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On primitive roots

Baum [2] has given useful cntena for certain primitive roots Wilansky [6] pomted
out that these results can be obtained without use of quadratic reciprocity The
purpose of this note is to denve their theorems and to obtain some more results with
a quite simple counting method We shall deal with odd primes p We assume
Standard results on quadratic residues and primitive roots An integer a relatively
prime to p belongs to the exponent k>0, modulo p, if ak= 1 (modp) and an$ 1

(modp) for 0 < n < k A primitive root modulo p is a residue which belongs to the

exponent p— 1 There are cp (p— 1) primitive roots modulo p, where <p (x) is the Euler
phi-function or totient Euler's totient has the following property if m is odd then
<p(2n m) 2n~x(p(m)(n>l) and q>(2n m) 2n(p(m) if m is even A quadratic
residue, modulo p, is an integer «4=0 such that x2=a(modp) has Solutions QR
(QNR) denotes the set of residues, modulo p, which are quadratic residues (non-
residues) With respect to the property of being a primitive root, modulo p, these
sets are denoted by PR(NPR) We note the following familiär results a is a

quadratic residue modulo/? if and only if ö^_1)/2= 1 (modp) This result is known as
Euler's criterion From Euler's entenon it follows that (-l/p) (-l)(p~x^2, where
(a/p) is the Legendre symbol, defined by (a/p)= + l if aeQR, (a/p)= — l if
öteQNR Gauss has given a theorem - known as Gauss' lemma - that puts the
Information contained in Euler's criterion into a shghtly different form Gauss'
lemma makes it possible to evaluate (2/p), (3/p), (l/p)
The Legendre symbol has the properties

(7) (t)-('-t)- (tMt) 'f '-»«-'>
where a,b are relatively prime to p This makes it possible to calculate — a/p) if
(a/p) is known We give a hst of values (a/p) needed in the sequel

/ -1 \ f+1 lf P~l (mod4)

^ p ' 1-1 if />s-l(mod4)
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if /?=±l(mod8)

if p=+3(mod%)

if /?=±l(modl2)

if ^=±5(mod 12)

if /? 1,2,4(mod7)

if p=3,5,6(modl)

if /?=1,3 (mod8)

if /?=-l,-3(mod8)

(?)¦
-hl if /?=1 (mod6)

-1 if /?=-l(mod6)

Clearly no number is simultaneously a quadratic residue and a primitive root
modulo/?; and there are exactly (p—l)/2 quadratic residues modulo/?. This means
PRczQNR and |QR| =(p— l)/2, where \M\ denotes the number of elements in a
finite set M.

Lemma 1.1 QNR\ | PR \ + \NPRnQNR\ orwithD= \NPRnQNR\ \ QNR\PR\

P-l <p(p-l) + D, Z)_>0.

The proof of lemma 1 is quite clear from what we said above.

(1)

Lemma 2. Ifp= 1 (mod4),p 4q+ 1(#_> 1), then D is even and4\D ifqis even, 2\\D
if q is odd and q> 1. D is odd ifp= — 1 (mod4), p 2q+ 1 (^_> 1, q odd) except for
q=l,p 3 whereD 0.

Proof: D (p- \)/l- <p (p- 1).

p 4q+l: D lq—(p(4q) and 2|^(4^) proves that D is even; q even means
^(4^)=4^?(^), 4\2q and 4\D follows, q odd gives (p(4q)=2q>(q), D 2(q-(p(q))
and 2X (q-p(q)) except for #=1, but then/>=5 and D 0. p 2q+l, q odd:
D q— q> (q) and D is odd except for q= 1.

Naturally we now ask whether there is - excepting 3 and 5 - any possibihty that
Z) 0 happens, that means that all quadratic nonresidues are primitive roots. If
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- 1 eQNR or (- l/p)— - 1 D 0is impossible, except for/? 3, because (-1)2= 1

(mod/?) and the exponent of —1 modulo /? is 2, — leQNRXPR except in case

/?- 1 2, that is/? 3. lfp= - 1 (mod4) then (- l/p)= - 1, hence Z>_> 1 if/?> 3 and
/? -l(mod4).

Theorem 1. D 0 ifand only ifp 2l +1= F(n) (n _> 0), the n-th Fermat number.

Proof: If D 0, then p 3 F(0) or p 4q+l(q^l) and from lemma 1 one gets
(p— l)/2 (p(p— 1). This given 2q cp(4q), q odd: q — <p(q) implies q=l. q even:
q 2tp(q), q=2m • r(m^_ 1), IXr this implies r=cp(r) or r= 1. That means/? 2m+2+ 1

(m^l).
Thus p l*+ 1 (f _> 1), but it is well known that / 2n(«_>0) is necessary and these

are the Fermat numbers. The converse follows by a simple computation.

Corollary 1.1. An odd prime p is a Fermat prime if and only if all quadratic non-
residues, modulo p, are primitive roots.

Corollary 1.2. ±3 is a primitive root modulo p F(n) (n _> 1).

Proof: F(n)= 5 (mod 12) («_> 1) as follows from 4m 4 (mod 12). From/?= 5 (mod 12)

we get (± 3/p)= - 1 or ± 3 e QNR. Corollary 1.1 completes the proof.

Corollary 13. ±1 isa primitive root ofp F(n) (n _> 2).

Proof: Note that 24=2(mod7) and F(«)=3,5(mod7) (n^l). Thus (~7//?)=-l,
-7 g QNR and (- l/p)= + 1 gives (- l/p) • (-l/p) (l/p)= - 1, 7 e QNR.
Corollary 1.1 then gives the conclusion.

Theorem 2. D 1 ifand only ifp lq+l, where q is an oddprime.

Proof: From lemma 2 we see thatp 2q+ 1, q odd (q> 1). (1) gives q—l <p(q) and

q necessarily is an odd prime. The converse follows by computation.

Corollary 2.1. All quadratic nonresidues modulop beside — 1 are primitive roots ifand
only ifp 2q+l, where q is an oddprime.

Corollary 2.2. Ifp and q are odd primes, p 2 q+ 1, then (— 1)^-1V2 • 2 is a primitive
root modulop.

Proof: If ?=l(mod4), then 2q+ l 3(mod8) but then (2//?)=-l, 2eQNR and
2^-1 (modp). From corollary 2.1 we see that 2ePR, modulo/?. If q= — 1 (mod4)
we get lq+ 1 - l(mod8), i.e. (-l/p)= - 1 or -2eQNR, -2=£ - l(mod/?) and
-2ePR.

Corollary 23. Ifp and q are odd primes, p=lq+l9 then if q= 1 (mod 4), q+l is a

primitive root modulop, while ifq= — 1 (mod 4), q isa primitive root modulop.
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Proof: If q= 1 (mod 4), then from corollary 2.2 we know (2/p)= - l. Since 2(q+l)
2q + 2=l (modp) we have

(j)-m=(j)=+> — rn—
Hence #+leQNR and q+l$ -l(modp) means q+leFR. If #=-l(mod4)
the proof is similar: 2q= — 1 (modp) or — 2) - q= 1 (modp) implies (—2/p) • (q/p)

+ 1 and this again gives ^ePR.
Note that in corollary 2.3 one can write the conclusion as: (—l)(q+1)/2 • # is a

primitive root modulo/?. /

Remark: Theorem 1 is exercise 3.8, No. 11, in Agnew [1], p. 144, while corollary 1.2 is

given by Trost [5], IV. 25, p.40, and corollary 1.3 is just problem 3, chap. 5.3, in Le
Veque [4], p.69. Corollaries 2.1, 2.2 and 2.3 are what Baum [2] proved but compare
with theorem 5-6 (b), (c) in [4], p. 68.

Theorem 3. D 2 if and only ifp 4 q + 1, where q is an odd prime, and in this case
a e QNR\PR iff a belongs to the exponent 4 modulop.

Proof: Half of the theorem is trivial, we prove the rest. If D 2, then (p— l)/2
(p(p—l) + 2 or 2q (p(4q) + 2, because lemma 2 gives p 4q+l and q is odd.

Therefore 2q 2cp (q) + 2 or q—l cp(q) and q is an odd prime. If aeQNRNPR,
then ak= 1 (modp), where k\p— 1 (k^p— 1) is the exponent of a modulo/?. Now
p— 1 =4q and a2q= — 1 (modp) from Euler's criterion. Hence k Jf 2q while q is an
odd prime, thus k 4.

Corollary 3.1. ± 2 isa primitive root ofp 4q+ 1 ifq is an oddprime.

Proof: From p 4q+l, q an odd prime it follows that /?=— 3 (mod 8). Hence
(±2//?)=-l or ±2eQNR. But 24=l(mod/?) means p 3 or p 5 while 4q+l
^13. An application of theorem 3 completes the proof.

Corollary 3.2.2q,2q+l are primitive roots modulo p 4q+l, ifq is an oddprime.

Proof: First of all note that 2q+ 1 -2q(modp). Therefore it is enough to show
that 2q is a primitive root modulo/?. 2(2q)= — 1 (modp) gives (l/p) • (2q/p)

(— 1 /p) -h 1. From corollary 3.1 we know (2/p)= — 1, hence (2q/p)= — 1. Next
we have to prove (2q)4$ 1 (modp). (2q)4=(4q)2 • q2 and (4q)2 1 (modp) gives
(2q)4=q2(modp). But q2- 1 + 1) • (q- 1) and from q2= (2q)4= 1 (modp)p\q+ 1

or p\q—l. It is easy to see that this cannot happen. This completes the proof.

Remark: For corollary 3.1 see theorem 5-6(a) in [4], p.68.

Theorem 4. _D 2W(«_>2) ifand only ifp 2n+x • r+ l=2D • r+ 1, where r is an odd

prime, and in this case a e QNR\PR iff a belongs to the exponent 2 D modulop.
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Proof: From lemma 2 we see thatp 4q+ 1 and # 2m • r(m_> 1), r odd. Hence from
(l)2q 4(p(q) + 2n or q-2"-x 2<p(q). q 2m - r gives 2m • r-2n~x 2m • q>(r) hence

r+ 1 and2|^?(r).
If « — 1 <m we rewrite 2n~x 2m(r — tp (r)) or 1 2m~n+ x(r—(p (/*)), a contradiction.
If n-l>m write 2m • r=2m((p(r) + 2n-m-x) where 2\((p(r) + 2n~m~x) but 2/r,
a contradiction. Hence m n— 1. This gives /*— 1 #? (r) and r is an odd prime. The
converse is almost trivial. If a e QNR and k is the exponent of a modulo p, then
aP r= — 1 (mod/?) and A: 12 D • r. Thus k)fD - r and r is prime. Therefore k 2D since

k^2D - r and the proof is complete.

Lemma 3. Letp 2D • r+ 1, Z> 2n(w_>2) #_.j/i theorem 4. Then, exceptpossibly for
r=3, +3 resp. + 6 isa primitive root modulop ifand only if32D resp. 62Z)=£ 1 (modp).

Proof: Note that 4= 1 (mod 3) and hence 2m= 1 (mod 3) if m is even, 2m= 2 (mod 3)
if m is odd. If m n + 1, then p=r+l or2r+l (mod 3) according as n is odd or even.

r= 1,2 (mod 3) always gives /? 2(mod3), /? 0(mod3) is not possible. Hence

3\p+l, trivially2|/?+ 1, therefore 6 \p+ 1 or/?= - l(mod6).
From our list of computed Legendre Symbols we see —3//?)= —1. Taking into
account — l,2eQR and theorem 4 the proof is complete.

Corollary 4.1. Ifp S • r+l, where r is an odd prime, then ±6 is a primitive root
modulop. + 3 is a primitive root modulop ///*=)= 5.

Proof: From theorem 4 we see that D 4 and lemma 3 shows that one has to
consider 38—1, 68—1 modulo/?. Note that r=3 is not possible. The computation
gives

38-l 656Q=25 5 • 41,
68-l l 679615 5-7 37- 1297.

It is now easy to check that (except forr=5)/? 8r+l will never divide either 38- 1

or68-l.

Corollary 4.2. Ifp= 16 - r+l, where r is an odd prime, then ±3, ±6 are primitive
roots modulop.

Proof: D 8 and

3i6_1==43046720=265- 17 - 41 - 193,
616-1 5 • 7 • 17-37- 1297-98801

(r=3 again is impossible). A simple consideration as in the foregoing corollary now
completes the proof.
Note that/? 2w+2 • r+ 1, ran integer, are just the prime divisors of F(n).
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Historical remarks: Most of the above results were known to nineteenth Century
mathematicians, although obtained by various quite different methods (see Dickson
[3], chap.VII). M.A. Stern (J. Math. 6, 147-153, 1830) proved that, ifp 2q+ 1 and

q are odd primes, 2 or — 2 is a primitive root of/? aecordmg as/? 8n + 3or8« + 7

(see corollary 2.2). lfp 4q+ 1 and q are primes, 2 and -2 are primitive roots of/?
(see corollary 3.1). F. J. Richelot (J. Math. 9, 5, 1832) proved that, ifp 2m+ 1 is a

prime, every quadratic nonresidue (in particular, 3) is a primitive root of p (see
corollaries 1.1, 1.2). Nearly the same results were given by P. L. Tchebychef [Theory
of congruences' (in Russian), 1849]. G. Wertheim (Acta Math. 17, 315-320, 1893)
proved that any prime l4n + 1 has the primitive root 7 (see corollary 1.3). If/? ln q+l
is a prime and q is an odd prime, any quadratic nonresidue a ofp is a pnmitive root of
/? ifa2n — 1 is not divisible by/? (see lemma 3). These and other nice results on pnmitive
roots can be derived from theorems 1-4 as corollanes (see for example in [3], p. 192,
what V. Bouniakowsky proved or loc.cit., p. 199, the result of A. Cunnmgham).

A. Ecker,
Hahn-Meitner-Institut für Kernforschung Berlin GmbH
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Kleine Mitteilungen

A homeomorphism of Q with Q as an orbit

The following result can be deduced from a theorem proved by Besicovitch [1] in
which an autohomeomorphism h of the real plane is construeted such that for some
jceR2

{hn(n)\neZ} is dense in R2.

We give a direct proof for the consequence.

Proposition. There exists an autohomeomorphism h ofQ with

{hn(l)\neZ} Q.

Proof: Let xxe fO, 1]\Q with lxx< 1 and, for «eZ, xn=nx\ — [nxx]9 [ ] designating
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