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108 Kieme Mitteilungen

Historical remarks: Most of the above results were known to nineteenth Century
mathematicians, although obtained by various quite different methods (see Dickson
[3], chap.VII). M.A. Stern (J. Math. 6, 147-153, 1830) proved that, ifp 2q+ 1 and

q are odd primes, 2 or — 2 is a primitive root of/? aecordmg as/? 8n + 3or8« + 7

(see corollary 2.2). lfp 4q+ 1 and q are primes, 2 and -2 are primitive roots of/?
(see corollary 3.1). F. J. Richelot (J. Math. 9, 5, 1832) proved that, ifp 2m+ 1 is a

prime, every quadratic nonresidue (in particular, 3) is a primitive root of p (see
corollaries 1.1, 1.2). Nearly the same results were given by P. L. Tchebychef [Theory
of congruences' (in Russian), 1849]. G. Wertheim (Acta Math. 17, 315-320, 1893)
proved that any prime l4n + 1 has the primitive root 7 (see corollary 1.3). If/? ln q+l
is a prime and q is an odd prime, any quadratic nonresidue a ofp is a pnmitive root of
/? ifa2n — 1 is not divisible by/? (see lemma 3). These and other nice results on pnmitive
roots can be derived from theorems 1-4 as corollanes (see for example in [3], p. 192,
what V. Bouniakowsky proved or loc.cit., p. 199, the result of A. Cunnmgham).

A. Ecker,
Hahn-Meitner-Institut für Kernforschung Berlin GmbH
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A homeomorphism of Q with Q as an orbit

The following result can be deduced from a theorem proved by Besicovitch [1] in
which an autohomeomorphism h of the real plane is construeted such that for some
jceR2

{hn(n)\neZ} is dense in R2.

We give a direct proof for the consequence.

Proposition. There exists an autohomeomorphism h ofQ with

{hn(l)\neZ} Q.

Proof: Let xxe fO, 1]\Q with lxx< 1 and, for «eZ, xn=nx\ — [nxx]9 [ ] designating
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the Gaussian symbol. Put X={xn\neZ}, Y={x2rx+x\neZ} and define f.X-^X,
f(xn) xn+x;g:Y-+Y,g(xn) xn+2(neZ).

X and Y are dense in [0,1 ], and for x e X, y e Y:

; + xx 0<,x<l-xx
+ xx-l l-;ti<_;c<l (*)/<*>={X

g(y)-f(y).

We now see that the bijection g is an autohomeomorphism of Y since none of the
possible points of non-continuity (0, 1,2jci, 1 — lxx) of g or g~

* lies in Y:
This is evident for 0,1, and 2 xx x2 by construction.
If 1 — 2xxe Y, say l—2xx xk, there would be anneZ with

*_ i 1 - xx =/(l — 2 xO (since 0 < 1 — 2xx<l—xx)
=/(x*)=/*+2(x-i)

x-x+(k + 2)xx + n [by(*)].

Thus (k + 2)xxeZ which implies k= —2, i.e. xk$ Y, contrary to the assumption. The
proposition follows from the fact that Y and Q are homeomorphic [2],

Ulrich Abel, Heidelberg
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Das Gitterspiel

Einleitung

C. Berge erwähnt in seinen Büchern über Graphentheorie das nachstehend
beschriebene Spiel, dessen Idee von Rufus Isaacs stamme. Er gibt aber lediglich die
Formel, welche hier als erste in Satz 7 notiert ist, ohne Beweis, an (siehe [1]).
Ich fühlte mich herausgefordert, der Sache etwas nachzugehen, und skizziere nun
im folgenden meine Überlegungen. Herrn H. Imhof verdanke ich den Hinweis auf
die wunderschöne Arbeit von K. Jacobs [2].
Es sei auch bemerkt, dass das «Gitterspiel» ein instruktives Beispiel für ein
Dialogprogramm auf einem Kleincomputer abgibt.
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