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On primitive roots

Baum [2] has given useful criteria for certain primitive roots. Wilansky [6] pointed
out that these results can be obtained without use of quadratic reciprocity. The
purpose of this note is to derive their theorems and to obtain some more results with
a quite simple counting method. We shall deal with odd primes p. We assume
standard results on quadratic residues and primitive roots. An integer a relatively
prime to p belongs to the exponent k>0, modulo p, if a*=1(modp) and a"=%1
(mod p) for 0<n<k. A primitive root modulo p is a residue which belongs to the
exponent p— 1. There are ¢ (p— 1) primitive roots modulo p, where ¢ (x) is the Euler
phi-function or totient. Euler’s totient has the following property: if m is odd then
0 Q2"-m)=2""lp@m)(n=1) and ¢ (2"- m)=2"¢ (m) if m is even. A quadratic
residue, modulo p, is an integer a+0 such that x>=a (mod p) has solutions. QR
(QNR) denotes the set of residues, modulo p, which are quadratic residues (non-
residues). With respect to the property of being a primitive root, modulo p, these
sets are denoted by PR(NPR). We note the following familiar results: a is a
quadratic residue modulo p if and only if @~ P/2= | (mod p). This result is known as
Euler’s criterion. From Euler’s criterion it follows that (—1/p)=(—1)®~V/2 where
(a/p) is the Legendre symbol, defined by (a/p)=+1 if aeQR, (a/p)=—1 if
acQNR. Gauss has given a theorem - known as Gauss’ lemma - that puts the
information contained in Euler’s criterion into a slightly different form. Gauss’
lemma makes it possible to evaluate (2 /p), 3/p), (7/p).

The Legendre symbol has the properties:

(%) . (%) - <%ﬁ), (i) - (—b—) if a=b(modp)

14 p
where a,b are relatively prime to p. This makes it possible to calculate (—a/p) if
(a/p) is known. We give a list of values (a/p) needed in the sequel.

1 +1 if p=1 (mod4)

<7)= —1 if p=-—1(mod4)
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+1 if p=+1(mod8)

—1 if p=+3(mod8)

—1 if p=+5(mod12)

+1 if p=1,2,4(mod7)

-1 if p=3,5,6(mod7)

{+1 if p=+1(modl12)
{-f—l if p=1,3 (mody)

-1 if p=-1,-3(mod8)

(_3) {+1 if p=1 (mod6)
—1 if p=-1(mod6)

Clearly no number is simultaneously a quadratic residue and a primitive root
modulo p; and there are exactly (p— 1)/2 quadratic residues modulo p. This means
PR<=QNR and |QR|=(p—1)/2, where | M| denotes the number of elements in a
finite set M.

Lemmal.|ONR|=|PR|+ |NPRNQNR| orwithD=|NPRNQNR|=|QNR\PR|
—— =9 @-1+D, D>=0. 4]
The proof of lemma 1 is quite clear from what we said above.

Lemma 2. If p=1(mod4), p=4q+1(q=1), then D is even and 4| D if q is even, 2| D
if q is odd and q>1. D is odd if p= —1(mod4), p=2qg+1(¢g=1, q odd) except for
q=1,p=3 where D=0.

Proof: D=(p—1)2—¢ (p—1).

p=4q+1: D=2g—¢p(@4q) and 2| ¢ (4q) proves that D is even; g even means
9 (49)=49¢(q), 412q and 4| D follows, g odd gives ¢ (49)=2¢(q), D=2(q9— ¢ (q))
and 2/ (¢—¢ (q)) except for g=1, but then p=5 and D=0. p=2g+1, ¢ odd:
D=gq-¢ (q) and D is odd except for g=1.

Naturally we now ask whether there is - excepting 3 and 5 - any possibility that
D=0 happens, that means that all quadratic nonresidues are primitive roots. If
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—1eQNR or (- 1/p)=—1 D=0 is impossible, except for p=3, because (— 1)?=1
(modp) and the exponent of —1 modulo p is 2, —1e QNR\PR except in case
p—1=2, thatis p=3. If p= — 1(mod4) then (—1/p)=—1, hence D>1 if p> 3 and
p= —1(mod4).

Theorem 1. D=0 if and only if p= 2t 1=F (n) (n=0), the n-th Fermat number.

Proof: If D=0, then p=3=F(0) or p=4g+1(g=1) and from lemma 1 one gets
(@—-1)/2=¢ (p—1). This given 2g=9¢ (4q), g odd: g=p (g) implies g=1. ¢ even:
g=2¢(q), q=2"- r(m=1), 2)r this implies r=¢ (r) or r= 1. That means p=2"*2+1
(m=1).

Thus p=2'+1(t>=1), but it is well known that r=2"(n>0) is necessary and these
are the Fermat numbers. The converse follows by a simple computation.

Corollary 1.1. An odd prime p is a Fermat prime if and only if all quadratic non-
residues, modulo p, are primitive roots.

Corollary 1.2. 3 is a primitive root modulo p= F(n) (n=1).

Proof: F(n)=5(mod 12) (n>1) as follows from 4”=4 (mod 12). From p=5 (mod 12)
we get (£3/p)= —1or +£3eQNR. Corollary 1.1 completes the proof.

Corollary 1.3. + 7 is a primitive root of p=F(n) (n=2).

Proof: Note that 2*=2(mod7) and F(n)=3,5(mod7) (n=2). Thus (-7/p)=—1,
—7€ QNR and (- 1/p)=+1 gives (= 1/p) - (= 7/p)= (7/p)=~1, 7€ QNR. Cor-
ollary 1.1 then gives the conclusion.

Theorem 2. D=1 if and only if p=2 q+ 1, where q is an odd prime.

Proof: From lemma 2 we see that p=2q+1, g odd (g>1). (1) gives g—1=¢ (¢) and
g necessarily is an odd prime. The converse follows by computation.

Corollary 2.1. All quadratic nonresidues modulo p beside — 1 are primitive roots if and
onlyif p=2q+ 1, where q is an odd prime.

Corollary 2.2. If p and q are odd primes, p=2 q+ 1, then (— 1)9~Y/2. 2 is q primitive
root modulo p.

Proof: If g=1(mod4), then 2¢+1=3(mod8) but then 2/p)=—1, 2e QNR and
2% — 1 (mod p). From corollary 2.1 we see that 2e PR, modulop. If g= — 1 (mod 4)
we get 2g+ 1= —1(mod8), i.e. (—2/p)=—1 or —2eQNR, —2% — 1 (modp) and
—2€ePR.

Corollary 2.3. If p and q are odd primes, p=2q+1, then if g=1(mod4), g+ 1 isa
primitive root modulo p, while if g= — 1 (mod 4), q is a primitive root modulo p.
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Proof: If g=1(mod4), then from corollary 2.2 we know (2 /p)= — 1. Since 2(g+ 1)
=24g+2=1(modp) we have

2 1 1
<—>' (____*q+ )= (—1~) = +1 and thus <_~__q+ )=—1.
4 p p P
Hence g+1eQNR and g+ 1% —1(modp) means g+ 1ePR. If g= —1(mod4)
the proof is similar: 2¢g= — 1(modp) or (—2) - ¢=1 (mod p) implies (—2/p) - (g/p)
= + 1 and this again gives ge PR.

Note that in corollary 2.3 one can write the conclusion as: (—1)4*D/2.4 is a
primitive root modulo p. ’

Remark: Theorem 1 is exercise 3.8, No. 11, in Agnew [1], p. 144, while corollary 1.2 is
given by Trost [5], IV.25, p.40, and corollary 1.3 is just problem 3, chap.5.3, in Le
Veque [4], p.69. Corollaries 2.1, 2.2 and 2.3 are what Baum [2] proved but compare
with theorem 5-6 (b), (c) in [4], p. 68.

Theorem 3. D=2 if and only if p=4q+ 1, where q is an odd prime, and in this case
ac QNR\PR iff a belongs to the exponent 4 modulo p.

Proof: Half of the theorem is trivial, we prove the rest. If D=2, then (p—1)/2
=p(@P—1)+2 or 2g=¢ (49)+2, because lemma 2 gives p=4g+1 and ¢ is odd.
Therefore 2g=2¢ (q)+2 or g—1=¢(q) and ¢ is an odd prime. If ae QNR\PR,
then a*=1(modp), where k|p—1(k$p—1) is the exponent of a modulop. Now
p—1=44 and a?*?= — 1 (mod p) from Euler’s criterion. Hence k f 24 while ¢ is an
odd prime, thus k=4,

Corollary 3.1. X2 is a primitive root of p=4q+ 1 if q is an odd prime.

Proof: From p=4q+1, g an odd prime it follows that p= —3(mod8). Hence
(£2/p)=—1 or +2eQNR. But 2*=1(modp) means p=3 or p=5 while 4g+1
= 13. An application of theorem 3 completes the proof.

Corollary 3.2. 2 q, 2 g+ 1 are primitive roots modulo p=4q+ 1, if q is an odd prime.

Proof: First of all note that 2g+ 1= —2 g (mod p). Therefore it is enough to show
that 2¢q is a primitive root modulop. 2(2q)= —1(modp) gives (2/p)- Qq/p)
=(—1/p)= + 1. From corollary 3.1 we know (2/p)= — 1, hence (2¢/p)= — 1. Next
we have to prove (2¢)*%1(modp). 2¢)*=(4q)?*- ¢* and (4¢)*=1(modp) gives
2¢)*=q*(modp). But g*—1=(q+1) - (¢g— 1) and from ¢*= (2 ¢)*=1(mod p) pl g+ 1
or plg—1. It is easy to see that this cannot happen. This completes the proof.

Remark: For corollary 3.1 see theorem 5-6 (a) in [4], p. 68.

Theorem 4. D=2"(n>2) if and only if p=2"*'-r+1=2D - r+ 1, where r is an odd
prime, and in this case ac QNR\PR iff a belongs to the exponent 2 D modulo p.
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Proof: From lemma 2 we see that p=4g+1 and g=2"- r(m=1), r odd. Hence from
()2g=4¢(g)+2"or g—2""1'=2¢(q). g=2™- rgives 2" - r—2""1=2". o (r) hence
r+1and2]|g (r).

If n—1<m we rewrite 2" '=2"(r—gp (r)) or 1=2"""*1(r— ¢ (r)), a contradiction.
If n—1>m write 27 r=2"(g (r)+2" ™) where 2|(p (r)+2"~""1) but 2/r,
a contradiction. Hence m=n—1. This gives r—1=¢ (r) and r is an odd prime. The
converse is almost trivial. If ae QNR and k is the exponent of a modulo p, then
a? = —1(modp)and k|2D - r. Thusk ¥ D - r and r is prime. Therefore k=2 D since
k#+2D - r and the proof is complete.

Lemma 3. Let p=2D - r+1, D=2"(n>2) as in theorem 4. Then, except possibly for
r=3, 3 resp. + 6 is a primitive root modulo p if and only if 3*P resp. 62P % 1 (mod p).

Proof: Note that 4=1 (mod 3) and hence 2”= 1 (mod 3) if m is even, 2"=2 (mod 3)
if misodd. If m=n+1, then p=r+1 or 2r+1(mod 3) according as n is odd or even.
r=1,2(mod3) always gives p=2(mod3), p=0(mod3) is not possible. Hence
3|p+1, trivially 2| p+ 1, therefore 6| p+ 1 or p= — 1 (mod 6).

From our list of computed Legendre symbols we see (—3/p)= —1. Taking into
account — 1,2e QR and theorem 4 the proof is complete.

Corollary 4.1. If p=8 - r+1, where r is an odd prime, then +6 is a primitive root
modulo p. *3 is a primitive root modulop if r¥5.

Proof: From theorem 4 we see that D=4 and lemma 3 shows that one has to
consider 3*~1, 62— 1 modulop. Note that »=3 is not possible. The computation
gives

33_1=6560=25-5-41,
68—1=1679615=5-7 37-1297.

It is now easy to check that (except for r=5) p=_8r+ 1 will never divide either 33— 1

or68—1.

Corollary 4.2. If p=16 - r+ 1, where r is an odd prime, then +3, +6 are primitive
roots modulo p.

Proof: D=8 and

316_1=43046720=2%-5-17-41- 193,
616—1=5.7-17-37-1297 - 98801

(r=3 again is impossible). A simple consideration as in the foregoing corollary now
completes the proof.
Note that p=2"*2. r+ 1, r an integer, are just the prime divisors of F(n).
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Historical remarks: Most of the above results were known to nineteenth century
mathematicians, although obtained by various quite different methods (see Dickson
[3], chap. VII). M. A. Stern (J. Math. 6, 147-153, 1830) proved that, if p=2¢g+ 1 and
q are odd primes, 2 or —2 is a primitive root of p according as p=8n+3 or 8n+7
(see corollary 2.2). If p=44g+ 1 and g are primes, 2 and —2 are primitive roots of p
(see corollary 3.1). F.J. Richelot (J. Math. 9, 5, 1832) proved that, if p=2"+1is a
prime, every quadratic nonresidue (in particular, 3) is a primitive root of p (see
corollaries 1.1, 1.2). Nearly the same results were given by P. L. Tchebychef [‘Theory
of congruences’ (in Russian), 1849]. G. Wertheim (Acta Math. /7, 315-320, 1893)
proved that any prime 247+ 1 has the primitive root 7 (see corollary 1.3). If p=2" - g+ 1
is a prime and g is an odd prime, any quadratic nonresidue a of p is a primitive root of
pif a**— 1is not divisible by p (see lemma 3). These and other nice results on primitive
roots can be derived from theorems 1-4 as corollaries (see for example in [3], p. 192,
what V. Bouniakowsky proved or loc.cit., p. 199, the result of A. Cunningham).
A. Ecker,
Hahn-Meitner-Institut fiir Kernforschung Berlin GmbH
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A homeomorphism of Q with Q as an orbit
The following result can be deduced from a theorem proved by Besicovitch [1] in
which an autohomeomorphism 4 of the real plane is constructed such that for some
xeR?

{h"(n)|neZ} isdensein R2.
We give a direct proof for the consequence.
Proposition. There exists an autohomeomorphism h of Q with

{h"(1)IneZ}=Q.

Proof: Let x;e [0, 1]\Q with 2x;<1 and, for neZ, x,=nx;—[nx;], [ ] designating
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