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136 Elementarmathematik und Didaktik
Words formed by projections

Let p and g be projections ina C*-algebra 4. Suppose that u and v are two different
reduced words each formed by juxtaposition of a finite sequence of p and gq.
Assuming that u equals v as elements of 4, the purpose of this note is to show that p
and ¢ commute. This gives an algebraic proof of the following result which is of
interest in quantum probability theory [1, 2]: for any two projections p, g in a Hilbert
space H the commutation relation pg=gqp is equivalent topgp=¢pq.

There are three possible cases.

Case 1: (pg)'=u=v=(pq)" with n>m>0. Then (pgp)'=up=vp=(pqp)" with
m# n. It follows that the spectrum of the positive element p gp must be contained in
0, 1}, i.e. pgp is a projection. The calculation (pgp—qp)*(pgp—qp)=pqpqp
—pqpqp—pqpqp+pqp=0showsthatpg=pqp=qp.

Case 2: (pq)'=u=v=(pq)"p for some m,n>0. If m#n, then (pqp)'=@Pq)"p=up

=vp=@q)"p=(@qp)". If m=n, then (pqy'=(@pqy'q=uq=vqg=(pqrpq=(pqy*".
Thus case 2 reduces to case 1.

Case 3: (pqgY'=u=v=(qp)y" for some m,n>0. Then (pqp)Y'=@q)Y'p=up=vp

=(gpY"p=(qp)" and so (p q)"= (p g p)". This reduces to case 2.
Jen-chung Chuan, National Tsing Hua University, Hsinschu, Taiwan
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Flementarmathematik und Didaktik

Komplexe Zahlen in der Elementargeometrie

Man kann bekanntlich die gleichsinnigen Ahnlichkeitstransformationen in der
euklidischen Ebene (Translationen, Drehungen, Streckungen, Dreh-Streckungen)
auf prignante Art mit komplexen Zahlen beschreiben. Die vorliegende Studie
mochte auf ein kleines Anwendungsfeld der komplexen Zahlen in diesem Bereich
hinweisen und gleichzeitig der Schulmathematik einige Anregungen zufiihren.
Sie befasst sich mit einem Block von thematisch verwandten geometrischen
Problemen in der Absicht, zu diesem Problemkreis einen neuen Zugang freizulegen.
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1. Ein Propeller-Problem

In [1] haben L. Bankoff, P. Erdés und M. S. Klamkin folgendes gezeigt}):

1. Bilden die Punkte-Tripel (O,4,A4"), (O,B,B’), (0,C,C’) gleichorientierte gleich-
seitige Dreiecke, dann spannen auch die Mittelpunkte der Punktepaare (A’, B), (B’, C),
(C’, A) ein gleichseitiges Dreieck auf.

Dieser Sachverhalt l4sst sich anhand einiger Beispiele (Fig. 1) sofort vermuten.

Figur 1

Im zitierten Aufsatz wird neben einem elementaren synthetischen Beweis auch noch
ein Beweis unter Verwendung komplexer Zahlen mitgeteilt. Dieser zweite Beweis
hat mich dazu bewogen, nach weitern geometrischen Sidtzen Ausschau zu halten,
die auf ebenso elegante Weise mit den komplexen Zahlen erschlossen werden
konnen.

Zum Beweis von (1) mit komplexen Zahlen ist der euklidischen Ebene die GauB3sche
Zahlenebene zu unterlegen. Der Ursprung wird im Punkt O gewihlt. Bei einer
bestimmten Lage des Bezugssystems moge dem Punkt Z die komplexe Zahl z ent-
sprechen.

Da die Zuordnung

A A, Bw B, CoC

durch eine Drehung um O mit dem Drehwinkel + / 3 bewerkstelligt wird, ist
a=ea, b'=¢eb, c’=ec,

wobei ¢ = e27i/6,

Fiir die komplexe Zahl ¢ gilt
e?=—(l-¢), e3=—1.

Es ist nun
1 b+ b : +a) ¢ : (ca+b)
V= — Vo a . .
a 2 (eb+0), 5 (ec , > €

1) Die Kenntnis dieser Note verdanke ich einem Hinweis von J. Binz (Bern).
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Figur 2

Damit erhilt man
1 1 1
b"—a”= > (ec+a—eb—c)= Fl (a—eb—(1—¢)c) = ?(a—eb+62c)

und durch zyklische Vertauschung dazu noch

1
c”—b” =—2'(b—-ec+8261)
1
a”—c” = 7(c-aa+ezb)
Daraus folgt

1 1
e2(b”—a")= — (e2a—e3b+¢4c)= > (e2a+b—cc)=c”"—b”
82 (C”"‘b”) =a”—c”
62 (a//__ C”) =b"—a”.

Die letzten drei Beziehungen besagen, dass die Seiten-Vektoren des Dreiecks A BC
zugeordnete Objekte bei einer Drehung um den Winkel +27/3 sind; das Dreieck
ABC ist also gleichseitig.

2. Napoleon-Dreiecke

Napoleon Bonaparte soll ein Liebhaber-Mathematiker mit einem besondern
Interesse an der Geometrie gewesen sein. [hm wird die Entdeckung des folgenden
geometrischen Sachverhaltes zugeschrieben:

2. Errichtet man iiber den Seiten eines beliebigen Dreiecks ABC nach aussen gleich-
seitige Dreiecke, dann spannen deren Mittelpunkte A’B’C’ ein gleichseitiges Dreieck

auf.
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Zu diesem Satz iiber das dussere Napoleon-Dreieck (Fig.3a) sind verschiedene
synthetische Beweise bekannt. Die elegantesten Beweisfithrungen beruhen auf der
Verwendung von Transformationen (vgl. [2,4]).

Figur 3a Figur 3b

In der Sicht der Transformationsgeometrie ist das Theorem (2) in der Hauptgruppe
der ebenen euklidischen Geometrie angesiedelt. Aus diesem Grunde liegt auch
ein Zugang iiber die komplexen Zahlen auf der Hand.

Der anschliessend dargelegte Beweis verwendet Dreh-Streckungen mit dem Dreh-
winkel 7 /6 und dem Streckungsfaktor /3 /3. Diese Parameterwerte stecken in der
komplexen Zahl

f= % EW LD

Legt man wiederum die sechste Einheitswurzel e =e2%/6 zu runde, dann gilt
g g g

f—fe? =1
f+fe2+fet=0.

Dies kann unmittelbar der Figur 4 entnommen werden. Man schliesst daraus auf

fel=f—1
fet= —f—fel=1-2f.
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Nach diesen Vorbereitungen erhilt man nun

a’=c+f(b—c)

b'=a+f(c—a)

¢’=b+f(a—>b) (2.1)
und damit

b'—a'=(1-fla—fb+QRf-1)c=—f(e?a+b+e*c)

c'—b = —f(2b+c+eta)
a’ —c’ = —f(e>c+a+e*h).
Weiter ergibt sich
e2(b’—a)=—f(e*a+e*b+ebc)= —f(e*a+etb+c)y=c'— b’
82(6'—b') —ai—
e2(a’—c) =b'—a’. 2.2)

Dies besagt, dass das Dreieck A’B’C’ gleichseitig ist?).

Es seien jetzt noch einige Erweiterungen des Napoleon-Theorems beigefiigt. Zu-
nichst zeigen wir, dass auch das innere Napoleon-Dreieck eines beliebigen Dreiecks
ABC stets gleichseitig ist (Fig.3b). Zu den Eckpunkten A”B”C” gehéren nimlich
die komplexen Zahlen

a”=c+f(b-c)
b”"=a+f(c—a)
c”=b+f(a—b). (2.3)

Dies impliziert jetzt
b”—a"=(1-fla—fb+Q2f-Dc=—-f(E*a+b+ &%)

sowie zwei weitere Beziehungen, die durch zyklische Vertauschung der Zeichen
a b ¢ entstehen. Man erhilt damit

E2(b"—a”)=—f(e%a+&%b+&5c)=—f(e*a+& b+ c)=c"—b”
&-.2 (C"— b”) —a— o
6-'2 (a”_ C”) - b”_a” . (24)

(2.2) besagt, dass auch das Dreieck 4”B”C” gleichseitig ist. Der Faktor &2 in (2.4)
anstelle von &2 in (2.2) bringt zum Ausdruck, dass die Dreiecke 4”B”C” und A’B’C’
gegenlidufig orientiert sind.

2) Der vorliegende Beweis verwendet ghnliche Uberlegungen wie U. Handschin (Gymnasium Baumli-
hof, Basel) in einer Zuschrift an die Redaktion zum Napoleon-Problem.
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Aus (2.1) und (2.3) entnimmt man noch, dass
1 1 1
S—(a’+b'+c’)= —i(a”+b”+c”)= —3—(a+b+c). (2.5)

Dies beweist, dass die Schwerpunkte des Priméar-Dreiecks 4 BC und der beiden
Napoleon-Dreiecke A’B’C’ und A”B”C” zusammenfallen.

Zwischen den gemiss der vorliegenden Orientierung mit einem Vorzeichen ver-
sehenen Flicheninhalten der drei Dreiecke besteht die folgende Beziehung

@ (A’B'C")+ ¢ (A”B”C")=¢ (ABC)?), (2.6)

die ebenfalls in unsere Betrachtungen zur Geometrie der komplexen Zahlen ein-
bezogen werden kann.

Zu drei Punkten 4BC mit den kartesischen Koordinaten (a;,a,), (by,b,), (¢, ¢y)
gehoren nach Unterlegung der GauBschen Zahlenebene die drei komplexen Zahlen

a=a1+ia2, b=b]+ib2, C=C1+iC2.

Das Flichenfunktional fiir das Dreieck ABC kann jetzt wie folgt ausgedriickt
werden:

1 a a
1 b, b,
1 c O

1 1 -
5 = —(@b—ab+bc—bi+ca—ca). 2.7

ABC)=
o ( ) a7

Setzt man
s=ab—ab+bc—be+ca—ca,

dann erhilt man fiir die Summe der entsprechenden Terme zu den Dreiecken
A’B’C’ und A”B”C” unter Beriicksichtigung von (2.1) und (2.3) nach einer problem-
losen Umformung

S+s’=@b—-a'b+b'c’—b'¢'+ea’—c'a’)
+ (a” bl/__ all 5”+ ‘b-ll Cll___ bll Z.II+ é”a”"‘ cll a”)

=25—3(f+f)s+6ffs.

Wegen f+f=1und ff=1/3 ist also s’ + 5” =5 und dies beweist (2.6).
Wir betrachten jetzt auch noch die freien Eckpunkte A*B* C* fiir die drei Aussen-
dreiecke in der Figur 3a. Wegen

a*=c+eb—oc)
b*=a+¢e(c—a)
c*=b+e(a—>b)

3) Einen Beweis fiir (2.6), bei dem klassische Schlussweisen der Elementargeometrie verwendet werden,
findet der interessierte Leser in [2], S.64-65.
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ist
a*—a=c—a+e(b—c)=—a+eb+(l—e)c=—a+eb—¢’c
b*—b =—b+ec—¢ela
c*—c =—c+ea—e?bh.

Daraus folgt
el(a*—a)=—ce?a+e3b—ctc=—ela—b+ec=b*—b
e2(b*—b) =c*—c¢
e2(c*—c) =a*—a.

Die drei Vektoren A4*, BB*, CC* sind also gleichlang und bilden paarweise Winkel
mit dem Mass 27 /3.

Ferner sind die drei Verbindungsgeraden AA*, BB*, CC* kollinear. Auch dies lasst
sich mit dem gleichen Werkzeug verifizieren. In komplexer Schreibweise lauten die
Gleichungen der genannten Geraden

z Z 1 z Z 1 g B 1
a a 1 =0, |b b 1 =0, |[¢ ¢ 1| =0. (2.8)
a* a* 1 b* b* 1 e* p* 1

Da
z Z 1 z Z 1 z Z 1
a a 1| + |b b 1| + |c ¢ 1| =0 .9
a* a* 1 b* b* 1 o P ]

ist, liegen die drei Geraden im Biischel. (2.9) lasst sich etwa durch Berechnung der
Koeffizienten von Z und z sowie des konstanten Gliedes nachweisen. Man findet
dafiir der Reihe nach

(@—a*)+(b—b*)+(c—c*)=(a+b+c)(1—e+e2)=0
(@—a*)+(b—5*)+(E—e*)=(@a—a) T =P+ c=c*)=0
(@a*—aa*)+(bb*—bb*)+(cc*—tc*)=s+(c+&)s =0

Der Schnittpunkt F der drei Geraden ist iibrigens der sogenannte Fermatsche Punkt
fiir das Dreieck ABC, der - falls das Dreieck ABC keinen Winkel mit einem Mass
grosser als 2 /3 besitzt - die Summe

f(X)=1AX|+|BX|+|CX]|

minimiert.
Schliesslich sei noch darauf hingewiesen, dass auch

1
—;—(a*+b*+c*)= 3 (@+b+c)

ist.
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In die Nihe des Napoleon-Theorems gehort auch die folgende Aussage:

3. Errichtet man bei einem beliebigen Dreieck ABC die gleichseitigen Aussendreiecke
CBA* und ACB* sowie das gleichseitige Innendreieck BAC* mit dem Mittelpunkt C”,
dann sind C"B* und C"A* stets gleichlange Vektoren mit einem Zwischenwinkel vom
Mass 2 n /3 (vgl. [4], S.38, 39).

Mit komplexen Zahlen lisst sich dies etwa wie folgt zeigen. Zunéchst ist

a*=c+e(b—rc); b*=a+e(c—a); c¢”=b+f(a—b).

Figur 5

Daraus ergibt sich unter Zuhilfenahme der Figur 4

a*—c"=—fa+({f+e—1)b+(1—¢e)c=elfa—e*fb+ec
b*—c’=(1—e—fHa—(1-fHb+ec =e*fa—fb+ec

und weiter
2( % _ ;)= o4 P — h* ”
ec@—c)y=e"fa—e°fb+ec=b*—c".

Die letzte Beziehung beweist die Aussage (3).

3. Vierecks-Theoreme

Von den eben verwendeten transformationsgeometrischen Beweisansidtzen her
gesehen sind auch einige Vierecks-Theoreme ins Umfeld des Napoleon-Problems
zu stellen. Es iiberrascht nicht, dass sich auch dort Beweise finden lassen, die von
den komplexen Zahlen Gebrauch machen. Aus diesem Winkel der Elementar-
geometrie seien anschliessend noch einige Beispiele vorgestelit.

4. Errichtet man iiber den Seiten eines beliebigen Vierecks abwechslungsweise das
gleichseitige Aussen- beziehungsweise Innendreieck, dann spannen die freien Ecken
dieser Dreiecke ein Parallelogramm auf (vgl. [4], S.39).
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Hier ist

r=a+e((b—a)
s=c+eb—c)
t=c+e(d—c)
u=a+e(d—a) 3.1

und damit

u—r=e(d—a—b+a)=c(d-b) } =>u—r=t—
{5 =¢(d—c—b+c)=c(d—b) | ~4TTTITS

Die Gleichung auf der rechten Seite des Implikationspfeils besagt, dass das Viereck
RSTU ein Parallelogramm ist.

Aus dem vorliegenden Beweis kann entnommen werden, dass das aus einem be-
liebigen Viereck ABCD vermoége (3.1) hervorgehende Viereck RSTU auch dann
ein Parallelogramm ist, wenn man ¢ durch eine beliebige komplexe Zahl a ersetzt.
Man erhilt auf diese Weise eine bemerkenswerte Verallgemeinerung von (4).

Die Figur 7 zeigt das Vierecks-Paar ABCD und RSTU fiir drei verschiedene Werte
von a.

U R

A B:=R=S

Figur 7

5. Errichtet man iiber den Seiten eines Vierecks ABCD nach aussen Quadrate, dann
entsteht ein Mittelpunkts-Viereck A’B’C’D’ mit senkrechten und gleichlangen Diago-
nalen (vgl. [4], S. 39, 40).
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Figur 8 Figur 9

Hier kann der Beweis mit folgenden Uberlegungen gefiihrt werden. Die Quadrat-
Mittelpunkte A’B’C’D’ lassen sich aus den Ecken 4 BCD iiber Drehstreckungen mit
dem Drehwinkel 7 /4 und dem Streckungsfaktor \/2 /2 erhalten. Diese Parameter
gehen in die komplexe Zahl

1 . 1
= — ”t/4=-——— ]
3 V2e > (1+79)

ein. Aus der Figur 9 kann man die Beziehungen

h+h=1; ih=h; ih=—h; 1—2h=—i
herauslesen. Es ist nun

a’=d+h(a—ad); b'=a+h(b—a); c’=b+h(c—b); d=c+h(d-c)
und damit

a’—c’'=d—b+h(@a—d—c+b)y=ha—(1—h)b—hc+(1—h)d=ha—hb—hc+hd
b'—d'=a—c+h(b—a—d+c)=(1—-h)a+hb—(1—h)c—hd=ha+hb—hc—hd.

Daraus ergibt sich jetzt
i(b’—d)=iha+ihb—ihc—ihd=ha—hb—hc+hd=a —¢’,

und dies beweist (5).
Lisst man die Punkte 4 und D zusammenfallen, dann wird man auf den folgenden
Dreieck-Satz gefiihrt:

6. Errichtet man iiber den Seiten eines beliebigen Dreiecks BCD die Aussen-Quadrate,
dann sind der Verbindungsvektor zweier Quadratmittelpunkte und der Verbindungs-
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vektor zwischen dem dritten Quadratmittelpunkt und der ihm gegeniiberliegenden
Dreiecksecke jeweils senkrecht und gleich lang (vgl. [2], S.96).

Mit den Bezeichnungen in der Figur 10 ist etwa D’B’ L C'D’ und | D'B'| = | C'D| .

Es sei noch darauf hingewiesen, dass die Geraden BD’, CB’, DC’ die Hohen im
Dreieck B’C’D’ sind und daher durch einen Punkt gehen.

Schliesslich sei noch ein weiterer Viereck-Satz bewiesen.

o
O

Figur 10 Figur 11

7. Werden iiber den Seiten eines Parallelogrammes ABCD die Aussen-Quadrate
errichtet, dann spannen die Quadratmittelpunkte stets ein weiteres Quadrat auf
(vgl. [4], S.96, 97).

Fiir den Beweis mit komplexen Zahlen kann der Ursprung der unterlegten GauB3-
schen Zahlenebene wiederum beliebig gewihlt werden. Die Parallelogramm-Eigen-
schaft zeichnet sich ab in der Beziehung

a+c=b+d. 3.2)
Esist nun
c'—b'=b—a+h(c—b—b+a)=—(1—h)a+(1-2h)b+hc=—ha—ib+hc
d—c' =—hb—ic+hd
a—-d =—ha—hc—id
b'—a’ =—jia+hb—hd.

Daraus erhilt man unter Beriicksichtigung von (3.2)

i(c’—b)=—iha+b+ihc=—ha+b—h(b+d—a)=(h—h)a+(1—-h)b—hd=b'—a’

id—c’) =c'—b’
i(@—d) =d'—c’
i(b""‘a’) =al__dr

und dies beweist, dass A’B’C’D’ die Eckpunkte eines Quadrates sind.
M. Jeger, Mathematisches Seminar ETH Ziirich



Aufgaben 147

LITERATURVERZEICHNIS

L. Bankoff, P. Erdés und M.S. Klamkin: The asymmetric Propeller. Math. Mag. 46, 270-272 (1973).
H.S.M. Coxeter und S.L. Greitzer: Geometry revisited. New Math. Libr. /9, Random-House, New
York 1967.

3 R.L. Finney: Dynamic Proofs of euclidean Theorems. Math. Mag. 43, 177-185 (1970).

4 1.M. Yaglom: Geometric Transformations I. New Math. Libr. 8, Random-House, New York 1962.

DO =

© 1982 Birkhéduser Verlag, Basel 0013-6018/82/050136-12$1.50 + 0.20/0

Aufgaben
Aufgabe 866. Fiir natiirliche Zahlen a, b, ¢ mit (a,b)= (b,c)=(c,a)= 1 sei
c—1
S(a,b,c):=Y (Qk—Dka/cPkb/c],
k=1

wobei [ ] die Ganzteilfunktion bezeichnet. Man zeige, dass

S(a,b,c)+ S(b,c,a)+S(c,a,b)=(a— 12— 12 (c—1).
L. Kuipers, Mollens VS

Solution with generalization: We shall prove the following statement (which for
m=2) reduces to the original problem:

Leta,,a;,...,a, in N be such that (a;,a;)= 1 for i #/.

Let

&)
|
—

S,= . (k™—(k—1y") [kax/ap]'"-'-m'"["“n/“p]'"’

[

where A means that the p-th factor is to be omitted.

Then
3 S=@= a1y @1 *)

Proof: We shall count in two different ways the number of sequences
(a”, cers Qs Q219 a0 5B pys oovs Qpls ...,a,,m)

with 1<a;<ay,....1<a,;<a, forall1<j<m.
Obviously each a;; can take on a;— 1 different values. This establishes the right hand
side of (*).
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