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Uber den Zwischenwertsatz von Darboux und den
Umkehrsatz fiir differenzierbare Funktionen mehrerer
Verinderlicher

1. Bekanntlich besitzt die Ableitung f einer iiberall differenzierbaren reellwertigen
Funktion f einer reellen Verdnderlichen die Zwischenwerteigenschaft, das heisst f”
nimmt auf jedem im Definitionsbereich von f enthaltenen Intervall [a,b] alle
Werte zwischen f’(a) und f”(b) an. Das Bemerkenswerte an diesem Satz, der
zuerst von Darboux ausgesprochen wurde [4], ist die Tatsache, dass Stetigkeit der
Ableitung f” nicht vorausgesetzt werden muss.

Der Darbouxsche Zwischenwertsatz fiir die Ableitung ist 4quivalent mit folgender
Version des Umkehrsatzes: Ist f eine reellwertige, auf dem Intervall (a,b)<R
iiberall differenzierbare Funktion mit " (x)+0 fiir alle xe(a,b), so ist f entweder
streng monoton fallend oder streng monoton wachsend und f besitzt eine dif-
ferenzierbare Umkehrfunktion. In der Tat, aus der Zwischenwerteigenschaft der
Ableitung ergibt sich sofort, dass f” iiberall negativ oder iiberall positiv ist auf
(a,b), woraus mit dem Mittelwertsatz der Differentialrechnung die strenge Mono-
tonie von f gefolgert werden kann; somit besitzt f eine stetige Umkehrfunktion
/71, und die Differenzierbarkeit von f~! zeigt man wie iiblich durch Betrachtung
von Differenzenquotienten. Umgekehrt folgt aus dem gerade formulierten Um-
kehrsatz leicht, dass die Ableitung f* einer iiberall differenzierbaren Funktion
f:(a,b)—>R eine Nullstelle in (a,b) haben muss, wenn f* Werte beiderlei Vor-
zeichens annimmt, und diese Aussage ist gleichwertig mit dem Zwischenwertsatz
fir die Ableitung von tiberall differenzierbaren Funktionen einer Variablen.

In dieser Note sollen héherdimensionale Analoga der beiden oben angesprochenen
Satze behandelt werden. Im Falle des Umkehrsatzes wird an die Stelle der Null-
stellenfreiheit der Ableitung bei Funktionen von einer Veridnderlichen nun die
Voraussetzung treten, dass die (totale) Ableitung der betrachteten Funktion f an
jeder Stelle ein linearer Automorphismus des zugrundeliegenden Raumes R” ist.
Die Umkehrbarkeit von f kann man allerdings, wie auch bei stetig differenzier-
baren Funktionen, nur noch lokal erwarﬁn: Tatsdchlich werden wir beweisen:

Satz I. Sei D offen in R" und f: D— R" iiberall auf D total differenzierbar. Ist die
(moglicherweise unstetige) Ableitung f' an jeder Stelle x € D eine invertierbare lineare

Selbstabbildung von R", so ist f ein lokaler Homdomorphismus, und die lokalen Um-
kehrabbildungen g sind total differenzierbar mit g’ (f(y)) =f" (v)~! fur ye Bild g.
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Obwohl dieser Satz weitgehend den iiblichen Formulierungen des Umkehrsatzes
entspricht, sind doch die bekannten Beweise wegen der moglichen Unstetigkeit der
Ableitung f” nicht iibertragbar. Zum Beweis von Satz I benétigen wir topologische
Hilfsmittel, insbesondere die Theorie des (lokalen) Abbildungsgrades und den
Baireschen Kategoriensatz. Im Verlaufe des Beweises wird sich auch die Aqui-
valenz von Satz I mit folgendem Satz ergeben, der als Analogon des Zwischen-
wertsatzes von Darboux fir Funktionen von mehreren Verdnderlichen angesehen
werden kann:

Satz Il. Sei D offen und zusammenhdngend in R" und sei f- D— R" iiberall auf D
total differenzierbar. Nimmt die (mdoglicherweise unstetige) Jacobi-Determinante
det of” von f positive und negative Werte auf D an, so hat sie auch eine Null-
stelle in D.

Dem Beweis der Sidtze I und II schicken wir einige Hilfssdtze voraus, die teil-
weise auch fiir sich von Interesse sind. Der Vollstindigkeit halber und um den
Sonderfall n=1 im folgenden ausschliessen zu konnen, geben wir an dieser Stelle
noch einen Beweis des Darbouxschen Zwischenwertsatzes an, zu dem ja Sétze I und
IT im Falle n=1 dquivalent sind: Wenn f auf [a,b] differenzierbar ist und etwa
f/(@)<z<f'(b), so kann man Differenzenquotienten A '[f(a+h)—f(a)] und
h1[f(b)—f(b—h)] finden mit a<a+h<b—h<b und k7 l[f(a+h)—f(a)]<z
<h7[f(b)—f(b—h)]; eine Anwendung des Zwischenwertsatzes auf die stetige
Funktion [a,b—h]axh71[f(x+h)—f(x)] liefert sodann ein ce(e,b—h) mit
z=h71[f(c+h)—f(c)], und aus dem Mittelwertsatz der Differentialrechnung ergibt
sich schliesslich die Existenz eines de (c,c+ h)< (a,b) mit £/ (d)=h"1[f(c+h)—f(c)]

=2.

. 2. Im folgenden bezeichne stets D eine offene Menge in R”. Die Riume R”, R™
werden mit dem euklidischen Skalarprodukt und der zugehorigen Norm |- |
ausgestattet. Wir ziehen zunéchst eine einfache Folgerung aus der Injektivitdt des
Differentials einer Funktion f: R”> D —R™ Wir nennen f semi-injektiv bei xe€ D,
wenn es eine Umgebung U< D von x gibt, in der ausser x kein weiteres Urbild
von f(x) liegt, d.h. f~1{f(x)} n U={x}. Dann gilt:

Proposition 1. Ist f:R?> D— R™ differenzierbar an der Stelle xe D mit injektivem
Differential f’ (x): R"— R™, so ist f semi-injektiv bei x.

Beweis: Wir setzen y:=inf{|f’(x)u|:ucR” |u| =1} und bemerken, dass y>0 ist
wegen der Injektivitit von f” (x). Es folgt fir ye D — {x}

3 g Yox b, _
fO)—f() = 1f (x) Iy—xll |y__x|lf(y) fx)=f (x) y—x)l

1
ly—x|

1
ly—x]|

2y= fO)=f(x)—f" () —x)! -
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Der letzte Ausdruck ist positiv fir O< |y—x| hinreichend klein, weil der Sub-
trahend bei y — x gegen Null strebt nach Definition der (totalen) Differenzierbarkeit
von f an der Stelle x. Somit gilt |f(y)—f(x)| >0 fiir y hinreichend nahe bei x mit
y¥ x, und Proposition 1 ist bewiesen. [0

Bekannte Beispiele zeigen, dass aus den Voraussetzungen von Proposition 1 nicht
schon die lokale Injektivitit von f bei x geschlossen werden kann. Man betrachte
etwa n=1, f:R->R mit f(0):=0 und f(y):=y+2y*sinl/y fur y+0; dann ist
f"(0)=1, aber f” hat in jeder Nullumgebung sowohl positive als auch negative
Werte, also ist f auf keiner Nullumgebung monoton. Derartige Phinomene kénnen
allerdings nur an Unstetigkeitsstellen der Ableitung auftreten.

Ist ndmlich f auf einer Umgebung U von xe D stetig differenzierbar und f”(x)
injektiv, so gibt es eine Kugel B um x in U mit | [ ())—f (x)]ul <y /2 fir alle
yeBund ueR"mit |u| =1, und es folgt fuir y, ze B die Ungleichung \

1

[7(y+a-02) o-2a

0

1
[t (+a-0a-re)o-na
0

=

If0)-f(2) =

I
jf'(x) (O—2)dt
0

1
>yly—z|— j % ly—z|dt=
0

=L y—z|
g W2l

woraus man die Injektivitit von f auf B abliest. Auch wenn nur die Stetigkeit
von f” an der einen Stelle x vorausgesetzt wird, kann man noch lokale Injektivitit
von f bei x beweisen. Hierzu definiert man B wie zuvor und wendet fiir y,ze B
auf die reellwertige differenzierbare Funktion t—f(ty+(1—10)z) - [' (x) (y—2)]
den Mittelwertsatz der Differentialrechnung an, um fiir ein 7 € (0, 1) zu erhalten

FO)-f@1 [ ) 0—2]1=L[f (zv+(1=1)2) ¢—2)] - [ x) ¢—2)]
211 = D12= T ly=z1 1 () =) 2 7 Iy=z1 - If' &) 0=2)].
woraus mit der Schwarzschen Ungleichung wieder |f(y)—f(z)| = -)2)— |y—z| folgt.

Um Satz I zu beweisen, miissen wir die Frage der lokalen Injektivitdt von f bei x
untersuchen, wenn die Voraussetzung der Stetigkeit und Injektivitit von f” an der
Stelle x ersetzt wird durch die schwichere Annahme, dass f’(y) existiert und
injektiv ist fiir alle y aus einer Umgebung U von x in D. In diesem Falle gibt es
zwar gemiss Proposition 1 um jedes ye U eine Kugel B, mit B,nf~! {f(»)}=1{y},
aber es ist nicht klar, dass die Radien dieser Kugeln B, durch eine von yeU
unabhiingige positive Konstante nach unten abgeschitzt werden konnen. (Die
Existenz einer solchen positiven unteren Schranke zu hinreichend kleinen Um-
gebungen U von x ist dquivalent zur lokalen Injektivitit von f bei x, wie man
leicht sieht.) Bei Abbildungen zwischen euklidischen Rdumen gleicher Dimension
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werden wir dieses Problem in den folgenden Abschnitten mit topologischen Hilfs-
mitteln erledigen kénnen. Bei Abbildungen zwischen Rdumen verschiedener
Dimension jedoch folgt aus der Injektivitit der Ableitung f”(y) fiir alle y nicht
notwendig die lokale Injektivitit der zugrundeliegenden Abbildung f. Dies zeigt im
einfachsten Fall f:R—R? das folgende Beispiel, aus dem man leicht auch ent-
sprechende Beispiele von Abbildungen R”— R”™ fiir beliebige n und m>n kon-
struieren kann.

Beispiel: Wir definieren f: R — R? durch f(x):= (x,0) fiir x>0 und

1 = . 1

X —+ —sin—
f(x):= , eXx 2 "xcos— | fiur x<0.
ax . 1 X
1+ —sin—
2 X

Dann ist f unendlich oft differenzierbar auf R\{0} und auch einmal differenzier-
bar im Nullpunkt mit f”(0)=(1,0) (aber f” ist nicht stetig im Nullpunkt). Die
Abbildung f _ ,, o) entsteht aus der Trochoide (verallgemeinerte Zykloide)

g@):= <t+12t-sint,—725—cost), t>0,

durch Anwendung des Diffeomorphismus
@ Eni=(6—etn)
von (0, o) X R auf'sich, gefolgt von dem Diffeomorphismus

v (&0 (- —2— ()

von (0,oc) X R auf (— o0,0)x R und durch eine Transformation der unabhingigen
Variablen:

f(x)=&”od§og(—— %)

Hieraus erkennt man wegen g’ (f)=+(0,0) fur alle ¢, dass f’(x) injektiv ist (d.h.
f"(x)%(0,0) im vorliegenden Falle) fur alle x<0, und aus der Definition von f(x)
fir x>0 sowie der Berechnung von f”(0) ergibt sich dasselbe fiir x> 0. Anderer-
seits hat die Trochoide g abzédhlbar viele Doppelpunkte, nimlich

(4k7r+7c)_ (4k7t+37t)
T2 )T T,

fiir alle ganzen Zahlen k>0, und hieraus folgt, dass f im Nullpunkt eine Haufungs-
stelle von Doppelpunkten besitzt,
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1 (Gorae)~ oase):

Somit ist f auf keiner Umgebung des Nullpunkts injektiv. Die folgende Abbildung
zeigt das Bild von f, die Pfeile deuten die Parametrisierung des Bildes an (der
MaBstab auf der f,-Achse wurde nichtlinear verzerrt):

af

2

3. Wir wenden uns nun der Frage der lokalen Surjektivitit einer differenzierbaren
Abbildung f zu, wobei wir zunichst eine Abbildung f:R">D—R" zwischen
Riumen gleicher Dimension ins Auge fassen. Ist f stetig und f”(x) an der Stelle
x € D definiert und surjektiv, also ein linearer Automorphismus von R”, so folgt aus
Proposition 1, dass f(x)¢f(0U) ist fiir hinreichend kleine Umgebungen U von x in
D. In einer solche Situation ist der Abbildungsgrad deg(f, U,f(x)) € Z von f, bzgl.
des Punktes f(x) definiert (siehe [5, 7, 10] fur die im folgenden benutzten Eigen-
schaften des Abbildungsgrades; wir konnen uns ohne Einschrinkung auf die
Betrachtung solcher Umgebungen von x beschrinken, die kompakten Abschluss
in D haben). Dieser Abbildungsgrad kann berechnet werden mit Hilfe der Beob-
achtung, dass durch

H:[0,11xUs(t,y)» (1=0)f(p)+1tf (x) —x)+tf(x)eR"

eine Homotopie von f in die affine Abbildung Usyw f” (x) (y— x)+f(x) vermittelt
wird mit der Eigenschaft
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| H@Ey) =) 2 1f ) =) —(A=)If () —fx)—f () p—x)| >0

fir O<t<1, yedU,

vorausgesetzt U wurde klein genug gewihlt. Aus der Homotopie-Invarianz des
Abbildungsgrades folgt nun, dass der Grad deg (f, U,f(x)) fir hinreichend kleine
Umgebungen U von x mit dem entsprechenden Grad der affinen Approximation
yp f1(x)(y—x)+fex) zu f ubereinstimmt, und letzterer Grad ist gleich dem Vor-
zeichen der Determinante von f” (x). Somit ist deg (f; U,f(x)) = % 1, also jedenfalls
verschieden von Null, fiir hinreichend kleine U, und gemiss einer fundamentalen
Eigenschaft des Abbildungsgrades impliziert dies, dass die Zusammenhangskom-
ponente des Punktes f(x) von R"\f(0U) ganz im Bild f(U) liegt. Da R"\f(0U)
offen ist (denn aufgrund unserer Annahmen iiber U ist U kompakt in D, also
f(©U) kompakt in R”), schliessen wir, dass die fragliche Zusammenhangskompo-
nente eine Umgebung des Punktes x in R” darstellt, die ganz in f(U) enthalten
ist, d.h. fist lokal surjektiv bei x.

Falls f:R™> D—-R" m> n, stetig ist und an der Stelle xe D ein surjektives totales
Differential f”(x) besitzt, so schrinke man f auf einen n-dimensionalen zu Kern
f’(x) transversalen affinen Unterraum A4 von R™ durch den Punkt x ein. Die
vorangegangenen Uberlegungen zeigen dann, dass f(x) innerer Punkt von f(4 N U)
ist fiir alle (hinreichend kleinen) Umbegungen U von x in D, insbesondere ist also
f(x) auch innerer Punkt von f(U). Damit ist bewiesen:

Proposition 2. Ist f:R™> D — R” stetig und an der Stelle xe D differenzierbar mit
surjektivem Differential f’(x), so ist f lokal surjektiv bei x, d.h. f(x) ist innerer
Punkt von f(U) fiir alle Umgebungen U von x in D.

Korollar. Ist f* an jeder Stelle von D definiert und surjektiv, so ist f eine offene
Abbildung, d. h. f fiihrt offene Teilmengen von D in offene Teilmengen von R" iiber.

Beziiglich des Korollars sehe man auch [2, 3, 12, 13], wo die Offenheit von stetig
differenzierbaren Abbildungen (mit moglichen kritischen Stellen) diskutiert wird.

4. Wir nehmen nun an, dass f die Voraussetzungen von Satz I erfiillt, d.h.
f:R">D—R" ist iiberall auf D differenzierbar und f”(x) ist fur alle xe D eine
invertierbare lineare Selbstabbildung von R”. Aus Proposition 1 folgt dann, dass
alle Urbilder f~!{y}, yeR", diskret in D sind, und aus dem Korollar zu Propo-
sition 2 entnimmt man, dass f eine offene Abbildung ist. Derartige diskrete, offene
Abbildungen (und die allgemeineren «light open mappings») sind Gegenstand
vielfiltiger Untersuchungen gewesen [1, 3, 6, 8, 12], und aus den Resultaten von
[8] zum Beispiel erhdlt man unter Verwendung der Tatsache, dass der Abbildungs-
grad deg(f, U,f(x)) = +1 ist fiir alle xe D und hinreichend kleine Umgebungen U
von x in D, unmittelbar die lokale Umkehrbarkeit von f und damit Satz I. In
diesen Untersuchungen werden jedoch tiefliegende topologische Hilfsmittel (wie
Alexander-Spanier-Kohomologietheorie oder P.-A.-Smith-Theorie periodischer
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Punkte) verwendet, die unter den Voraussetzungen von Satz I vermieden werden
konnen, wie wir darlegen werden.

Wir beweisen in diesem Abschnitt drei Hilfssdtze, in denen alle Aussagen iiber
diskrete, offene Abbildungen zusammengefasst sind, welche zum Beweis der
Satze I und II benétigt werden. Dazu fithren wir zundchst zu einer gegebenen
Abbildung f: R"> D — R" die Anzahlfunktion

o0, wenn ! {y} unendlich ist,

fiy R"
Anzahl der Elemente von f/~! {y} sonst, e

Ny(p):= {

ein und stellen einigen ihrer Eigenschaften zusammen in

Lemma 1. Sei f: R"> D — R” stetig und offen. Dann gilt:

(i) Nyist von unten halbstetig auf R";

(i) wenn Nyof in xe A<D ein endliches lokales Maximum relativ zu A besitzt,
so existiert eine Umgebung U von x in D derart, dass fy~, injektiv und

FUNA)NFUNA)= ist.

Beweis:

(i) Wenn x,,...,x; verschiedene f~Urbilder zu yeR" sind, so kénnen wir paarweise
disjunkte Umgebungen U; zu x; finden fir 1<i<k, und wir setzen V:=[) ,fU..
Dann ist ¥V eine Umgebung von y in R" (da f offen ist), und jedes y’e V' hat
mindestens ein f~Urbild in jedem U,. Dies zeigt, dass aus N(y)=k folgt N>k auf
einer Umgebung von y, und das ist der Inhalt der Inhalt der Aussage (i).

(i) Wir setzen x;:=x, y:=f(x), k:= N;(f(x)) < oo und wihlen x,,...,x;, Uy, ..., Uy,
V wie in (i), wobei U, zusitzlich so klein sei, dass Nyof<k ist auf U;n4, d.h.
jedes y’ef(U,nA) hat hochstens k Urbilder in D. Da andererseits jedes y'e V
mindestens k Urbilder besitzt, muss das Urbild f~!{y"} eines y’ef(U;nA) jede
Umgebung U, in genau einem Punkte treffen, und zwar U, in einem Punkte aus A.
Die Behauptung gilt daher mit U:=U,nf"' V. O

Der Beweis bleibt offenbar auch fiir stetige, offene Abbildungen von einem Haus-
dorff-Raum in einen beliebigen topologischen Raum giiltig. Das néchste Lemma,
zu dessen Nachweis der Bairsche Kategoriensatz herangezogen wird, enthilt einen
wesentlichen Schritt des Beweises von Satz I. Dabei lehnen wir uns an [14] an.
Das Lemma (und der Beweis) gilt allgemeiner fur stetige, offene, diskrete Abbil-
dungen von einem lokalkompakten metrischen Raum in einen topologischen Raum.

Lemma 2. Sei f:R">D—R" stetig, diskret und offen und sei Z+@ relativ ab-
geschlossen in D. Dann gibt es eine offene Menge Uc D derart, dass UnZ %@, f
injektivauf Un Z und f(Un Z)Nf(U\Z)=0 ist.

Beweis: Wir konnen, indem wir nétigenfalls D durch eine geeignete offene 1cil-
menge mit kompaktem Abschluss in D ersetzen, annehmen, dass f~! {y} fiir alle
yeR" endlich ist, also Ny< oo iiberall auf R”. Wir definieren By:= {xe D: Ny(f(x))
<k} fir k=1,2,...; dann sind die B, relativ abgeschlossen in D wegen Lemma
1 (1), und wir haben U #-1By=D wegen der Endlichkeit von N, Aus dem
Baireschen Kategoriensatz [9, 11] folgt, dass mindestens eine der Mengen B, eine
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nichtleere, relativ offene Teilmenge A von Z enthalten muss. Auf dieser Menge 4
ist dann die ganzzahlige Funktion Nyof beschrinkt, nimmt also ihr Maximum in
einem Punkt x € 4 an. Die Behauptung folgt nun aus Lemma 1 (ii). O

Mit Hilfe von Lemma 2 konnen wir leicht herleiten, dass die Menge der Stellen
lokaler Injektivitit von fin D dicht liegt. Diese Menge ist nimlich offen, ihr Kom-
plement, die sogenannte Verzweigungsmenge Z;von f, ist also relativ abgeschlossen
in D, und wenn Z; innere Punkte hitte, so konnte man Lemma 2 auf eine in
Z; enthaltene Kugel von positivem Radius anwenden, um zu schliessen, dass f
injektiv ist auf einer nichtleeren offenen Teilmente von Z, im Widerspruch zur
Definition der Verzweigungsmenge. Tatsichlich kann man wesentlich stirkere
Aussagen iiber die Kleinheit der Verzweigungsmenge von diskreten offenen Abbil-
dungen zwischen n-dimensionalen Mannigfaltigkeiten machen: Z, fZ und f~! Z;
haben hochstens die Dimension n—2 [1, 3, 14]). Wir werden von diesem tiefer-
liegenden Resultat jedoch keinen Gebrauch machen, sondern direkt zeigen, dass
die Verzweigungsmenge Zsunter den Voraussetzungen von Satz I leer ist, das heisst,
dass flokal injektiv ist.

Hierzu benétigen wir noch den Begriff des Index einer stetigen, diskreten Funktion
S:R">D—-R" Dies ist eine ganzzahlige Funktion i, auf D, die mit Hilfe des
Abbildungsgrades wie folgt definiert wird:

fur offene U mit kompaktem Abschluss in D und

ir(x):=deg (f, U.f(x)) Tnfif ()= (x).

Grundlegende Eigenschaften des Abbildungsgrades gewihrleisten, dass if(x) nicht
von der Wahl von U abhingt (solange U den angegebenen Bedingungen geniigt),
und ermoglichen den Beweis der im folgenden Lemma zusammengestellten Aus-
sagen iiber den Index (siehe [5, 7, 10] und den Beweis von Proposition 2).

‘Lemma 3. Sei f: R" > D — R" stetig und diskret. Dann gilt:
(i) i(x)= %1 fiir xe D\Z; (d. h. wenn f lokal injektiv ist bei x);
(i) ipist lokal konstant auf D\Zj;
(iii) i;(x)=signdetf’ (x), wenn f an der Stelle x € D differenzierbar ist mit det f’ (x)+0;
(v) esgilt Y. r1ginvir(x)=deg (f, U,y) fir offene U mit kompaktem Abschluss in D
und ye R"\f(3U).

5. Wir haben nun alle Hilfsmittel bereitgestellt fir den

Beweis von Satz I: Wie schon bemerkt, ist f eine stetige, diskrete, offene Ab-
bildung R">D—>R" Es ist zu zeigen, dass f auf D lokal injektiv ist, dass also
die Verzweigungsmenge Z, leer ist. Angesichts der Offenheit von f folgt hieraus,
dass f lokaler Homéomorphismus ist, und die Differenzierbarkeit der lokalen Um-
kehrabbildungen sowie die behauptete Formel fiir ihre Ableitung kann nun genau
wie im «klassischen» Fall stetig differenzierbarer Funktionen hergeleitet werden.

Angenommen Z; ist nicht leer. Dann liefert uns Lemma 2 eine offene Menge
Uc D mit §+ Un Z, f injektiv auf Un Z; und f(Un Z)nf(U\Z)=9. Wir kénnen
annehmen, dass U zusammenhédngend mit kompaktem Abschluss in D ist, und dass
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gilt f(0U)=0 (fU); um letzteres zu erreichen, ersetzen wir noétigenfalls U durch eine
Zusammenhangskomponente U’ von U—f!(f(0V)), die Z, trifft. (Dann gilt
fU Af(8U)=8, fOU")<f(@U) und somit f(9U’)< d (fU’); die umgekehrte Inklu-
sion f(0U’)> 0 (fU’) folgt aus der Offenheit von f und Kompaktheit von U’udU’
in D.) Die Einschrinkung von f auf U\Z; ist nun eine Uberlagerung; denn f
ist lokaler Homdomorphismus auf D\Z, und jedes yef(U\Z,) hat endlich viele
Urbilder in U\Z; aber wegen f(Un Zf)nf(U\Zf)=¢ und f(0U)=20 (fU) kein
Urbild in (UnZp)uw U, so dass (f~ 'Mn (U\Z)) fur hinreichend kleine Umgebun-
gen ¥V von y homoomorph ist zu V'x f~1{y}.

Um unsere Annahme zu einem Widerspruch zu fithren, werden wir zeigen, dass
fauf ganz U injektiv ist, was insbesondere U< D\Z; impliziert im Widerspruch zu
der oben festgestellten Beziehung Un Zf=1=¢. Wegen der Injektivitit von f auf
UnZ; und wegen f(UnZ)nf (U\Zf)=¢ geniigt es, die Injektivitit von f auf
U\Z; zu verifizieren. Hierzu betrachten wir eine Zusammenhangskomponente C
von U\Z, und einen Punkt xoe Z,n U, der im Rand einer ganz in C enthaltenen
Kugel B mit Mittelpunkt x;eC liegt. (Ein solcher Punkt x, existiert, weil
0CcZ;udU und dC¢0U gilt wegen des Zusammenhangs von U und Un Z+ g.)
Da fU offen ist mit y,:=f(x) € fU, gilt fiir hinreichend kleine >0 auch

Yee=f(xo)+tf" (x0) (x;—x0)ef (V).

Wir behaupten nun, dass fir hinreichend kleine >0 das Urbild f!'{y}n U
ganz in C enthalten ist. Um dies einzusehen, bemerken wir erstens, dass f~!{y,}
nUc U ist wegen f(0U)<d (fU) und dass x, das einzige Urbild zu yy=f(x,) in
U ist wegen f(UnZ)nf(U\Z)=§ und Injektivitit von f auf Un Z; hieraus folgt
x,~xo bei t\0 fir jede Wahl der Urbilder x,ef !{y,}n U. Zweitens verwenden
wir die Existenz und Invertierbarkeit von f*(x;), um fur jedes x,ef!{y}n U die
Beziehung

| xo+ 1 (xy— x)— X, = |f" (x0) ™ [#f” (x0) (X} — Xx0)—f” (x0) (x,— X0)|
= |f" ()" [ (x)—f(xo)—f" (x0) (x,— x0)]I

zu erhalten; hieraus entnimmt man, dass der Abstand von x, zum Radius [xg, x{]
der Kugel B bei 7\ 0 schneller gegen Null strebt als |x,— x|, so dass jedenfalls
x, in B< C liegt fiir hinreichend kleine 1>0. Aus Lemma 3 folgt nun, dass f in
allen Punkten x,ef!{y) n U denselben Index + 1 oder —1 besitzt fiir hinreichend
kleine ¢ und dass sich diese Indizes aufaddieren zu deg(f, U,yo)=is(xo)= 1 1.
Also hat y, fur hinreichend kleine >0 genau ein Urbild in C und keine Urbilder
in den von C verschiedenen Komponenten von U\Z.. Die Uberlagerungseigen-
schaft von f auf U\Z, impliziert aber, dass alle Punkte aus fC in einer beliebig
gegebenen Komponente von U\Z, dieselbe Zahl von Urbildern aufweisen, also ein
Urbild in C besitzen und keines in den von C verschiedenen Komponenten von
U\Z;. Somit ist f|¢ injektiv und f(C)nf((UNZH\C) = @#. Da C selbst eine beliebige
Komponente von U\Z, war, ist hiermit die Injektivitit von f auf U\Z;bewiesen. [
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Satz II ist eine einfache Folgerung aus Satz I und Lemma 3:

Beweis von Satz II: Wenn die Jacobi-Determinante von f keine Nullstelle hat,
so ist f ein lokaler Homéomorphismus zufolge Satz I. Aus Lemma 3 (ii) folgt dann,
dass ir(x)=sign detf” (x) auf der zusammenhingenden Menge D keinen Vorzeichen-
wechsel hat. [
Ahnlich einfach ldsst sich auch umgekehrt Satz I aus Satz II und Lemma 3
herleiten; wir iiberlassen dies dem Leser.
Wir bemerken abschliessend, dass es vom Gesichtspunkt der Anwendungen her
wichtig ist, die Voraussetzung der Invertierbarkeit von f’(x) an allen Stellen
xeD in Satz I dahingehend abzuschwichen, dass diese Forderung nicht erhoben
wird fir Punkte einer gewissen Ausnahmemenge; man mochte dann immer
noch schliessen, dass f ein lokaler Homoomorphismus ist. Resultate in dieser
Richtung findet man in [2, 3], woraus man zum Beispiel entnehmen kann, dass im
Falle n>3 beliebige diskrete Ausnahmemengen zugelassen werden kénnen, sofern
f stetig differenzierbar ist, und beliebige Ausnahmemengen der Dimension Null,
wenn f n-mal stetig differenzierbar ist. Die Abbildungen f:R2~Cezm zke CxR?,
2<kel, zeigen, dass im Falle n=2 bei Vorhandensein eines Ausnahmepunktes
(hier der Nullpunkt) die lokale Hom6omorphie der Abbildung nicht mehr gefolgert
werden kann. Wir bemerken ferner, dass die Voraussetzungen an f in Satz I
dahingehend abgeschwicht werden konnen, dass f eine stetige diskrete Abbildung
R">D—R” ist mit Index if(x)=* 1 tiberall auf D; abgesehen davon, dass hierbei
keinerlei Differenzierbarkeit von f vorausgesetzt wird, kann die Bedingung if(x)=
+1 bei einer differenzierbaren Abbildung f auch dann erfiillt sein, wenn das
Differential f”(x) singuldr ist (man betrachte etwa f(x):=|x|%2x im Nullpunkt).
Der obige Beweis von Satz I ldsst sich allerdings unter dieser abgeschwichten
Voraussetzung nicht mehr durchfithren, sondern man muss auf tieferliegende topo-
logische Ergebnisse aus [1, 14] zuriickgreifen.

Klaus Steffen, Universitit Diisseldorf
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Kleine Mitteilungen

Ein Beispiel zum Rechnen mit Involutionen in der klassischen Laguerre-Geometrie

Unter der klassischen Laguerre-Geometrie der reellen euklidischen Ebene E ver-
steht man bekanntlich die folgende Inzidenzstruktur:

1. Die Menge S der Speere besteht aus allen orientierten Geraden von E. Die dem
Speer zugrunde liegende Gerade heisst Trigergerade.

2. Die Menge Z der Zykel besteht aus allen Punkten und allen orientierten Kreisen
von E. Ist zeZ ein orientierter Kreis, so heisst der z zugrunde liegende Kreis der
Tréagerkreis von z.

3. Ist z ein Punkt, so inzidiert z mit SeS - in Zeichen S Iz -, falls der Punkt auf der
Tragergeraden von S liegt. Ist z€Z ein orientierter Kreis, so inzidiert z mit § - wie
oben durch Sz ausgedriickt -, falls sich die Trigergerade von S und der Triger-
kreis von z berithren und iiberdies die Orientierung von S und z im Berithrpunkt
iibereinstimmen (Fig. 1).

Figur 1

Die gemiss 1, 2 und 3 gebildete Inzidenzstruktur (S, Z, I) heisst klassische Laguerre-
Geometrie.

Wir nennen die Speere S, 7T parallel, in Zeichen S| 7, wenn entweder S=T oder
wenn es kein zeZ mit S, Tz gibt. Man bestitigt unmittelbar die folgenden Aus-
sagen:
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