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ELEMENTE DER MATHEMATIK
Revue de mathematiques Elementaires - Rivista di matematica elementare

Zeitschrift zur Pflege der Mathematik
und zur Förderung des mathematisch-physikalischen Unterrichts

El. Math. Band 37 Nr. 6 Seiten 153-176 Basel, den 10. November 1982

Wackeldodekaeder

1. Einleitung

In Anlehnung an die «Siamesischen Zwillingsdoppelpyramiden» mit fünfeckiger
Basis, die Goldberg [1] als originelles Beispiel für Wackelikosaeder angeführt hat,
werden hier solche Zwillingsdoppelpyramiden mit dreieckiger Basis, also
doppeltsymmetrische Dreiecks-Zwölfflache, von der aus Figur 1 ersichtlichen Bauart
betrachtet und hinsichtlich ihrer Stabilität untersucht. Da dieser reizvolle, bereits in
[3], [5] und [6] angeschnittene Fragenkreis im Grunde bloss ein wenig elementare
Algebra erfordert, könnte er, begleitet von der Herstellung einschlägiger Modelle,
ein anregendes Thema für eine Schüler-Arbeitsgemeinschaft bieten.
Macht man die Symmetrieachse zur z-Achse eines kartesischen Koordinatensystems
(0;x,y,z), so lassen sich die acht Ecken des Dodekaeders ansetzen mit

A(a,0,z), A'(-a,0,z), B(0,a,-z), B'(0,-a,-z),
C(x,0,-u), C(-x,09-u), D(0,y,v), D'(0,-y9v). (1.1)

Gefordert wird überdies, dass gleichartige Kanten gleich lang sein sollen, also:

AA'=BB'=2a, AC=A'C=BD B'D'=b,
AD=A'D=AD'=A'D'=BC=B'C=BC=B'C=c,
CD=CD CD'=CD'=d. (1.2)

Von den 18 Kanten stossen in A, A', B und B' je vier zusammen, in den übrigen
Ecken je fünf.
Nach Vorgabe der vier Kantenlängen 2a9 b, c9 d stehen für die fünf Formparameter
u, v, x,y, z die nachstehenden fünf quadratischen Gleichungen zur Verfügung:

(x-af+ (z + uf (y-af+(z + vf b2,
x2 + (z-uj2=y2 + (z-vj2 c2-a2,
x2+y2 + (u+vf d2. (1-3)

Zur Formbestimmung des Polyeders ist das Gleichungssystem (1.3) aufzulösen. Aus
den ersten beiden Zeilen folgen zunächst die Beziehungen

(x+y-2a)(x-y)+(2z + u+v)(u-v)=09
(x+y) (x-y)- (2z- u-v) (u- v)= 0.
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Ersetzt man sie durch Summe und Differenz, so gelangt man zu den einfacheren,
den Formparametern auferlegten «Passbedingungen»:

(x+y—a)(x —y)+(u + v)(u— v)=0,
-a(x-y)+2z(u-v)=0. (1.4)

Nunmehr sind aber zwei Fälle zu unterscheiden, je nachdem ob x=y oder x+y
angenommen wird, was unter den natürlichen Voraussetzungen <z + 0 und z + 0 auch

u v bzw. u + v nach sich zieht.

2. Dodekaeder vom ersten Typ

Unter der Annahme x=y, u v, die kongruente Dodekaederhälften bedeutet, sind
die Passbedingungen (1.4) sicherlich erfüllt, und das Gleichungssystem (1.3) reduziert

sich auf

x2-2ax + (u + z)2 b2-a2,
x2 + (u-z)2 c2-a2,
x2 + 2u2 cf/2. (2.1)

Differenzenbildung führt auf das gleichwertige System

2ax-4uz c2 — b2,
u2 + 2uz-z2 a2-c2 + S/2,
2u2 + x2 S/2. (2.2)

Nach Elimination von x mittels

4uz-b2 + c2

x= (2.3)
2a

verbleibt ein Gleichungspaar in u und z, das mit der Substitution u wz übergeht
in

z2(w2 + 2w-l)=a2-c2 + ä2/2,
Swz2(2wz2 + a2w-b2 + c2)=2a2d2-(b2-c2)2. (2.4)

Die Elimination von z führt schliesslich über

w2 + 2w- 1

zu einer Gleichung 4. Grades in w. Jede Lösung derselben liefert, zurückgehend,
der Reihe nach die Formparameter z,u=wz und x. Die zu einfachen Wurzeln w
gehörigen (nicht unbedingt reellen) Formen des Polyeders sind starr.
Gibt man umgekehrt die Formparameter a, u, x und z vor, so sind die zur
Herstellung eines Modells benötigten Kantenlängen b, c und d aus (2.1) zu berechnen.
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3. Dodekaeder vom zweiten Typ

Die Alternative x+y, u + v bedeutet ungleiche Dodekaederhälften, und die erste
Passbedingung (1.4) kann ersetzt werden durch

2z(x+y-a)+a(u + v)=0. (3.1)

Aus der Differenz der ersten beiden Zeilen von (1.3) folgen über die die zweite
Passbedingung enthaltenden Beziehungen

2ax — 4uz 2ay— 4vz c2 — b2

die Ansätze

x=-—(4uz-b2 + c2), y=-—(4vz-b2 + c2). (3.2)
2a 2a

Nach Einführung der symmetrischen Funktionen

u + v=p, uv=q (3.3)

erhält man aus (3.1) und den letzten drei Gleichungen (1.3) das System

2z(x+y—a)+ap 0,
x2+y2+p2 d2,

z2-pz-q c2-a2-d2/2. (3.4)

Ehmination von x und y durch Einsetzen der Ausdrücke (3.2) in (3.4) führt dann
mit Berücksichtigung von (3.3) auf das nachstehende Gleichungstripel für p, q und
z:

(4z2 + a2)p=2z(a2 + b2-c2),
(4z2 + a2)p2=Sqz2 + 2(b2-c2)pz + a2d2-(b2-c2)2/2,
q z2-pz + a2-c2 + d2/2, (3.5)

wobei die zweite Gleichung auf Grund der ersten ersetzt werden kann durch

2a2pz=%qz2 + a2(f-(b2-c2Y/2.

Die Ehmination von/? und q liefert schliesshch eine biquadratische Gleichung für z:

I6z4+%(a2-b2-c2 + d2)z2 + 2a2d2-(b2-c2f 0. (3.6)

Zurückgehend führt dann jede Lösung von (3.6) über (3.5) zunächst auf/? und q und
zufolge (3.3) auf vertauschbare Wertepaare u9v sowie gemäss (3.2) auf die zugehörigen

Werte von x und y.



156 W. Wunderlich: Wackeldodekaeder

Gibt man hingegen die Formparameter u,v und x,y vor so erhält man aus den
Passbedingungen (1.4) die fehlenden Parameter

w2-v2 i x2-y2\ „^a x+y+ z=T (u + v+ '— (3.7)
x-y 2 \ u — v 1

So ergibt sich etwa das in Figur 1 dargestellte Dodekaeder mit den Daten u 4,

v=2, x 59y=l und den ergänzenden Formparametern a z_=9; die zugehörigen
Kantenlängen betragen 2ö=18, Z?=VT85~= 13,60, c=Vl3l= 11,45, d=V62

7,87.
Tausch der Werte u und v sowie x und v liefert ein kongruentes Dodekaeder mit
vertauschten Hälften. Der Übergang zwischen den beiden Formen ist bei einem
Karton- oder Stabmodell mit gelenkig ausgeführten Verbindungen durch sanfte
Gewalt ohne weiteres zu erzwingen: Man hat damit ein brauchbares Beispiel für
ein Kipp-Dodekaeder. Zwischen den beiden Positionen gibt es eine Mittelstellung,
ersten Typs, die gemäss Abschnitt 2 zu bestimmen ist; sie ist durch u v=3,ll,
x—y—3942 und z=9,30 gekennzeichnet. Daneben existiert noch eine zweite reelle
Mittelposition mit u v= — 2,25, x=y= — 4,57 und z= 3,15, die jedoch wegen
Überschneidungen nur als Stabmodell zu realisieren ist; dies geschieht am einfachsten
durch Plastikstrohhalme, die mittels durchgezogener Zwirnsfaden verknüpft werden.

4. Wackeldodekaeder I.Art

Rücken die beiden vorhin erwähnten, auf dem Tausch von u mit v und x mit y
beruhenden Formen eines Kipp-Dodekaeders zusammen, so entsteht ein
Wackelpolyeder mit bloss infinitesimaler Deformabilität, die jedoch am Modell überaus
deutlich zu merken ist. Ein solches wackeliges Zwölfflach ist durch u=v und x=y
bedingt, wofür allerdings die Formeln (3.7) versagen; aus (3.1) gewinnt man aber
die entscheidende Wackelbedingung

z(2x-a)+au=0 oder — — (4.1)
a 2z

Nach Vorgabe von Werten für a, u=v und x=y ist der noch fehlende
Formparameter z vermöge (4.1) zu ergänzen. So ergibt sich etwa das in Figur 2

wiedergegebene Beispiel mit den Daten ö=z 3 und t/ v=jc v=l;die zugehörigen

Kantenlängen betragen 2a=6, b=V20=49419 c=Vl4=3914 und d=V6
2,45.

Ein solches Wackeldodekaeder I.Art gehört in der Grundstellung zum ersten Typ,
während die beim Wackelvorgang entstehenden, geringfügig abweichenden Formen
vom zweiten Typ sind: Wird die eine Hälfte zusammengedrückt, so bläht sich die
andere wie bei einem Blasebalg auf. - Wie leicht nachzuprüfen ist, bedeutet die



W. Wunderlich: Wackeldodekaeder 157

Aufriß

CC

*&
OL'.

/Jß^^B

Grundriß

n

//

Figur 1. Doppelt-symmetrisches Figur 2. Wackeldodekaeder I.Art.
Kipp-Dodekaeder.

Figur 3. Überschlagenes
Wackeldodekaeder I. Art.

Relation (4.1) geometrisch, dass etwa die Ecken A, A', B und D komplanar sind.
Dieser Umstand bedingt, dass sich der Abstand 2 z der beiden orthogonalen
Scheitelkanten AA' und BB' bei der Wackelbewegung nur in höherer Kleinheitsordnung

ändert; die Ecke D weicht bei der infinitesimalen Drehung um die
Kante AA' normal zur Ebene AA'B aus, was mit der Koppelung an die Ecke B
verträglich ist (vgl. Fig. 2 und Abschnitt 5). Man könnte also - vor allem bei einem
Stabmodell - auch noch die vier Stäbe AB, A'B, AB' und A'B' mit der gemeinsamen

Länge e=v2?+4? hinzufügen, ohne dass dadurch die Wackeligkeit
aufgehoben würde. Entfernt man sodann aus dem so gewonnenen Stabwerk die beiden
Scheitelkanten AA' und BB', so verbleibt eine geschlossene Gelenkkette aus vier
kongruenten Tetraedern, die in endüchem Ausmass zwangläufig beweglich ist, ja
sogar eine vollständige Umstülpung gestattet; sie repräsentiert ein spezielles
(namhch gleichseitiges) Bennettsches Isogramm [4].
Wie die Wackelbedingung (4.1) in ihrer zweiten Gestalt erkennen lässt, haben alle
Exemplare mit demselben Verhältniswert u/z auch ein gemeinsames Verhältnis
x/a; sie sind daher untereinander affin. Für | u/z\ < 1 ergeben sich Dodekaeder, die
als Kartonmodelle ausführbar sind; für | u/z \ > 1 entstehen hingegen Formen, die

wegen vorhandener Überschneidungen nur durch Stabmodelle realisierbar sind.
Figur 3 zeigt ein solches Modell für die Annahme a — 3, m v=—6, x=y—69
z=2. - Wie Liebmann [2] gezeigt hat, ist die Wackeligkeit einer Struktur, wiewohl
dem Wesen nach metrisch bedingt, in Wahrheit eine projektive Eigenschaft: Wird
eine Wackelstruktur einer behebigen affinen oder sogar kollinearen Transformation
unterworfen, so entsteht immer wieder eine Wackelstruktur. Ein neuer Beweis für
diese merkwürdige Tatsache ist kürzlich dem Verfasser gelungen [7].
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5. Wackelvorgang

Die Wackelbewegung gegenüber dem fest gedachten Achsenkreuz (0;x,y,z) wird
quantitativ am besten durch die Geschwindigkeitsvektoren der einzelnen Ecken
oder Knoten gekennzeichnet. Wird für jeden Knoten X der Geschwindigkeitsvektor

in geeignetem Maßstab durch eine im Ursprung O angebrachte Strecke OX
repräsentiert, so entsteht ein als Hodograph bezeichnetes Geschwindigkeitsdiagramm.

Ist der Ortsvektor %=(x,y,z) des Punktes X als Funktion r(0 eines
Zeitparameters t bekannt, dann hat der Diagrammpunkt X den durch Ableitung nach t
erklären Ortsvektor %= dxjdt. Behalten zwei Punkte XX,X2 ihren Abstand s während
der Bewegung unverändert bei, dann erkennt man durch Ableitung der Distanzformel

(xx - ic2)2 s2 const über

(Si-*2)fti-fe)-0, (5.1)

dass die Abstandsstrecke XXX2 und die ihr entsprechende Hodographenstrecke
XXX2 zueinander orthogonal sind. Offenbar gilt diese Orthogonalitätsbedingung
auch im Falle der infinitesimalen Deformation eines wackeligen Stabwerks; hier ist
die Knotendistanz s nicht als dauernd unveränderliche Grösse, sondern bloss als
in einem bestimmten Augenblick stationär (s 0) aufzufassen.
Demzufolge sind unter der Voraussetzung, dass bei der Wackelbewegung eines der
hier betrachteten Dodekaeder der Rahmen der durch den Ansatz (1.1) erfassbaren
Formenmenge nicht verlassen wird, die den acht Knoten zugeordneten Hodo-
graphenpunkte bestimmt durch

Ä(0,0,z), Ä'(0,0,z), B(0,0,-z), B'(0,0,-z),
C(x,0,-ü), C(-x,0,-ü), D(0,y,v), D'(0,-y,v). (5.2)

Die hierbei auftretenden fünf Geschwindigkeitskomponenten ü bis z genügen den

aus den Distanzformeln (1.3) durch Ableitung hervorgehenden fünf linear-homogenen

Gleichungen

(x — a)x + (z + u)(z + ü) 0, xx + (z—u)(z—ü) 0,
(y—a)y+ (z + v) (z + v) 0, yy+ (z — v) (z— v) 0,
xx+yy+(u + v)(ü + v) 0. (5.3)

Aus den ersten beiden Gleichungspaaren fliessen die Ansätze

x 2p(u2 — z2), z=p(2xz—az+au), ü= —p(2xu + az — au);
y=2o(v2 — z2), z o(2yz — az + av), v= — o(2yv + az — av). (5.4)

Unter der besonderen Annahme, dass die Wackelposition in der Mittelstellung
eintritt, wie dies im vorigen Abschnitt der Fall war, vereinfachen sich die Ansätze
durch die Identifikationen x=y und u=v, was jedoch keineswegs x=y und ü v

nach sich ziehen muss. Die notwendige Überstimmung der beiden Ausdrücke für
z tritt namhch auch ohne p o ein, wenn 2xz — az + au 0: Dies kennzeichnet
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zufolge (4 1) gerade die Wackeldodekaeder I Art Mit Rucksicht auf diese Beziehung
lassen sich nun die Ansätze (5 4) reduzieren auf

x p' 2z, 2z, 0, u p' a, a, (5 5)

wobei die trivialen Ausartungen w + z 0 und x 0 ausgeschlossen wurden Eintragung

dieser Ausdrucke in die noch nicht verwertete letzte Gleichung (5 3) führt
dann uber p'+ o'= 0 auf die Geschwindigkeitskomponenten

-y=p' 2z, z 0, — v p' a (5 6)

Damit sind also gemäss (5 2) die Wackelgeschwmdigkeitsvektoren fur sämtliche
acht Knoten (bis auf einen unbestimmt bleibenden Maßstabsfaktor /?'+0) bekannt
Im Einklang mit der in Abschnitt 4 gemachten Bemerkung bleiben wegen z 0

die beiden Scheltelkanten AA' und BB' in Ruhe, wahrend etwa der Knoten D
normal zur Ebene AA'BD ausweicht (Fig 2) - Der zum Wackeldodekaeder I Art
gehörige Hodograph hat die Gestalt einer quadratischen Pyramide mit der Spitze
im Ursprung A= A'=B B'

6. Wackeldodekaeder II. Art

Die Alternative 2xz — az + au + 0 verlangt in (5 4) p o zu nehmen, um
übereinstimmende z-Werte zu erhalten Dies zieht jetzt x=y und u v nach sich, und die
Eintragung der betreffenden Ausdrucke in die letzte Gleichung (5 3) liefert dann,
immer unter der Voraussetzung x=y und u v, eine neue Wackelbedingung

x (z2 + u2) + au (z—u) 0 oder
x u(u — z)

u2 + z2
(6 1)

*

^L

Figur 4 Wackeldodekaeder II Art
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Nach Vorgabe von Werten für u=v9 x—y und z ist der noch fehlende
Formparameter a mittels (6.1) zu ergänzen. So ergibt sich etwa das in Figur 4
dargestellte Beispiel mit den Daten u=v=4, x v=z 2, a=5; die zugehörigen
Kantenlängen betragen 2a 10, b=y/45 =6,11, c=V^J 5,74, d= Vl2 8,49.
Ein solches Wackeldodekaeder II.Art unterscheidet sich von jenem I. Art (Abschnitt
4) dadurch, dass es während des Wackelvorgangs ständig eine Form ersten Typs
(also mit kongruenten Hälften) beibehält. Wieder gilt aber mit Rücksicht auf die
Relation (6.1) in ihrer zweiten Gestalt, dass alle zum gleichen Quotienten u/z
gehörigen Exemplare untereinander affin sind. Für 0<z<w und 0<—u<z sind
die Polyeder als Kartonmodelle ausführbar, sonst nur als Stabmodelle1).
Für die Geschwindigkeitskomponenten gilt zufolge (5.4) und (6.1) die Proportion

x:z:ü=2u(u-z):x(z+u):x(z-ü). (6.2)

Der Hodograph hat die Gestalt eines Oktaeders.

7. Wackeldodekaeder III. und IV. Art

Unter der allgemeinen Annahme - also einer von der Mittelstellung verschiedenen

Wackelposition - folgt aus (5.4)

p:a (2yz-az+av):(2xz-az+au). (7.1)

Durch Eintragen der entsprechenden Ausdrücke für x, y, ü, v aus (5.4) in die
letzte Gleichung (5.3) erhält man so nach einiger Rechnung die zum Verschwinden

der Koeffizientendeterminante von (5.3) äquivalente allgemeine Wackelbedingung

4xyz(z2 + uv)=*a(z-u)(z-v)[x(z-v)+y(z-u)+a(u+v)]. (7.2)

Daneben sind noch die wegen x+y, w+ v mit (1.4) gleichwertigen Passbedingungen

2z(a-x-y)=a(u + v), a(x-y)=2z(u—v) (7.3)

zu beachten. Nach Vorgabe von u, v, z hat man so drei Bestimmungsgleichungen
&lra,xundy.
Die Ehmination von a mittels

a=
2z(?c+y)

(ii + v+2z) (7.4)
2z-u—v

1) Hervorzuheben ist vielleicht jenes Wackeldodekaeder, welches von lauter kongruenten
(gleichschenkligen) Dreiecken gebüdet wird. Die Forderungen b=c und d^la führen zusammen mit der

Wackelbedingung (6.1) auf eine Gleichung 5. Grades, die w/z= 2,8657 liefert; die Dreiecksseiten verhalten

sich ziemlich genau wie 13:13:20.
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führt zunächst auf das nach x und y geordnete Gleichungspaar

Ax2-Bxy+Cy2=0 mit
^ (z-m)(z-v)[(z-v)(2z-m-v) + 2z(w+v)],
B (z + u)(z + v)[(2z-u-v)2-4z(z-u)(z-v)(u+v)\9
C=(z-i/)(z-v)[(z-w)(2z-m-v)+2z(m+v)] (7.5)

und

x2—y2 (u—v)(2z — u—v).

Das quadratische Polynom (7.5) lässt sich zerlegen in das Produkt

A „ C
[(z—v)x-(z—u)y](ax — ßy) mit a

z—v
ß-

z — u

(7.6)

(7.7)

Nullsetzen des ersten Faktors führt über x t(z-u), y=t(z — v) und (7.6) auf
t2+l 0, also auf keine reellen Lösungen. Nullsetzen des zweiten Faktors hingegen

liefert mit den Ansätzen

x tß t(z-v)[2z2 + (v-u)z + (u + v)u],
y= ta t(z- u)[2z2 + (u- v)z + (u+ v)v]

vermöge (7.6) auf

t2=
1

4z(w + v)(z2 + uv)

(7.8)

(7.9)

Damit ergeben sich gemäss (7.8) die Werte der Formparameter x und y, und
schliesslich findet man über (7.4) auch

v u+
uv)

V
(7.10)

^C xc

/. Wackelposition
u*l v*4, _r*5

Mittelstellung
u*v*2,54s z*5,52

Figur 5. Wackeldodekaeder III.Art.

2. Wackelposition
u*4s v*1, z*5
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A'

Wackelposition

C B'

Starre Nebenformen
u=v 2, z-l u-v-2, z=3

Figur 6. Überschlagenes Wackeldodekaeder III.Art.

Ein auf diesem Wege gewonnenes Wackeldodekaeder III.Art besitzt aus
Symmetriegründen zwei Wackelpositionen zweiten Typs, zwischen welchen unter Umständen

ein kippender Übergang über eine (starre) Mittelstellung ersten Typs möglich
ist. Dieses Verhalten zeigt das in Figur 5 dargestellte Kartonmodell zur
Annahme u=l, v=4, z 5; die zusätzlichen Formparameter ergeben sich über
t2= 1/2900 mit a=V29 =10,11, x=l/V29= 1,30 und j>=22/V"29~=4,09. Der
Kippvorgang über die zwar starre, jedoch schon nahezu wackelige Zwischenform
geht allerdings so sanft vor sich, dass eher der Eindruck einer stetigen, wenn auch
begrenzten Bewegung entsteht.
Auch für die unter (7.4) ausgeschlossene Annahme w + v=2z behalten die Schlussformeln

noch ihre Gültigkeit. Nach Vorgabe von u und v erhält man

a=yJ~-(u2+6uv+v2), x=-y--
J-v2

2a
(7.11)

Figur 6 zeigt links das Stabmodell zur Annahme u= 1, v= 3 (z 2) in einer
Wackelposition; die restlichen Formparameter haben die Werte a= V 14 =3,74 und
— x=y=VS/l 1,07. Hier ist der direkte Übergang zur zweiten Wackelposition
nicht moghch, weil kreuzende Stäbe dies verhindern. Die beiden reellen, gemäss
Abschnitt 2 zu berechnenden Zwischenpositionen ersten Typs mit u v=2 und

x=y= — VS/l, z= 1 oder x=y= Vs/l, z 3, wiedergegeben im rechten Teil von
Figur 6, machen dies deutlich; diese Zwischenformen sind durchaus starr.
Lässt man die beiden Wackelpositionen des Dodekaeders III. Art in der
Mittelstellung zusammenrücken, was durch die Annahme u=v erfolgt, so erhält man ein
ausgezeichnetes Dodekaeder I.Art mit erhöhter Wackehgkeit (4. Ordnung). Ein
solches Wackeldodekaeder IV.Art ist auf Grund von (7.10) nach Vorgabe von u v

und z bestimmt durch

rn
fl=VT (z2+u2), x=*y= — (z-u).

LZ
(7.12)

Ein brauchbares Beispiel ergibt sich etwa für w=v=l, z=3 mit a=v60 =7,75
und x=y—V20J3 =2,58. Es ist affin zum Wackeldodekaeder I.Art von Figur 2,
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welches jedoch bloss eine Wackeligkeit 2. Ordnung aufweist, wie die aufwendige
Untersuchung der höheren Ableitungen der Gleichungen (5.3) lehrt. - Die in
Abschnitt 6 behandelten Wackeldodekaeder II. Art besitzen übrigens nur die
normale Wackeligkeit 1. Ordnung. W. Wunderlich, Wien
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Kleine Mitteilungen
On a problem of Erdös and Graham

P. Erdös and R.L. Graham [1], p. 85, ask: "Is it possible to prove theorems of the
following type: If ax<a2<... tends to infinity rapidly enough and does not cover
all residue classes (mod/?) for any prime/? then for some n,n + ax is prime for all fl"
The answer is in the negative. We show below that there exist sequences (ax) growing
arbitrarily fast and such that for every positive integer n the sequence (n + ax)

contains only a finite number ofprime numbers.
Let (bn) be any sequence ofpositive integers. Put

0,= 1 + 0+1)!*'.
Since for any prime p the number (i+ 1)! (i>p— 1) is divisible by /?, the numbers
ax(ieN) give at most p— 1 remainders when divided by /?. On the other hand, for
every n we have

n+l\n + ax n+l + (i+l)\b> (i^n), l<n+l<n + ax.

Therefore the numbers n + ax(i^n) are composite and prime numbers may occur
in the sequence (n + ax) only for some i<n.

Andrzej Makowski, Institute of Mathematics, University of Warsaw
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