Zeitschrift: Elemente der Mathematik
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 37 (1982)

Heft: 4

Artikel: Eine Ortsaufgabe und der Satz von Ivory
Autor: Stachel, H.

DOl: https://doi.org/10.5169/seals-36394

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 13.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-36394
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

ELEMENTE DER MATHEMATIK

Revue de mathématiques élémentaires - Rivista di matematica elementare

Zeitschrift zur Pflege der Mathematik
und zur Forderung des mathematisch-physikalischen Unterrichts

El. Math. Band 37 Nr.4 Seiten 97-120 Basel, den 10.Juli 1982

Eine Ortsaufgabe und der Satz von Ivory

W. Wunderlich behandelte in [10] im Zusammenhang mit einem Problem der
Satellitengeodisie die Aufgabe, die gegenseitige Lage von sechs Punkten E,, E,, E;,
F\, F,, F; derselben Ebene aus den neun Distanzen E_F;, i,je{1,2,3} zu ermitteln. Er
wies nach, dass abgesehen von speziellen Annahmen mit einer stetigen Ldsungs-
schar maximal acht Losungen existieren, von denen keine zwei durch eine gleich-
sinnige oder ungleichsinnige Bewegung miteinander zur Deckung gebracht werden
konnen. Besonderes Interesse galt dem gefdhrlichen Fall des Zusammenriickens
zweier Losungen; fiir diesen ist nach [7] kennzeichnend, dass die sechs Punkte der-
selben Kurve 2. Ordnung angehoren.
Die Frage nach Beziehungen zwischen zwei verschiedenen Losungen E|,..., F; und
1>---»F3 (siche Abb.1) steht nun offensichtlich in engem Zusammenhang mit der
folgenden

Aufgabe (A). In der euklidischen Ebene n seien die paarweise verschiedenen Punkte
F\,F,, F; gegeben, in n’ analog F},F,, F;. Existieren Punkte 'E in n, deren Ent-
fernungen EF, fiir i=1,2,3 iibereinstimmen mit den Entfernungen E'F] eines geeigne-
ten Punktes E'e n’? Wo liegen diese Punkte E?

Es gibt mehrere Wege zur Losung von (A):

1. K.Goldberg untersuchtein [3,4] die Abhingigkeitderdrei Distanzkoordinaten XF,
XF,,XF; von Punkten Xen. Die Distanzkoordinaten der gesuchten Punkte E er-
fillen gleichzeitig die analoge Beziehung hinsichtlich F{F;F;. Die dabei auftreten-
den Gleichungen sind allerdings kaum {iberblickbar.

2. Eine Losung mit Hilfe der Blaschke-Griinwald-Abbildung ist [8) zu entnehmen.
3. Die Frage (A) lasst sich sofort beantworten, wenn man die Jacobische Fokal-
eigenschaft der Flichen 2. Ordnung heranzieht. Diese besagt (siehe [5,6]): Kon-
struiert man fir alle Punkte X’en’ die Pyramiden mit der Basis F,F,F; und den
Kantenlidngen X'F, i=1,2,3, so bilden deren Spitzen eine Fliche & 2.Ordnung.
Die von uns gesuchte Punktmenge e= { E} ist die Spurkurve von @ in .

Im folgenden sei eine Ldsung der Aufgabe (A) vorgefithrt, die unmittelbar auf
hohere Dimensionen zu verallgemeinern ist (vgl. [9]) und sich auch mit Zirkel und
Lineal nachvollziehen liesse. Zugleich wird damit jener Hilfssatz erneut bewiesen,
der fir den in [6] gegebenen Nachweis der Fokaleigenschaft von grundlegender
Bedeutung ist. Schliesslich zeigt dieser Losungsweg einen weiteren Zugang zum Saiz
von Ivory (vgl. [1]).
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Wir beniitzen in # und =’ kartesische Koordinatensysteme, die spiter noch zu
spezialisieren sein werden. Es sei

E=(éa’7)’ Fi=(xi9yi)’ E,=(é,”7,)’ F,—'=(Xi',yi').
Aus den fiir £ und E’ kennzeichnenden Bedingungen
C=xP+ == —xP+@'—y) fur i=1,2,3

folgt durch Subtraktionen bei x;;:= x;— x;, ...

xr ’ ’ X
( 2 )?1)(5,):( 21 }’21)(f)+(cl) )
X31 Y31/ \q X31 )31 n )

mit gewissen Konstanten c,,c,. Nun wird eine Fallunterscheidung notwendig:

Fall 1: {F\, F,, F3} und {F}, F;, F3} sind zwei Dreiecke:

Damit sind die in (1) auftretenden Matrizen regulér; durch (1) ist eine Affinitét
a:n—-n’, X=0C.nrX'=¢\n")

dargestellt, die E auf E’ abbildet (kurz: E’= Ea). a ist durch

XP?-—XF%=XaF}2 —XaF? fur j=2,3
gekennzeichnet'). Fiir die gesuchte Punktmenge gilt offensichtlich

e={E}={X|XF,=XaF}}.

1) Xa ist Potenzzentrum der drei Kreise mit Mittelpunkt F; und Radius XF;.
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Wir legen nun die Achsen unserer Koordinatensysteme in die Hauptverzerrungs-
richtungen von a und erreichen - gegebenenfalls nach einer Spiegelung - die
Darstellung

a:&'=4il+a
n'=un+a, mit A>0, u>0. (2)

Kann ein Punktepaar F},Fj' ohne Anderung von a und damit auch von e durch ein
anderes Punktepaar F=(x,y), F'=(x’,y’) ersetzt werden? Notwendig dafir ist, dass

XF— XFi=XaF*— XaFp?
eine Identitdt in ¢ und » darstellt. Dies ergibt

=Ax"+ b]
y=uy'+b, (3)
mit gewissen Konstanten by,b,. Damit ist F' F ein Punktepaar der in (3) dar-
gestellten Affinitdt f: n’— n, die durch F;=F}f fir i=1,2,3 bereits eindeutig fest-

gelegt ist.
Wir unterscheiden vier Moglichkeiten:

() (A—1)(u—1)%0:

Nun existiert ein Punkt O € # mit Oaf = O, nimlich

(lal +b1 ,ua2+b2 >
O= , )
1-22 1—u?

Wir wihlen O und O’= Oa als Koordinatenursprung in z bzw. 7’ und erhalten

a: &’=A¢ B:x=Ax’
n'=un y=w'. )

(i) A=1,u%1?%):
O sei nun ein Punkt mit derselben y-Koordinate wie in (i); O’ sei Mittelpunkt der

Strecke OaOp~!. Werden O, O’ wieder als Koordinatenursprung vorausgesetzt, so
entsteht

a:=¢+a f:x=x"+a
n'=un y=uy'. ")

2) Dieser Fall bleibt in [6] unberiicksichtigt.
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Bei (iii) A+ 1,u=1 vertauschen wir die Koordinatenachsen. Bei (iv) A=u=1
schliesslich sind die Dreiecke FyF,F; und FjF;F; kongruent, was natiirlich ganz =
als Losungsmenge {E} ergibt.

Die Forderung EF=E'F’ mit E’= Ea, F= F'f ist nun genau dann erfiillt, wenn bei
@)

(E—AxP+(—wP=AE— X+ (un—y'), )
bei (ii)
E=x"—a+(n—wP=(E+a—xVP+un—y) (5*)

gilt. Wir formen beide Gleichungen so um, dass die linke Seite nur von E, die
rechte nur von F’ abhidngt. Da Gleichheit insbesonders fiir F'= F| bestehen muss,
sind beide Seiten konstant, d.h. bei (i)

e: A-A)& +(-pP)n* =c

f={F}:(A=-2)x2+(1-pH)y?=c, (6)
bei (ii)

e: —4at +(1—py®)n?=d

[ —dax*+(1—p?)y?=d. (6*)

Durch Anwendung von a und f gemiss (4) bzw. (4*) entstehen

1-42 1—p?
e’ ={El}: PP 6’2+ ‘u2 ’7/2 =c
‘ 1-212 1—pu?
J ol R e ™
1— 2
¢: —4a(E'—a)  + ”2” n?=d
1—42
fi —4a(x—a) + p Y =d. hd)

Nun bringen wir die Koordinatenachsen von n’ mit jenen von n zur Deckung
(siche Abb.2). Dann ist f’=e und f=¢'. Bei ca$0 sind e und e’ gleichartige
konfokale Kegelschnitte und wegen Fiee, F;e e’ niemals nullteilig. Die Affinitit a
ist mit # identisch; sie bildet die Scheitel von e auf jene von e’ ab. Im parabolischen
Fall (ii) werden ferner die Punkte der Achse von e einer Translation unterworfen.
Damit gehort jedes Punktepaar E,E’ derselben Kurve aus der zu e und e’
konfokalen Schar an. Er E’ wie auch F’'v F sind korrespondierende Punkte, und
EF=E'F ist genau die Aussage des Satzes von Ivory (siehe [2], S. 116). Bei A=u+1,
also bei dhnlichen Ausgangsdreiecken, sind e und e’ Kreise.
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Bei ¢=0 oder a=0 zerfallen e und e’ in Paare verschiedener, beziiglich der
Koordinatenachsen symmetrischer Geraden. Die Einschrinkung von g auf f” ist
dann nach (4) und (6) bzw. nach (4*) eine Kongruenz. Punktepaare E, E’ wie auch
F',F liegen bei (i) auf Kreisen um O, bei (i) auf gemeinsamen Normalen der
Parallelenpaare; die Ausgangsdreiecke stimmen in einer Seitenldnge iberein. Um-
gekehrt zeigt die Rechnung, dass bei F|F, = FF; nach (4) und (6) bzw. (4*) und (6*)
die Verbindungsgerade F{F; mit f” neben F| und F; auch noch den Fernpunkt
gemein hat. Sie gehort damit ganz zu f'=e.

Fall 2: {F\, F,, F;} kollinear, {F{, F}, F}} nicht kollinear:

Nun sind die Affinititen a und g singuldr; in (2) und (3) ist etwa =0 zu setzen.
Die Gleichungen (4) bis (6*) bleiben weiterhin giiltig. Bei zusammenfallenden
Koordinatenachsen ist f/=e wieder ein Kegelschnitt oder, wenn die gegebenen
Punktetripel in einer Seitenlinge iibereinstimmen, ein Geradenpaar durch Fj, F;, Fj3.
a bildet die Punkte E ee auf die korrespondierenden Punkte der (Haupt-)Achse von
e ab; EF= E'F ist wieder eine Aussage des Satzes von Ivory.

Der Fall kollinearer {Fj, F;, F;} bei nicht kollinearen {F;,F,, F3} unterscheidet sich
vom Fall 2 lediglich in der Bezeichnung. Nun enthilt e nur Punkte einer Symmetrie-
achse von f; die Randpunkte dieser Punktmenge sind bei nichtzerfallendem f genau
die reellen Brennpunkte von f.

Fall 3: {F,, F,, F3} und {F{, F;, F}} sind je kollinear:

Wir setzen y;=x/=0 fiir i= 1,2,3 voraus. Die Bedingungen
EF:-FFp=EP—EF,  j=2,3

fihren auf das Gleichungssystem
2(5=x) 820y’ = 3=y - (d—yD),  j=2.3. )

Genau dann, wenn die Teilverhiltnisse (F\F,F;) und (F{F;F}) verschieden sind,
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gibt es eine eindeutige Losung fir ¢ und »’, die wir nach Verschiebung der
Koordinatenachsen als £ =n’=0 voraussetzen wollen. Dies bewirkt
2

2__ 4,2
xj Yif=x]

) —yp fur j=2,3. ; 9

Fiir die gesuchten Punkte E=(0,7), E’=(¢’,0) ist nun EF, = E'F], also
6’2—772=x%—yi2 (10)

hinreichend.

Bringt man die Koordinatenachsen von n und n’ zur Deckung, so zeigen (9) und
(10): Die Punktepaare F;, F; wie auch E’,E sind Haupt- und Nebenscheitel von
Ellipsen einer Konfokalschar. Je nachdem, ob E Neben- oder Hauptscheitel ist,
umfasst e alle Punkte einer Geraden oder nur jene, die nicht zwischen den reellen
Brennpunkten der Konfokalschar liegen. Analog ist e’ Teilmenge der dazu ortho-
gonalen Punktreihe. E+ E’ wie auch F/ F; sind also korrespondierende Punkte der
Koordinatenachsen. Wieder sind F;, F] durch andere Punktepaare F,F’ ersetzbar,
und EF= E’F ist ein Spezialfall des Satzes von Ivory.

Stimmen die Teilverhiltnisse der gegebenen Punktetripel iiberein, so existiert kein
Punkt E mit der gewiinschten Eigenschaft, ausser im Trivialfall der Kongruenz der
Tripel. Man ersieht dies aus (8), wobei einfachheitshalber x, =y]=0 gesetzt werden
kann.

Zusammenfassend erhalten wir folgende

Losung von (A): Sind die Tripel F\F,F; und F|F;F; kongruent, so gibt es zu jedem
Een ein E'en’ mit EF,=E'F.. Sind die Tripel je kollinear mit gleichen Teilverhdlt-
nissen (F\F,F;)=(F|F}F3), aber nicht kongruent, so existiert kein Losungspunkt E.
In allen anderen Fiillen ldsst sich n’ so mit n zur Deckung bringen, dass F,~ F; fiir
i=1,2,3 korrespondierende Punkte zweier Kurven f.f einer Schar konfokaler Kegel-
schnitte (oder Geraden) sind. Die gesuchte Punktmenge e={E} ist mit [’ identisch und
{E’} mit f. Die Beziehung EF,=E'F] ist Aussage des Satzes von Ivory und gilt fiir
alle Paare korrespondierender Punkte F'ef’ und Fef. e zerfdllt dann und nur dann
in zwei verschiedene Geraden, wenn bei nicht kollinearen {F},F;,F;} ein Paar (i,j)
mit i+j und F,F,= F/F] existiert. Genau im Fall kollinearer {F}, F;, F;} enthdlt e als
ausgeartete Kurve einer Konfokalschar nur Punkte einer einzigen Geraden.

H. Stachel, TU Wien
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On primitive roots

Baum [2] has given useful criteria for certain primitive roots. Wilansky [6] pointed
out that these results can be obtained without use of quadratic reciprocity. The
purpose of this note is to derive their theorems and to obtain some more results with
a quite simple counting method. We shall deal with odd primes p. We assume
standard results on quadratic residues and primitive roots. An integer a relatively
prime to p belongs to the exponent k>0, modulo p, if a*=1(modp) and a"=%1
(mod p) for 0<n<k. A primitive root modulo p is a residue which belongs to the
exponent p— 1. There are ¢ (p— 1) primitive roots modulo p, where ¢ (x) is the Euler
phi-function or totient. Euler’s totient has the following property: if m is odd then
0 Q2"-m)=2""lp@m)(n=1) and ¢ (2"- m)=2"¢ (m) if m is even. A quadratic
residue, modulo p, is an integer a+0 such that x>=a (mod p) has solutions. QR
(QNR) denotes the set of residues, modulo p, which are quadratic residues (non-
residues). With respect to the property of being a primitive root, modulo p, these
sets are denoted by PR(NPR). We note the following familiar results: a is a
quadratic residue modulo p if and only if @~ P/2= | (mod p). This result is known as
Euler’s criterion. From Euler’s criterion it follows that (—1/p)=(—1)®~V/2 where
(a/p) is the Legendre symbol, defined by (a/p)=+1 if aeQR, (a/p)=—1 if
acQNR. Gauss has given a theorem - known as Gauss’ lemma - that puts the
information contained in Euler’s criterion into a slightly different form. Gauss’
lemma makes it possible to evaluate (2 /p), 3/p), (7/p).

The Legendre symbol has the properties:

(%) . (%) - <%ﬁ), (i) - (—b—) if a=b(modp)

14 p
where a,b are relatively prime to p. This makes it possible to calculate (—a/p) if
(a/p) is known. We give a list of values (a/p) needed in the sequel.

1 +1 if p=1 (mod4)

<7)= —1 if p=-—1(mod4)
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