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Iterierte arithmetische Mittelung und eine Verallgemeinerung
der Jensenschen Ungleichung

1. Iterierte arithmetische Mittelung

Die Bildung des arithmetischen Mittels (x;+ x,)/2 der reellen Zahlen x; und x,
kann als Austausch der Hilften x,/2 und x,/2 aufgefasst werden. Dieser Prozess,
auf mehr als zwei Zahlen iibertragen, fithrt zwar nicht unmittelbar, aber doch in der
Grenze zum entsprechenden Ergebnis.

Ausgehend vom Verteilungsvektor (xjy, ..., x,) bildet man der Reihe nach durch
Mitteln der Koordinaten 1 und 2,2 und 3,3 und 4, ... die Vektoren

(x19~--axn)7 (xl/2+x2/29x1/2+x2/2’x3"“9xn)9
(/24 X2 /2, %1 [4+ X [A+ X3 /2, %, [A+ X, [A+ X3 /2, %40 ... X )

usw., bis nach n—1 Schritten alle Koordinaten erfasst sind. Eine giinstige
Darstellung gelingt mit Hilfe der (n,n)-Matrizen

als Folge (x1, ..., x,), (X1, .o, X)) A1, (X15 ooy X)) A1 Agy ooy (X1 o, x) [ [ 121 A4

=
Die Matrix 4:=][?-}4; ist als Produkt doppelt-stochastischer Matrizen selbst
doppelt-stochastisch. Nach Konstruktion besteht ihre letzte Spalte aus positiven
Zahlen, denn die n-te Koordinate des Vektors (x, ..., x,,) 4 ist

21y 21y, 227 e 4272, 427 1x,.

Nach dem Ergodensatz ([1], S.395) existiert dann die Grenzmatrix M:= lim 4% .

k— o0

Ihre Zeilen stimmen, wieder nach diesem Satz, miteinander iiberein. Da zudem die
Spalten die Summen 1 haben, ist

1....1
1 .
M=—.

n
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Die Folge (xi,...,x,)4%, k=0,1,2... konvergiert daher ebenfalls, und zwar,
x=(1/n)- Y1, x, gesetzt, gegen die Gleichverteilung (x,,...,x,) M= (%, ..., %).

2. Verallgemeinerung

Gegeben seien positive Zahlen py, ...,p,. Zur Abkiirzung wird ¢,=p;/(p,+p;. 1),
4/=P;+1/@i+Ppis 1), i=1,...,n— 1, gesetzt. Aus den doppelt-stochastischen Matrizen

wird die Matrix P:=]] 7~ P, gebildet. Sie ist doppelt-stochastisch, erfullt die ent-
scheidende Voraussetzung des Ergodensatzes, und die Folge P*, k=0,1,2... hat,
wie oben 4, die Grenzmatrix M. Die Folge (xy, ..., x,) P¥, k=0,1,2 ... konvergiert
wieder gegen die Gleichverteilung (%, ..., X).

Hier wird auch fir n=2 das arithmetische Mittel i.a. nur approximiert. Man
bestitigt leicht, dass sich die Komponentenfolgen x{9,x{9 der Vektorfolge
(x1,x) PX,k=1,2, ... durch

. 1
xf=x+ 5 Qg =1 (xy—xy), X =x— 5 2q,— 1) (x;—xp)

darstellen lassen. Die Konvergenz zeigt sich unmittelbar an |2¢,—1| <1. Fir
q1> 1’/2 sind beide Folgen monoton, fiir g; <1/2 schwanken sie um ihren Grenz-
wert X.

3. Die Ungleichung

Ist g eine konvexe Funktion auf dem Intervall IR, so bedeutet dies:
(1/2)- (g(x1)+g(x;)) =g (%). Setzt man f(x;,x,)=g(x,)+g(x,), entsteht eine
Funktion auf I? mit der Eigenschaft f(x, x;)=f (%, X).

Allgemeiner werden nun Funktionen von n Variablen x, ..., x,, betrachtet, die bei
den Mittelungen P; gemiss Nr.2 entsprechenden Ungleichungen geniigen.

Die Abbildungen P; éndern das arithmetische Mittel der Zahlen x;, ..., x,, nicht.
Es wird im weiteren als fest vorgegeben anzusehen sein; um dies zu verdeutlichen,
steht jetzt X fur x.

Satz. Gegeben seien neN und ein Intervall ICR. Zu x €l sei H, (%) die Hyperebene
((X1s e X) | (/) - D0y x;=%}. Auf K(R):=1"H, (%) sei eine reelle Funktion f mit
folgenden Eigenschaften gegeben:
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1. Auf K(X) und furallei=1, ...,n—1gilt

f(xl’ s Xim 15 Xjs Xjg 1> oees xn) 2f(xl’ cees Xj l9qixi+q;xi+l’qt!xi+qixi+ | EIRRRS xn) ’
wobei Gleichheit nur-fiir x; =x; | zugelassen ist.
2. Die Funktion fist in (X, ..., X) nach unten halbstetig.
Dann gilt f(x,, ..., x,) 2f(%, ..., X) mit Gleichheit nur fiir x,=---=x,=% -

Es ist klar, dass «nach unten halbstetig» und «=» durch «nach oben halbstetig»
und « < » ersetzt werden konnen.

Beweis: Nach Voraussetzung wird der Funktionswert bei keiner der Mittelungen
P, die von (x, ..., x,) zu (xy, ..., x,) P fithren, vergrossert. Dasselbe gilt dann auch
beim Ubergang von (x,...,x,) zu (xy,...,x,) P, k=1,2,... Fir die Folge der
Funktionswerte f( (xy, ..., x,) P¥), k=0,1,2, ... kann man schliessen:

f(xl’ "'9xn)2f((x19 “”xn)Pk) Zkl_i_’rgf((xl’ ;“’xn)Pk)

Zf(kl—l—»ngo (x19 ""xn)Pk) =f((x1, '-"xn)M) =f()ea cety )?,') ‘

In der letzten Abschitzung ist die Halbstetigkeit ausgenutzt. Gilt Gleichheit, so
auch f(xy,..., x,)=f((x, ..., X)) P). Aus (xy,...,x,)¥(x},...,x,) P wirde folgen,
dass mindestens eine der Mittelungen P, ein Koordinatenpaar abdndern und so den
Funktionswert verkleinern miisste. Also ist (xy, ..., x,) Fixvektor von P und damit
auch von M. Diese Matrix hat aber (%, ..., X) als einzigen Fixvektor.

In den folgenden Anwendungen wird nur die einfache Mittelung 4 vorkommen.

4. Spezialisierung auf die Jensensche Ungleichung

Die Funktion g: I - R sei stetig und streng konvex, also

(g(x)+g(x2) /228 (x1/24x2/2)

mit Gleichheit nur fir x; = x;,.
Setzt man f(xy, ..., x,):=,"— & (x;), wird fir x,+ x;, |

L1y eeis X)) =f gy ey Xi/2 +X401/2: %12 X140 1/25 0005 X,)
=g(x)+8(x;41)—2- g(-xi/2+xi+l/2)>0 :

Der Satz besagt dann:

"'1'1‘ : igg(x,-)Zg(l i xi)

n =1

mit Gleichheit nur fiirr x;=--- =x,=(l /n)- X;.
Dies ist die Jensensche Ungleichung (siehe z.B. [2], S.51).
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5. Beispiel

In [3] wird die Aufgabe gestellt, die Ungleichung

S xg/U-x)(1-x)= (3 ) /17

I<i<j<n
fiir n>3 und positive Zahlen x; mit ).7_, x,= 1 zu beweisen; Gleichheit solle nur fiir

x;= -+ =x,=1/n eintreten.
Der bewiesene Satz liefert etwas mehr: Fiirn>3 und £> 1/n gilt auf [0,1)"n H,, (%)

o= T xpfi-xyd-x)= () 2/a-s7

I1<i<j<n
mit Gleichheit nur fiur x;= .- =x,=2%.
Zunichst wird ein trivialer Sonderfall erledigt: x;+x,=1 und x;=---=x,=0.

Dann ist £=1/n und

SO, x)=1> _i—(ni-—i;= (; ))22/(1——)2)2 )

Um den Satz ins Spiel zu bringen, berechnet man die Differenz D der Funktions-
werte aus Bedingung 1; wegen der Symmetrie von f geniigt es, dies fiir i=1 zu tun.
Mit m:=x,/2+ x,/2 und x, % x, erhilt man

D=f(xy,..., x,)—f(m,m,xs, ..., x,)
= (x1%3/(1 = x)) (1 — xp) — m? /(1 — m)?) n
+ (%, /(1= %)+ % /(1 =xp)—2m/(1 —m)) - ig.sxi/(l —Xx;)-

Nach einiger Rechnung ergibt sich fiir die erste Klammer
Ki= = (1= %20 (1= 21— %) /(1 = 21) (1 = %) (2= %, — x)?
und fiir die zweite
Ky=(x1=x0?/(1 = x) (1= x5) @ = x, = x,)

Beachtet man K, >0 und
iBX,-/(l —X;)= i X;=nX—x1—Xxy21—x;—x,,
i= i=3

wo aber Gleichheit zwischen erstem und letztem Term nur im Sonderfall eintreten
kann, folgt ohne Riicksicht auf das Vorzeichen von (1 —x;—x;)
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D=K+K;- D x;/(1—x)>K,+K,- (1—x;—xy)
i=3
=01 — X2 (1= x;— )2 /(1 = %) (1 = x) 2= x; — x,)? 20 -

Damit ist der Satz anwendbar und die Behauptung bewiesen. Ubrigens gilt fur
% <1/n die Abschitzung nicht mehr, wie die Gleichung f(n%,0, ..., 0)=0 zeigt.

6. Bemerkungen

Bekanntlich kann die Ungleichung zwischen arithmetischem und geometrischem
Mittel positiver Zahlen bewiesen werden, indem man auf g(x)=logx die
Jensensche Ungleichung anwendet. Zum Vergleich sei f(x,, ..., x,)=]]",x; be-
trachtet:

FOq e X)) = (X124 %2/2, %1 24 X2/2, X350, X)
=(X1X2“((XI+X2)/2)2) ; f_[x,-<0 fiir x1+x2.
=3

Das gibt sofort

n\1/n 1 n
() =5 B

i=1 i=1

Offensichtlich ist es zweckmaissig, f als symmetrische Funktion zu wihlen; analog
zum Beispiel in Nr. 5 etwa

fOx1, . x)= 2, 8(x)g(x) mit einer stetigen Funktion g:/—R-

1<i<j<n

Die Ungleichung f(x,, ..., x,)=f(X, ..., ) kann fiir diesen Funktionstyp umgeformt
werden zu

—;— -(z‘,lg(x,-))z— % : ; (g(x))?= (; ) : (g (;1; : iglxi))z,

also zu einer Ungleichung, die drei Mittel verkniipft. Ist g positiv, konvex und
logarithmisch konvex (bzw. konkav und logarithmisch konkav), ldsst sich die ent-
scheidende Bedingung (o.E. fiir i= 1 aufgeschrieben)

g(x1) g (x2)— (8 (x1/2 +x,/2))?

+(gr)+g (D=2 g0 /2+x/D) - L g(x)20  (bew. <0)

sofort verifizieren.
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Ein typisches Beispiel ist g (x) =log x mit x>e:

n

(log ,-Ij]xi)z <n(n—1) (log (_'11_ ) i; xi))z N ig (logx,)? -

Man kann sich iiberzeugen, dass diese Ungleichung fiir x,>e die arithmetisch-
geometrische Ungleichung verschirft.
Die Verallgemeinerung dieser Konstruktion von 2-Auswahlen auf k-Auswahlen
liegt auf der Hand und fiihrt z. B. fur die Gammafunktion zu

» k

Z I(x;) ....r(xik)z (n ) . (p (l Z xi)) .
k-Auswahlen aus n k n =i

Interessanter sind Funktionen wie g(x)=x/(1 —x) in Nr.5, die zwar konvex, aber
nicht logarithmisch konvex sind. Zur Anwendung des Satzes benétigt man daher
eine zusitzliche Bedingung; im Beispiel war dies £>1/n.

H. Wellstein, Flensburg, BRD
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5 1
Kipp-Ikosaeder IT")
II. Ikosaeder mit dreiziihliger Symmetrieachse

5. Betrachtet werden jetzt Ikosaeder mit Mittelpunkt, welche die 120°-Drehungen
um die z-Achse vertragen und deren Aussehen an eine Sanduhr erinnert (Fig.4).

Figur 4. Wackelikosaeder mit dreizihliger Symmetrieachse.

1) Kipp-Ikosaeder I erschien in El. Math. 36, 153-158 (1981).
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