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Kleine Mitteilungen

Ein Beispiel zum Rechnen mit Involutionen in der klassischen Laguerre-Geometrie

Unter der klassischen Laguerre-Geometrie der reellen euklidischen Ebene E ver-
steht man bekanntlich die folgende Inzidenzstruktur:

1. Die Menge S der Speere besteht aus allen orientierten Geraden von E. Die dem
Speer zugrunde liegende Gerade heisst Trigergerade.

2. Die Menge Z der Zykel besteht aus allen Punkten und allen orientierten Kreisen
von E. Ist zeZ ein orientierter Kreis, so heisst der z zugrunde liegende Kreis der
Tréagerkreis von z.

3. Ist z ein Punkt, so inzidiert z mit SeS - in Zeichen S Iz -, falls der Punkt auf der
Tragergeraden von S liegt. Ist z€Z ein orientierter Kreis, so inzidiert z mit § - wie
oben durch Sz ausgedriickt -, falls sich die Trigergerade von S und der Triger-
kreis von z berithren und iiberdies die Orientierung von S und z im Berithrpunkt
iibereinstimmen (Fig. 1).

Figur 1

Die gemiss 1, 2 und 3 gebildete Inzidenzstruktur (S, Z, I) heisst klassische Laguerre-
Geometrie.

Wir nennen die Speere S, 7T parallel, in Zeichen S| 7, wenn entweder S=T oder
wenn es kein zeZ mit S, Tz gibt. Man bestitigt unmittelbar die folgenden Aus-
sagen:
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I. Zwei Speere S,T sind genau dann parallel, wenn die Trigergeraden von S, T
parallel sind und die gleiche Orientierung haben.

II. Mit drei paarweise nicht parallelen Speeren inzidiert genau ein Zykel (Fig. 2).

III. Inzidiert der Speer S mit dem Zykel z und gilt 74 S,TeS. Ttz so gibt es
genau ein yeZ, so dass 71y und z,y nur S als gemeinsam mit z,y inzidierenden
Speer besitzen (Fig. 3).

A C

Figur 2 Figur 3

Die iibliche Spiegelung an einer Geraden g der euklidischen Ebene E wird zu einem
inyolutorischen Automorphismus von (S,Z, /), wenn wir in anschaulich naheliegen-
der Weise (Fig.4) die Orientierung der Speere und Zykel durch Klappung iiber-

tragen.
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Figur 4

o, sei der durch die Spiegelung an g induzierte involutorische Automorphismus von

S,Z, D).
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Die Orientierung der Geraden erméglicht uns, eine eindeutig bestimmte «Winkel-
halbierende» zu definieren. Sind S, T nicht parallele Speere, so sei wgr die Mittel-
linie der Triagergeraden g,k von S, T, falls diese parallel sind; sind g, 4 nicht parallel,
so sei wgr die Winkelhalbierende der beiden durch g, bestimmten Winkelfelder,
in denen die mit §,T inzidierenden Zykel liegen (Fig.5). og1 sei die durch wgy
bestimmte Involution von (S, Z, I).

Figur 5

Wir wollen nun - dhnlich wie in [2] - nur durch Rechnen mit Involutionen den
Schliessungssatz von Miquel fiir die klassische Laguerre-Geometrie beweisen. Das
entscheidende Hilfsmittel fiir den Beweis liefert das folgende

Lemma. Vier paarweise nicht parallele Speere P,Q,R,S inzidieren genau dann mit
einem Zykel, wenn

1
OpoOQRORS=0ps )-

Beweis: Die Bedingung ist hinreichend: Sei P, Q, R, S Iz und z ein orientierter Kreis.
Dann gehen die Winkelhalbierenden wpg, wyg,wgs durch den Mittelpunkt des
Tragerkreises von z, und deswegen ist jedenfalls

OpQOQRORS = Oy

fur eine geeignete Gerade g. Da o, iiberdies die Trigergerade von P auf die Triger-
gerade von S abbildet und den Trégerkreis von z invariant lisst, folgt

8= Wps

und damit die Behauptung. Ist z ein Punkt, so schliesst man analog.
Die Bedingung ist notwendig:

1) Abbildungen werden als Exponenten von rechts geschrieben.
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Gilt
OpQOQRORS=OPS>

so liegen wp g, WoRr, Wrs, Wps im Biischel. Da die Trigergeraden von P,Q, R, S nicht
parallel sein konnen (sonst wiren die vier Speere P,Q, R, S nicht paarweise nicht
parallel), gehen wpgy, wo g, Wrs, wps durch einen Punkt p. Aus p I P (p als Zykel auf-
gefasst) folgt offenbar pI Q, R, S, und wir konnen daher annehmen, dass p nicht auf
den Trigergeraden g,A,i,j von P,Q,R,S liegt. Also konnen wir auf die Existenz
eines Kreises k mit Mittelpunkt p schliessen, der g, 4,i,j beriihrt, und orientieren k
so zu einem Zykel z, dass PIz gilt. Wegen pIwp, folgt nach der Definition der
Winkelhalbierenden Q 7z, und entsprechend erschliessen wir R, S 1 z.

Der Schliessungssatz von Miquel fiir die Laguerre-Geometrie. Inzidieren von den
acht paarweise nicht parallelen Speeren S,S5,S3,84, Ty, T,, T4, T4 jeweils die Qua-
drupel Sl,Sz, S3, S4; Sl’ S2, Tl’ T2; Sp_, S3, Tz, T3; S3, S4, T3, Ty; S4ﬂ Sl, T4, Tl mit einem
Zykel, so auch das Quadrupel T, T,, T3, T, (Fig. 6).
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Figur 6
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Beweis: Lemma und Voraussetzung ergeben die Gleichungen

ON1,=9071,5,95,8508T,
On1,=01,85,05,5,058,T,
0T3 T, = GT3S3 GS3S4 STy
05,5,=05,5,08,5,08,8,
0T, 0T1,5,95,8,95,T,
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und durch Einsetzen erhalten wir

OT\T,OT, T30 13T,
= (UT, 5,0s,5,0s, Tz) (UT252 0s,s,0s, T3) (07‘333 gs,s, 0S4T4)
=07,505,5,05,505508,T,=07,505,5,05,T,~ OT\T,

Nach dem Lemma inzidieren die Speere T, T3, T3, T, mit einem Zykel.

Figur 6 legt die Vermutung nahe, dass der Schliessungssatz von Miquel moglicher-
weise auch als Aussage iiber Tangentenvierseite formuliert werden kann:

Bilden von den acht paarweise verschiedenen Geraden a,,a,,as,aq4,b;,b,b3,b4 je-
weils die Quadrupel a,,a,,as,a,, al,az,bl,bz; az,a3,b2, b3, 03,04,b3,b4; a4,a1,b4,bl
ein Tangentenvierseit, so auch das Quadrupel b,,b,,b;,b,.

Diese Vermutung ist falsch, wie man sich an Hand von Figur 7 klarmachen kann.
Trotz Erfillung der genannten Voraussetzungen bildet b,, b,, b3, b, kein Tangenten-
vierseit.

Figur 7

Konrad Lang, Math. Institut der Universitit, Postfach 3008, Bayreuth
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Words formed by projections

Let p and g be projections ina C*-algebra 4. Suppose that u and v are two different
reduced words each formed by juxtaposition of a finite sequence of p and gq.
Assuming that u equals v as elements of 4, the purpose of this note is to show that p
and ¢ commute. This gives an algebraic proof of the following result which is of
interest in quantum probability theory [1, 2]: for any two projections p, g in a Hilbert
space H the commutation relation pg=gqp is equivalent topgp=¢pq.

There are three possible cases.

Case 1: (pg)'=u=v=(pq)" with n>m>0. Then (pgp)'=up=vp=(pqp)" with
m# n. It follows that the spectrum of the positive element p gp must be contained in
0, 1}, i.e. pgp is a projection. The calculation (pgp—qp)*(pgp—qp)=pqpqp
—pqpqp—pqpqp+pqp=0showsthatpg=pqp=qp.

Case 2: (pq)'=u=v=(pq)"p for some m,n>0. If m#n, then (pqp)'=@Pq)"p=up

=vp=@q)"p=(@qp)". If m=n, then (pqy'=(@pqy'q=uq=vqg=(pqrpq=(pqy*".
Thus case 2 reduces to case 1.

Case 3: (pqgY'=u=v=(qp)y" for some m,n>0. Then (pqp)Y'=@q)Y'p=up=vp

=(gpY"p=(qp)" and so (p q)"= (p g p)". This reduces to case 2.
Jen-chung Chuan, National Tsing Hua University, Hsinschu, Taiwan
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Flementarmathematik und Didaktik

Komplexe Zahlen in der Elementargeometrie

Man kann bekanntlich die gleichsinnigen Ahnlichkeitstransformationen in der
euklidischen Ebene (Translationen, Drehungen, Streckungen, Dreh-Streckungen)
auf prignante Art mit komplexen Zahlen beschreiben. Die vorliegende Studie
mochte auf ein kleines Anwendungsfeld der komplexen Zahlen in diesem Bereich
hinweisen und gleichzeitig der Schulmathematik einige Anregungen zufiihren.
Sie befasst sich mit einem Block von thematisch verwandten geometrischen
Problemen in der Absicht, zu diesem Problemkreis einen neuen Zugang freizulegen.
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