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ELEMENTE DER MATHEMATIK

Revue de mathématiques élémentaires - Rivista di matematica elementare

Zeitschrift zur Pflege der Mathematik
und zur Forderung des mathematisch-physikalischen Unterrichts

El. Math. Band 37 Nr.6 Seiten 153-176 Basel, den 10. November 1982
Wackeldodekaeder
1. Einleitung

In Anlehnung an die «Siamesischen Zwillingsdoppelpyramiden» mit finfeckiger
Basis, die Goldberg [1] als originelles Beispiel fur Wackelikosaeder angefithrt hat,
werden hier solche Zwillingsdoppelpyramiden mit dreieckiger Basis, also doppelt-
symmetrische Dreiecks-Zwélfflache, von der aus Figur 1 ersichtlichen Bauart be-
trachtet und hinsichtlich ihrer Stabilitit untersucht. Da dieser reizvolle, bereits in
[3], [5] und [6] angeschnittene Fragenkreis im Grunde bloss ein wenig elementare
Algebra erfordert, konnte er, begleitet von der Herstellung einschligiger Modelle,
ein anregendes Thema fiir eine Schiiler-Arbeitsgemeinschaft bieten.

Macht man die Symmetrieachse zur z-Achse eines kartesischen Koordinatensystems
(0; x,y,2), so lassen sich die acht Ecken des Dodekaeders ansetzen mit

A(a,0,z2), A’ (—a,0,2), B(0,a, —2), B0, —a,-2),
C(x,0,—u), C'(—x,0,—u), D(@O,y,v), D’ O, —y,v). (1.1)

Gefordert wird iiberdies, dass gleichartige Kanten gleich lang sein sollen, also:

AA’=BB’'=2a, AC=A'C'=BD=B'D’'=b,
AD=A'D=AD'=A'D'=BC=B'C=BC'=B'C'=c,
CD=C'D=CD'=C'D'=d. (1.2)

Von den 18 Kanten stossen in A, A, B und B’ je vier zusammen, in den iibrigen
Ecken je funf.

Nach Vorgabe der vier Kantenldngen 24, b, ¢, d stehen fiir die fiinf Formparameter
u,v, x, y, z die nachstehenden fiinf quadratischen Gleichungen zur Verfiigung:

(x—aP+(+ulP=@p—aP+@c+vyP=>b,
X2+ (z—up=y*+(z—vP=c2-a?,
X2+ +u+vyP=d*. (1.3)

Zur Formbestimmung des Polyeders ist das Gleichungssystem (1.3) aufzuldsen. Aus
den ersten beiden Zeilen folgen zunichst die Beziehungen

x+y—2a)(x—p)+QRz+u+v)(u—v)=0,
x+y)(x—y)—QRz—u—-v)(u—v)=0.
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Ersetzt man sie durch Summe und Differenz, so gelangt man zu den einfacheren,
den Formparametern auferlegten «Passbedingungen»:

(x+y—a)(x—y)+@+v) (u—v)=0,
—a(x—y)+2z(u—v)=0. (1.4)
Nunmehr sind aber zwei Fille zu unterscheiden, je nachdem ob x=y oder x#+y

angenommen wird, was unter den natiirlichen Voraussetzungen a+ 0 und z5 0 auch
u=v bzw. u= v nach sich zieht.

2. Dodekaeder vom ersten Typ

Unter der Annahme x=y, u=v, die kongruente Dodekaederhdlften bedeutet, sind
die Passbedingungen (1.4) sicherlich erfiillt, und das Gleichungssystem (1.3) redu-
ziert sich auf

x2=2ax+u+zyP=br-a2,
x2+(u—z¢=c*—a?,
x24+2uk=d/2. @2.1)

Differenzenbildung fiithrt auf das gleichwertige System
2ax—4uz=c*—b?,
W+2uz—22=at—c2+ /2,
2ul+xt=d*)2. 2.2)

’Nach Elimination von x mittels

_Auz—b+
B 2a

x 2.3)

verbleibt ein Gleichungspaar in u und z, das mit der Substitution u=wz iibergeht
in

2W+2w—)=a*-2+d/2,

8w Qw2 +a?w—b2+c)=2a’d?— (b®—c?). 2.4

Die Elimination von z fuihrt schliesslich iiber

2_ a—c*+d* 2
w+2w—1

z 2.5)

zu einer Gleichung 4. Grades in w. Jede Losung derselben liefert, zuriickgehend,
der Reihe nach die Formparameter z,u=wz und x. Die zu einfachen Wurzeln w
gehorigen (nicht unbedingt reellen) Formen des Polyeders sind starr.

Gibt man umgekehrt die Formparameter a, u, x und z vor, so sind die zur Her-
stellung eines Modells benotigten Kantenldngen b, ¢ und 4 aus (2.1) zu berechnen.
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3. Dodekaeder vom zweiten Typ

Die Alternative x=y, u+v bedeutet ungleiche Dodekaederhdlften, und die erste
Passbedingung (1.4) kann ersetzt werden durch

2z(x+y—a)+a(u+v)=0. 3.1

Aus der Differenz der ersten beiden Zeilen von (1.3) folgen iiber die die zweite
Passbedingung enthaltenden Beziehungen

2ax—4uz=2ay—4vz=c*—b?

die Ansitze

1 1
- — 2y 2 - —h2a 2
x=- Quz—b"+c), y=7a (4vz—b°+c?). (3.2)

Nach Einfithrung der symmetrischen Funktionen
u+v=p, uv=gq (3.3)
erhilt man aus (3.1) und den letzten drei Gleichungen (1.3) das System
2z(x+y—a)+ ap=‘0,

X2+ +pt=d,
2—pz—q=ct—a*—-d&)2. (3.4)

Elimination von x und y durch Einsetzen der Ausdriicke (3.2) in (3.4) fithrt dann
mit Beriicksichtigung von (3.3) auf das nachstehende Gleichungstripel fiir p, ¢ und
z:

422+ a¥)p=2z(a*+b*—?),

422+ a*)p? =892+ 2(B*— ) pz+ P d*— (b*— ) /2,

g=22—pz+at—c2+d*/)2, (3.5

wobei die zweite Gleichung auf Grund der ersten ersetzt werden kann durch
2a’pz=8qz+a*d>— (b*—c??/2.

Die Elimination von p und q liefert schliesslich eine biquadratische Gleichung fiir z:
1624+ 8(a2—b*— 2+ d¥) 22+ 2 a* d* — (b* — 2 =0. (3.6)

Zuriickgehend fithrt dann jede Losung von (3.6) tiber (3.5) zunéchst auf p und g und

zufolge (3.3) auf vertauschbare Wertepaare u, v sowie gemiss (3.2) auf die zugehori-
gen Werte von x und y.
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Gibt man hingegen die Formparameter »,v und x,y vor so erhilt man aus den
Passbedingungen (1.4) die fehlenden Parameter

u?—v? 1
, z= (u+v+
xX—y 2

xz—yz).

u—y

a=x+y+ (3.7

So ergibt sich etwa das in Figur 1 dargestellte Dodekaeder mit den Daten u=4,
v=2, x=35, y=1 und den erginzenden Formparametern a=z=19; die zugehérigen
Kantenlingen betragen 2a=18, b=1185=13,60, c=V131 =11,45, d=V 62
=7,87.

Tausch der Werte u und v sowie x und y liefert ein kongruentes Dodekaeder mit
vertauschten Hilften. Der Ubergang zwischen den beiden Formen ist bei einem
Karton- oder Stabmodell mit gelenkig ausgefithrten Verbindungen durch sanfte
Gewalt ohne weiteres zu erzwingen: Man hat damit ein brauchbares Beispiel fiir
ein Kipp-Dodekaeder. Zwischen den beiden Positionen gibt es eine Mittelstellung.
ersten Typs, die gemiss Abschnitt 2 zu bestimmen ist; sie ist durch u=v=311,
x=y=342 und z=9,30 gekennzeichnet. Daneben existiert noch eine zweite reelle
Mittelposition mit u=v= —2,25, x=y= —4,57 und z= 3,15, die jedoch wegen Uber-
schneidungen nur als Stabmodell zu realisieren ist; dies geschieht am einfachsten
durch Plastikstrohhalme, die mittels durchgezogener Zwirnsfdden verkniipft wer-
den.

4. Wackeldodekaeder 1. Art

Riicken die beiden vorhin erwdhnten, auf dem Tausch von # mit v und x mit y
beruhenden Formen eines Kipp-Dodekaeders zusammen, so entsteht ein Wackel-
polyeder mit bloss infinitesimaler Deformabilitit, die jedoch am Modell iberaus
deutlich zu merken ist. Ein solches wackeliges Zwolfflach ist durch u=v und x=y
bedingt, wofiir allerdings die Formeln (3.7) versagen; aus (3.1) gewinnt man aber
die entscheidende Wackelbedingung

z(2x—a)+au=0 oder —E—= 4.1

Nach Vorgabe von Werten fir a, u=v und x=y ist der noch fehlende Form-
parameter z vermoge (4.1) zu erginzen. So ergibt sich etwa das in Figur 2
wiedergegebene Beispiel mit den Daten a=z=3 und u=v=x=y=1; die zugehori-
gen Kantenlingen betragen 2a=6, b=VvV20 =447, c=V14 =374 und d=V6
=245.

Ein solches Wackeldodekaeder 1.Art gehort in der Grundstellung zum ersten Typ,
wihrend die beim Wackelvorgang entstehenden, geringfiigig abweichenden Formen
vom zweiten Typ sind: Wird die eine Hilfte zusammengedriickt, so bliht sich die
andere wie bei einem Blasebalg auf. - Wie leicht nachzupriifen ist, bedeutet die
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Aufrif

Figur 1. Doppelt-symmetrisches ~ Figur 2. Wackeldodekaeder I. Art. Figur 3. Uberschlagenes
Kipp-Dodekaeder. Wackeldodekaeder 1. Art.

Relation (4.1) geometrisch, dass etwa die Ecken A, A’, B und D komplanar sind.
Dieser Umstand bedingt, dass sich der Abstand 2z der beiden orthogonalen
Scheitelkanten 44’ und BB’ bei der Wackelbewegung nur in héherer Kleinheits-
ordnung #4ndert; die Ecke D weicht bei der infinitesimalen Drehung um die
Kante 44’ normal zur Ebene 44’ B aus, was mit der Koppelung an die Ecke B
vertriglich ist (vgl. Fig.2 und Abschnitt 5). Man konnte also - vor allem bei einem
Stabmodell - auch noch die vier Stibe AB, A’B, AB’ und A’ B’ mit der gemein-
samen Linge e=V 2a2+42z% hinzufligen, ohne dass dadurch die Wackeligkeit auf-
gehoben wiirde. Entfernt man sodann aus dem so gewonnenen Stabwerk die beiden
Scheitelkanten 44’ und BB’, so verbleibt eine geschlossene Gelenkkette aus vier
kongruenten Tetraedern, die in endlichem Ausmass zwangldufig beweglich ist, ja
sogar eine vollstindige Umstiilpung gestattet; sie repridsentiert ein spezielles
(némlich gleichseitiges) Bennettsches Isogramm [4].

Wie die Wackelbedingung (4.1) in ihrer zweiten Gestalt erkennen ldsst, haben alle
Exemplare mit demselben Verhiltniswert u/z auch ein gemeinsames Verhiltnis
x /a; sie sind daher untereinander affin. Fiir |u /z| < 1 ergeben sich Dodekaeder, die
als Kartonmodelle ausfiihrbar sind; fir |u /z| > 1 entstehen hingegen Formen, die
wegen vorhandener Uberschneidungen nur durch Stabmodelle realisierbar sind.
Figur 3 zeigt ein solches Modell fiir die Annahme a=3, u=v=—6, x=y=6,
z=2. - Wie Liebmann [2] gezeigt hat, ist die Wackeligkeit einer Struktur, wiewohl
dem Wesen nach metrisch bedingt, in Wahrheit eine projektive Eigenschaft: Wird
eine Wackelstruktur einer beliebigen affinen oder sogar kollinearen Transformation
unterworfen, so entsteht immer wieder eine Wackelstruktur. Ein neuer Beweis fiir
diese merkwiirdige Tatsache ist kiirzlich dem Verfasser gelungen [7].
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5. Wackelvorgang

Die Wackelbewegung gegeniiber dem fest gedachten Achsenkreuz (O;x,y,z) wird
quantitativ am besten durch die Geschwindigkeitsvektoren der einzelnen Ecken
oder Knoten gekennzeichnet. Wird fiir jeden Knoten X der Geschwindigkeits-
vektor in geeignetem MaBstab durch eine im Ursprung O angebrachte Strecke OX
reprasentiert, so entsteht ein als Hodograph bezeichnetes Geschwindigkeitsdia-
gramm. Ist der Ortsvektor y=(x,y,z) des Punktes X als Funktion 1 (¢) eines Zeit-
parameters ¢ bekannt, dann hat der Diagrammpunkt X den durch Ableitung nach ¢
erkliaren Ortsvektor i =drx / dz. Behalten zwei Punkte X, X, ihren Abstand s wihrend
der Bewegung unverdndert bei, dann erkennt man durch Ableitung der Distanz-
formel (x; — 1,)? = s? = const iiber

(11— 1) (11— 12)=0, .1

dass die Abstandsstrecke X; X, und die ihr entsprechende Hodographenstrecke
X, X, zueinander orthogonal sind. Offenbar gilt diese Orthogonalititsbedingung
auch im Falle der infinitesimalen Deformation eines wackeligen Stabwerks; hier ist
die Knotendistanz s nicht als dauernd unverinderliche Grosse, sondern bloss als
in einem bestimmten Augenblick stationir (s =0) aufzufassen.

Demzufolge sind unter der Voraussetzung, dass bei der Wackelbewegung eines der
hier betrachteten Dodekaeder der Rahmen der durch den Ansatz (1.1) erfassbaren
Formenmenge nicht verlassen wird, die den acht Knoten zugeordneten Hodo-
graphenpunkte bestimmt durch

A©0,0,2), A4'0,0,2), B(©0,0,-%), B'(0,0,-2),
C(x,0,—u), C'(-x,0,—u), DOy, D'(0,—pv). (5.2)

Die hierbei auftretenden fiinf Geschwindigkeitskomponenten # bis Z geniigen den
aus den Distanzformeln (1.3) durch Ableitung hervorgehenden finf linear-homo-
genen Gleichungen

x—a)x+@z+uw) E+u)=0, xx+(@z—u)(—u)=0,
y—a)y+@c+v)(@2+v)=0, w+@E—v)(—v)=0,
xx+yy+u+v)(@+v)=0. (5.3)

Aus den ersten beiden Gleichungspaaren fliessen die Ansitze

x=2pWP—2%), i=pQRxz—az+au), u=—pQRxu+az—au);
y=20(*-2%, i=0QRyz—az+av), v=—0g QQyv+az—av). (5.4)

Unter der besonderen Annahme, dass die Wackelposition in der Mittelstellung ein-
tritt, wie dies im vorigen Abschnitt der Fall war, vereinfachen sich die Ansitze
durch die Identifikationen x=y und u=v, was jedoch keineswegs x=y und u=v
nach sich ziehen muss. Die notwendige Uberstimmung der beiden Ausdriicke fiir
z tritt nadmlich auch ohne p=o¢ ein, wenn 2xz—az+au=0: Dies kennzeichnet
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zufolge (4.1) gerade die Wackeldodekaeder 1. Art. Mit Riicksicht auf diese Beziehung
lassen sich nun die Ansitze (5.4) reduzieren auf

x=p -2z, y=a’ -2z, =0, u=p'-a, v=¢'-a, (5.9)
wobei die trivialen Ausartungen u+z=0 und x =0 ausgeschlossen wurden. Eintra-
gung dieser Ausdriicke in die noch nicht verwertete letzte Gleichung (5.3) fiihrt
dann iiber p’+ ¢’= 0 auf die Geschwindigkeitskomponenten

4

'=——y=p’.2z, z=0, '=-——-")=p’-a, (56)

Damit sind also gemiss (5.2) die Wackelgeschwindigkeitsvektoren fiir simtliche
acht Knoten (bis auf einen unbestimmt bleibenden MaBstabsfaktor p’+ 0) bekannt.
Im Einklang mit der in Abschnitt 4 gemachten Bemerkung bleiben wegen 2=0
die beiden Scheitelkanten 44’ und BB’ in Ruhe, wihrend etwa der Knoten D
normal zur Ebene A4’ BD ausweicht (Fig.2). - Der zum Wackeldodekaeder 1. Art
gehorige Hodograph hat die Gestalt einer quadratischen Pyramide mit der Spitze
im Ursprung A =A’=B=R".

6. Wackeldodekaeder I1. Art

Die Alternative 2xz—az+au+0 verlangt in (5.4) p=0¢ zu nehmen, um iiber-
einstimmende z-Werte zu erhalten. Dies zieht jetzt x=y und &= v nach sich, und die
Eintragung der betreffenden Ausdriicke in die letzte Gleichung (5.3) liefert dann,
immer unter der Voraussetzung x =y und u= v, eine neue Wackelbedingung

u(u—z)
u?+ 22

i

6.1)

x(Z2+u¥)+au(z—u)=0 oder %

Figur 4. Wackeldodekaeder II. Art.
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Nach Vorgabe von Werten fiir u=v, x=y und z ist der noch fehlende Form-
parameter g mittels (6.1) zu ergénzen. So ergibt sich etwa das in Figur 4 dar-
gestellte Beispiel mit den Daten u=v=4, x=y=2z=2, a=35; die zugehorigen
Kantenlingen betragen 2a=10,b=145 =6,71,c=1/33 =5,74,d=/72 =8,49.
Ein solches Wackeldodekaeder 11. Art unterscheidet sich von jenem I. Art (Abschnitt
4) dadurch, dass es wihrend des Wackelvorgangs stindig eine Form ersten Typs
(also mit kongruenten Hilften) beibehilt. Wieder gilt aber mit Riicksicht auf die
Relation (6.1) in ihrer zweiten Gestalt, dass alle zum gleichen Quotienten u/z
gehorigen Exemplare untereinander affin sind. Fir O<z<wu und 0< —u <z sind
die Polyeder als Kartonmodelle ausfiithrbar, sonst nur als Stabmodelle!).

Fiir die Geschwindigkeitskomponenten gilt zufolge (5.4) und (6.1) die Proportion

x:z:u=2uu—2z):x(z+u): x(z—u). 6.2)

Der Hodograph hat die Gestalt eines Oktaeders.

7. Wackeldodekaeder III. und IV. Art

Unter der allgemeinen Annahme - also einer von der Mittelstellung verschiedenen
Wackelposition - folgt aus (5.4)

p:oa=Q2yz—az+av):(2xz—az+au). 7.1

Durch Eintragen der entsprechenden Ausdriicke fur %, y, @, v aus (5.4) in die
letzte Gleichung (5.3) erhilt man so nach einiger Rechnung die zum Verschwin-
den der Koeffizientendeterminante von (5.3) d4quivalente aligemeine Wackelbedin-

gung
dxyz(Z2+uv)=a(z—u)(z—v)[x(c—V)+y(z—u)+a (u'+ v)]. (7.2)
Daneben sind noch die wegen x %y, u+ v mit (1.4) gleichwertigen Passbedingungen
2z(a—x—y)=au+v), a(x—y)=2zu—v) 7.3)

zu beachten. Nach Vorgabe von u, v, z hat man so drei Bestimmungsgleichungen
fira, x und y.
Die Elimination von a mittels

+
g 2z(x+y)

= u+v¥2z 74

2z—u—v ( ) 74
1) Hervorzuheben ist vielleicht jenes Wackeldodekaeder, welches von lauter kongruenten (gleich-
schenkligen) Dreiecken gebildet wird. Die Forderungen b=c und d=2a fiihren zusammen mit der
Wackelbedingung (6.1) auf eine Gleichung 5.Grades, die /z= 12,8657 liefert; die Dreiecksseiten verhal-
ten sich ziemlich genau wie 13:13:20.
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fihrt zundchst auf das nach x und y geordnete Gleichungspaar
Ax?>— Bxy+Cy*=0 mit

A=C—u)z—V)[z—v)Qz—u—v)+2z(u+v)],
B=0z+u)z+v)[Qz—u—vP—4z(z—u)(z—v) u+v)],

C=0Cz-w)cz—Wm[iz—u)2z—u—v)+2z(u+v) (7.5)
und
x2—=y?=(u-v) 2z—u—v). (7.6)
Das quadratische Polynom (7.5) ldsst sich zerlegen in das Produkt
. A C
[(E=V)x—C—wy] (@ax—py) mit a=—-, f= - (7.7)
z—vy z—u

Nullsetzen des ersten Faktors fithrt iiber x=¢(z—u), y=t(z—v) und (7.6) auf
2+ 1=0, also auf keine reellen Lésungen. Nullsetzen des zweiten Faktors hinge-
gen liefert mit den Ansitzen

x=tf=t(z—v)[222+(—uw)z+ u+v)u],
y=ta=t(z—u) 222+ u—v)z+ @@+v)v] (7.8)

vermoge (7.6) auf

1
2 .
d 4z (u+v) (22+uv)

(7.9)

Damit ergeben sich gemiss (7.8) die Werte der Formparameter x und y, und
schliesslich findet man iiber (7.4) auch

2
a=2,/f(—"u$?’l- (7.10)

1. Wackelposition Mittelstellung ¢ 2. Wackelposition
u=l,v=4,2=5 u=v=254,2=552 u=4,v=1,z=5

Figur 5. Wackeldodekaeder III. Art.
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A'

Wackelposition Starre Nebenformen
u=l,v=3,2z=2 u=v=2, z=1 u=v=2,z=3

Figur 6. Uberschlagenes Wackeldodekaeder III. Art.

Ein auf diesem Wege gewonnenes Wackeldodekaeder I11.Art besitzt aus Symme-
triegriinden zwei Wackelpositionen zweiten Typs, zwischen welchen unter Umstén-
den ein kippender Ubergang iiber eine (starre) Mittelstellung ersten Typs moglich
ist. Dieses Verhalten zeigt das in Figur 5 dargestellte Kartonmodell zur An-
nahme u=1, v=4, z=5; die zusitzlichen Formparameter ergeben sich iiber
£=1/2900 mit a=V/29 =10,77, x=7//29 =1,30 und y=22/v/29 =4,09. Der
Kippvorgang tiber die zwar starre, jedoch schon nahezu wackelige Zwischenform
geht allerdings so sanft vor sich, dass eher der Eindruck einer stetigen, wenn auch
begrenzten Bewegung entsteht.

Auch fir die unter (7.4) ausgeschlossene Annahme u+ v=2:z behalten die Schluss-
formeln noch ihre Giiltigkeit. Nach Vorgabe von u und v erhilt man

2_
a= L @rowr),  x=—y=tL (7.11)
2 2a
Figur 6 zeigt links das Stabmodell zur Annahme u=1, v=3 (z=2) in einer Wackel-
position; die restlichen Formparameter haben die Werte a= V14 =3,74 und
—x=y=V 8/7 =1,07. Hier ist der direkte Ubergang zur zweiten Wackelposition
nicht moglich, weil kreuzende Stibe dies verhindern. Die beiden reellen, gemaéss
Abschnitt 2 zu berechnenden Zwischenpositionen ersten Typs mit u=v=2 und
x=y=—V8/7,z=1o0der x=y=V8/7, z=3, wiedergegeben im rechten Teil von
Figur 6, machen dies deutlich; diese Zwischenformen sind durchaus starr.
Lisst man die beiden Wackelpositionen des Dodekaeders III. Art in der Mittel-
stellung zusammenriicken, was durch die Annahme u=v erfolgt, so erhilt man ein
ausgezeichnetes Dodekaeder I.Art mit erhohter Wackeligkeit (4.Ordnung). Ein
solches Wackeldodekaeder IV.Art ist auf Grund von (7.10) nach Vorgabe von u=v
und z bestimmt durch

2
a=,/——§—(zz+u2), x=y=—g—(z—u). (7.12)
u 2z

Ein brauchbares Beispiel ergibt sich etwa fir u=v=1, z=3 mit a=V 60 =7,75
und x=y=V20/3 =2,58. Es ist affin zum Wackeldodekaeder 1. Art von Figur 2,
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welches jedoch bloss eine Wackeligkeit 2. Ordnung aufweist, wie die aufwendige
Untersuchung der hoheren Ableitungen der Gleichungen (5.3) lehrt. - Die in
Abschnitt 6 behandelten Wackeldodekaeder II. Art besitzen iibrigens nur die
normale Wackeligkeit 1. Ordnung. W. Wunderlich, Wien
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Kleine Mitteilungen
On a problem of Erdis and Graham

P. Erdos and R.L. Graham [1], p. 85, ask: “Is it possible to prove theorems of the
following type: If a,<a,<... tends to infinity rapidly enough and does not cover
all residue classes (mod p) for any prime p then for some n, n+ a; is prime for all i?”
The answer is in the negative. We show below that there exist sequences (a;) growing
arbitrarily fast and such that for every positive integer n the sequence (n+a;)
contains only a finite number of prime numbers.

Let (b,) be any sequence of positive integers. Put

a;=1+(i+ 1),

Since for any prime p the number (i+ 1)! (i>p—1) is divisible by p, the numbers
a;(ieN) give at most p— 1 remainders when divided by p. On the other hand, for
every n we have

n+lin+a=n+1+3G+ D% (i>n), l<n+l<n+a.

Therefore the numbers n+a;(i>n) are composite and prime numbers may occur
in the sequence (n+ a;) only for some i <n. -
Andrzej Makowski, Institute of Mathematics, University of Warsaw
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