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108 Kleine Mitteilungen

Historical remarks: Most of the above results were known to nineteenth century
mathematicians, although obtained by various quite different methods (see Dickson
[3], chap. VII). M. A. Stern (J. Math. 6, 147-153, 1830) proved that, if p=2¢g+ 1 and
q are odd primes, 2 or —2 is a primitive root of p according as p=8n+3 or 8n+7
(see corollary 2.2). If p=44g+ 1 and g are primes, 2 and —2 are primitive roots of p
(see corollary 3.1). F.J. Richelot (J. Math. 9, 5, 1832) proved that, if p=2"+1is a
prime, every quadratic nonresidue (in particular, 3) is a primitive root of p (see
corollaries 1.1, 1.2). Nearly the same results were given by P. L. Tchebychef [‘Theory
of congruences’ (in Russian), 1849]. G. Wertheim (Acta Math. /7, 315-320, 1893)
proved that any prime 247+ 1 has the primitive root 7 (see corollary 1.3). If p=2" - g+ 1
is a prime and g is an odd prime, any quadratic nonresidue a of p is a primitive root of
pif a**— 1is not divisible by p (see lemma 3). These and other nice results on primitive
roots can be derived from theorems 1-4 as corollaries (see for example in [3], p. 192,
what V. Bouniakowsky proved or loc.cit., p. 199, the result of A. Cunningham).
A. Ecker,
Hahn-Meitner-Institut fiir Kernforschung Berlin GmbH
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A homeomorphism of Q with Q as an orbit
The following result can be deduced from a theorem proved by Besicovitch [1] in
which an autohomeomorphism 4 of the real plane is constructed such that for some
xeR?

{h"(n)|neZ} isdensein R2.
We give a direct proof for the consequence.
Proposition. There exists an autohomeomorphism h of Q with

{h"(1)IneZ}=Q.

Proof: Let x;e [0, 1]\Q with 2x;<1 and, for neZ, x,=nx;—[nx;], [ ] designating
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the Gaussian symbol. Put X={x,|neZ}, Y={x,,,1/n€Z} and define f: X— X,
SxXn)=Xnt1; 8:Y-Y, g(xp)=x,42(nel).

X and Y are dense in [0, 1], and for xe X, ye Y:

x4+ x; O<x<l-—x
f(x)={ x+x1—1 l-x<x<1 (*)
g0 = ().

We now see that the bijection g is an autohomeomorphism of Y since none of the
possible points of non-continuity (0,1,2x;,1—2x;) of gor g~ !lies in Y:

This is evident for 0, 1, and 2 x; = x; by construction.

If1-2x,€eY,say 1 —2x;=xy, there would be an ne Z with

x_1=1-x1=f(1-2x) (since 0<1—-2x;<1—x))

=f(xp)= "2(x_-1)
=x_1+k+2)x;+n [by (*)].

Thus (k+2)x, e Z which implies k= —2, i.e. x, ¢ Y, contrary to the assumption. The
proposition follows from the fact that Y and Q are homeomorphic [2].
Ulrich Abel, Heidelberg
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Das Gitterspiel

Einleitung

C. Berge erwdhnt in seinen Biichern iiber Graphentheorie das nachstehend be-
schriebene Spiel, dessen Idee von Rufus Isaacs stamme. Er gibt aber lediglich die
Formel, welche hier als erste in Satz 7 notiert ist, ohne Beweis, an (siehe [1]).

Ich fiihlte mich herausgefordert, der Sache etwas nachzugehen, und skizziere nun
im folgenden meine Uberlegungen. Herrn H. Imhof verdanke ich den Hinweis auf
die wunderschéne Arbeit von K. Jacobs [2].

Es sei auch bemerkt, dass das «Gitterspiel» ein instruktives Beispiel fiir ein Dialog-
programm auf einem Kleincomputer abgibt.
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