 gegeben, die nicht in derselben Ebene und nicht auf derselben Kugel liegen, sich nicht schneiden und nicht ineinander verschlungen sind. Dann gibt es genau vier Kreise, darunter eventuell eine Gerade, welche k_1 und k_2 berühren. Man beschreibe deren räumliche Konstruktion.

C. Bindschedler, Küsnacht

Lösung: Es seien E_1 , E_2 die Ebenen der Kreise k_1 , k_2 , und 1 ihre Schnittgerade. Eine Umklappung von E_2 um 1 in E_1 führt k_2 in k'_2 über. Die Potenzgerade von k und k'_2 schneidet 1 in einem Punkt P, von dem die Tangenten zu k_1 und k'_2 , und daher auch zu k_2 , gleich lang sind. Seien s_1 und t_1 die Tangenten aus P zu k_1 , s_2

166 Aufgaben

und t_2 die Tangenten zu k_2 . Die vier Paare $\{s_1, s_2\}$, $\{s_1, t_2\}$, $\{t_1, s_2\}$, $\{t_1, t_2\}$ bestimmen je einen gesuchten Kreis, der auf elementare planimetrische Weise gefunden werden kann. (Sei z. B. A der Berührungspunkt von t_1 mit k_1 , B der Berührungspunkt von t_2 mit k_2 . Die Lote in A zu t_1 und in B zu t_2 , in der Ebene von t_1 und t_2 , schneiden sich in M. Der Kreis um M mit Radius $r = \overline{MA} = \overline{MB}$ in der Ebene von t_1 und t_2 berührt k_1 in A und k_2 in B.) Die Gerade 1 ist genau dann selbst eine Lösung, wenn sie k_1 und k_2 in zwei verschiedenen Punkten berührt.

J. Schaer, Calgary, CDN

Anmerkung der Redaktion: Die Schülerproblemgruppe Rämibühl (Zürich) bemerkt, dass Aufgabe 869 im wesentlichen identisch ist mit Aufgabe 178 in Dändliker und Schläpfer, Darstellende Geometrie, Aufgabensammlung, Orell Füssli Verlag, Zürich.

Weitere Lösungen sandten L. Kuipers (Mollens VS), O. P. Lossers (Eindhoven, NL), Th. Müller (Thallern, A), H.P. Paukowitsch (Wien, A), Schülerproblemgruppe Rämibühl (Zürich), Hj. Stocker (Wädenswil), G. Unger (Dornach).

Aufgabe 870. In der Ebene seien endlich viele Gitterpunkte, die nicht alle auf einer Geraden liegen, durch einen einfachgeschlossenen Polygonzug verbunden. Man beweise: Liegt auf dem Polygonzug insgesamt eine ungerade Anzahl von Gitterpunkten, so durchläuft er auch einen Punkt, dessen verdoppelte Koordinaten ungerade ganze Zahlen sind.

H. Müller, Hamburg, BRD

Lösung: Einen Punkt, dessen verdoppelte Koordinaten ungerade ganze Zahlen sind, nennen wir M. Der Streckenzug durchlaufe die aufeinanderfolgenden Gitterpunkte A_1, \ldots, A_n , und es sei $\overrightarrow{A_i}\overrightarrow{A_{i+1}}=(u_i, v_i)$, $i \mod n$. Die u_i, v_i sind ganz und es gilt ggT $(u_i, v_i)=1$, da andernfalls zwischen A_i und A_{i+1} ein weiterer Gitterpunkt läge. Wir nehmen nun an, der Streckenzug enthalte keinen Punkt M. Dann muss offenbar $u_i+v_i\equiv 1 \pmod 2$ für $i=1,\ldots,n$ gelten, also $\sum (u_i+v_i)\equiv n \pmod 2$. Dies führt bei ungeradem n zu einem Widerspruch, da $\sum u_i=\sum v_i=0$.

Bemerkung: Die Voraussetzung, der Polygonzug sei einfach-geschlossen, ist offenbar unnötig.

C. Bindschedler, Küsnacht

Weitere Lösungen sandten W. Janous (Innsbruck, A), O.P. Lossers (Eindhoven, NL), D. Mascioni (Origlio), J. Schaer (Calgary, CDN), U. Tipp (Soest, BRD), H. Warncke (Pôrto Alegre, Brasilien).

Aufgabe 871. Die Winkel eines ebenen Dreiecks seien a_i (i = 1, 2, 3). Man schätze die Summe

$$\sum_{i=1}^{3} \left[\sin^4(\alpha_i/4) + \cos^4(\alpha_i/4) \right]$$

nach oben und unten bestmöglich ab.

F. Leuenberger, Feldmeilen

Neue Aufgaben 167

Lösung: Auf Grund bekannter und elementarer Beziehungen der Trigonometrie gilt für den beliebigen Winkel φ :

$$\sin^{4}(\varphi/4) + \cos^{4}(\varphi/4) = 2\sin^{4}(\varphi/4) - 2\sin^{2}(\varphi/4) + 1$$

$$\bullet = 1 - 2\sin^{2}(\varphi/4)\cos^{2}(\varphi/4)$$

$$= 1 - 1/2\sin^{2}(\varphi/2)$$

$$= 1 - 1/4(1 - \cos\varphi)$$

$$= 1/4(3 + \cos\varphi).$$

Damit erhält man für die abzuschätzende Summe ∑ den Term:

$$\sum = 9/4 + 1/4 \sum_{i=1}^{3} \cos a_i = 5/2 + \prod_{i=1}^{3} \sin (a_i/2).$$

Für das am Schluss auftretende Produkt gilt aber bekanntlich die Abschätzung (siehe z. B. [1]):

$$0 < \prod_{i=1}^{3} \sin(\alpha_i/2) \le 1/8$$

(mit Gleichheit im gleichseitigen Fall).

Damit bekommt man die nachfolgende beste Abschätzung:

$$5/2 = 20/8 < \sum \le 21/8$$
.

Hj. Stocker, Wädenswil

LITERATURVERZEICHNIS

1 O. Bottema et al.: Geometric Inequalities, S.20, Nr.2/12. Groningen 1968.

Weitere Lösungen sandten A. Bager (Hjørring, DK), G. Bercea (München, BRD), C. Bindschedler (Küsnacht), P. Bundschuh (Köln, BRD), Th. Egger (Appenzell), J.T. Groenman (Arnheim, NL), P. Hohler (Olten), W. Janous (Innsbruck, A), L. Kuipers (Mollens VS), O. P. Lossers (Eindhoven, NL), A. Makowski (Warschau, Polen), V. D. Mascioni (Origlio), M. Vowe (Therwil), H. Walser (Frauenfeld).

Neue Aufgaben

Die Lösungen sind getrennt nach den einzelnen Aufgaben in Maschinenschrift erbeten bis 10. Juni 1983 an Dr. H. Kappus. Dagegen ist die Einsendung von Lösungen zu den mit Problem ... A, B bezeichneten Aufgaben an keinen Termin gebunden.

Bei Redaktionsschluss dieses Heftes sind noch ungelöst: Problem 601A (Band 25, S.67), Problem 625B (Band 25, S.68), Problem 645A (Band 26, S.46), Problem 672A (Band 27, S.68), Aufgabe 680 (Band 27, S.116), Problem 724A (Band 30, S.91), Problem 764A (Band 31, S.44).

168 Literaturüberschau

Aufgabe 888. Für beliebige $n \in N$ und $x \neq m \pi/2$, $m \in \mathbb{Z}$, beweise man

$$[(\sec x)^{2n}-1][(\csc x)^{2n}-1] \ge n^2 \prod_{k=1}^n \left(\frac{n}{k}\right)^{2/n}$$

M. Bence, Brasow, Rumänien

Aufgabe 889. a, β, γ seien die Innenwinkel eines ebenen Dreiecks mit Umbzw. Inradius R bzw. r. Für variablen Winkel φ definiere man

$$F(\varphi) := \frac{\cot(\varphi/2) + \cot(\alpha/2)\cot(\beta/2)/\cot(\gamma/2)}{-\sin\varphi + 2\cos(\alpha/2)\cos(\beta/2)/\cos(\gamma/2)}.$$

Man zeige, dass $F(a) = F(\beta) = F(\gamma) = f(R, r)$ und berechne f.

I. Paasche, München, BRD

Aufgabe 890. Es seien h_i bzw. m_i die Höhen bzw. die Schwerelinien eines beliebigen Tetraeders (i = 1, 2, 3, 4), V dessen Volumen. Man schätze

$$V^{-1}\left(\sum_{i=1}^4 h_i\right)\left(\sum_{i=1}^4 m_i^2\right)$$

bestmöglich nach unten ab.

D. M. Milosevic, Pranjani, YU

Literaturüberschau

H. Jahner: Methodik des mathematischen Unterrichts. Begründet von W. Lietzmann. 5., vollständig neugestaltete Auflage, 273 Seiten, DM 36.-. Quelle & Meyer, Heidelberg 1978.

H. Jahner hat vor rund 10 Jahren die bewährte «Methodik des mathematischen Unterrichtes» von Walter Lietzmann einer Neubearbeitung unterzogen. Die neu vorliegende 5. Auflage trägt jetzt nur noch seinen Namen und wird im Vorwort als Weiterentwicklung bezeichnet.

Im Mathematik-Unterricht müssen immer verschiedene Wege offengehalten werden. An diesen Grundsatz hat sich der Autor auf der ganzen Linie gehalten, aber dies hat ihm die Aufgabe keineswegs erleichtert.

Am überzeugendsten scheint mir das erste Kapitel dieser Weiterentwicklung des «Lietzmann» gelungen zu sein, in dem sich Jahner mit generellen Problemen der Unterrichtsgestaltung befasst (Ziele des Mathematik-Unterrichtes, Unterrichtsplanung, methodische Kleinarbeit, Unterrichtsstil, Leistungsmessungen u.a.). Erfreulicherweise werden hier vorwiegend handfeste Fakten mitgeteilt, die dem Mathematiklehrer eine konkrete Hilfe bieten. Mit dem diesem Kapitel beigefügten – etwas überdimensionierten – Literaturverzeichnis wird zwar die Gefahr heraufbeschworen, dass sich der Leser hinterher wieder in die nebulösen Gefilde der Erziehungswissenschaften verliert.

In den folgenden Kapiteln werden die wesentlichen Themenbereiche der Schulmathematik vorgestellt; sie tragen folgende Überschriften: Der Mathematik-Unterricht im 5. und 6. Schuljahr. Die Sekundarstufe I. Die Sekundarstufe II. Stufenübergreifende Themen.

Es liegt in der Natur der Sache, dass jede Neuerscheinung auf dem Felde der Mathematikdidaktik Ansätze zur Kritik enthält. Für den neu konzipierten «Lietzmann» sei nur ein einzelner Punkt herausgegriffen. Man war es bis jetzt gewohnt, dass der Stoffkanon des Mathematik-Unterrichtes eine gewisse