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The case d= 3: Clearly: V(S\)=6(n+1).
To compute G(S3n) we count the integers x3 > 0 satisfying

3(n+l)xx + 2(n+l)x2 + x3<*6(n+l)

for (xx,x2) (0,0), (0,1), (0,2), (1,0), (1,1) and (2,0).
Easy computation gives G (Sl) 16 n + 23.

Thecaserf=4: V(S$=141.
To compute G (S^) we count the pairs (x3,x4) of integers x3 > 0, x4 > 0 satisfying

42jc1 + 28x2 + 7x3 + x4^84

for (xx,x2) (0,0), (0,1), (0,2), (0,3), (1,0), (1,1), (2,0).
Counting yields G (Sf) 680.
This completes the proofof the theorem.
We raise the following conjeeture:

v(d,n)<oo forall d_>3 and n>l
We remark that the conjeeture implies g(d,n)<oo by Blichfeldt ([1], p.55):
G (P) <, d\ V(P) + d for nondegenerate lattice polytopes (compare [4]).
Similar problems may be asked for the number of /-dimensional faces of convex
lattice polytopes _P satisfying (7° (P) n, where 0 __; i<, d — 1.

J. Zaks, University ofHaifa and C.R.M.A., University of Montreal,
M.A. Perles, Hebrew University, Jerusalem,

J. M. Wills, University of Siegen, West Germany
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A note on the successive remainders of the exponential series

1. For real x ^ 0, we have by Taylor's theorem

0„(*), (1.1)

(1.2)

e*=l +
X

TT
- +

X2

2!
¦ +

xn x"+1

(n+l)!
where

c/>n(x) ex0n(x)
9 O<0„(„)< 1.
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The behavior of </>n(x) for x= -n, and n large, is considered by Copson [1] in
connection with a related problem of Ramanujan. (For the latter, see Karamata
[2].) Here we wish to consider <ßn (x) and 0n (x) as functions of n for x fixed. We
prove two monotonicity properties and advance two conjeetures.
2. A sequence !ww}£L0 of real numbers is called totally monotone if

(-lfAkun>0, k>0, n>0,

where A is the forward difference Operator, Aun un+x — un.

Proposition 1. If x>0, the sequence !0„}£__o is totally monotone; if x<0, then
\Acj)n\f=Q is totally monotone.

Proof: Using the integral form of the remainder term one finds

1 1

cßn(x)=(n+ l)$ tn e^-»* dt= 1+ x $ tn+] e^-^* dt, /t_>0.

This shows that, apart from an additive constant, !0„}£»o *s a moment sequence
on [0,1], and therefore

(- If Ak<pn x\(l-t)ktn+xeV-»xdt, jfc_>l.

The assertion now follows immediately.
3. Turning to the sequence \6n}9 we prove

Proposition 2. Ifx 7^ 0, then

(-lfAk9n>0, for k 0,l,2, and lim0„ O.
AI-» CC

Proof: For k 0, the stated inequality is trivial. For k= 1, it follows from proposition
1, since

is negative for x > 0 and positive for x < 0.

To prove it for k 2,we let

v_2(x)=v_x(x)=ex,

vAx) e*-[l+-^+-+^], « 0,1,2,...

Clearly,

v;(x)-vB_i(*), n=-1,0,1,2,..., (3-2)
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and from (1.1), (1.2) we have

implying that

ex^.ü+1 vn(x)vn+2(x)
^ n>Q

n + l v2+x(x)

Defining

fn(x)=(n + 3)vn(x)vn+2(x)-(n + l)v2+x(x), n= -1, - 1,0,1,.

we must show (for n _> 0) that

/M(;c)>0 if x>0, fn(x)<0 if x<0. (3.3)

We prove by induction on n that (3.3) holds true for n^—2. Clearly, (3.3)
is true if n — 2. Using (3.2), we find that

^+1^hf±1 rVn+lfn+X-Vnfn+X
[yn+l-vn+x[(n + 4)vnvn+3-(n + 2)vn+xvn+2]

-vn[(n + 4)vn+xvn+3-(n + 3)v2n+2]=vn+2fn.

Therefore,

/fl+iW=v„+iW{^|/„(/)*, (3.4)

the constant of integration being zero, since fn(x)=0(x2n+s) as x-»0, «^-2.
(For the same reason, the integrand in (3.4) is regulär at t=0.) Using the induction
assumption (3.3), and noting that sgnv„+i(x)=(- iy if x<0, it follows from (3.4)

t__at/w+i(x)^0 for x^O. This is (3.3) with n replaced by n+ 1, and thus completes
the induction.
Since {9n} is decreasing and bounded below by zero, the limit lim6n 9 exists.

Observing that w"cc

n + 2

Sind letting n -+ oo, we get 1 e*0, so that 0 0. Proposition 2 is proved.
4. It might be conjectured that the sequence {#„} is totally monotone for every
x^O. However, this appears to be false. For jc 31.5 it was found by computation

that J4018= -1.8443798...xlO"7, while A40n>O for all n# 18 in the ränge
0<>n^26. On the other hand, there is numerical evidence to suggest the following
two conjeetures:

Conjeeture 1. A3 0n < Ofor every x^O.
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Conjeeture 2. For x<0, the sequence \0n}is totally monotone.

The second conjeeture may be given the following equivalent form

(~lf(l-Qkcf>n)>0, k^O, n^O, x<0, (4.1)

where Q denotes the quotient Operator

Qun=^± (un*0).

For, by (1.2), we have

from which the assertion follows.
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Ein Planaritätskriterium für endliche Graphen

Im folgenden sei mit F stets ein endlicher, schlichter und zusammenhängender
Graph bezeichnet.
Die erste rein kombinatorische Charakterisierung der planaren Graphen wurde
1930 von Kuratowski [2] gegeben. Danach ist ein Graph F dann und nur dann
planar, wenn er keine Unterteilung des vollständigen Graphen K5 oder des

vollständigen paaren Graphen K33 als Teilgraphen enthält. Whitney [3] zeigte, dass ein
Graph F genau dann planar ist, wenn er einen kombinatorischen Dualgraphen
besitzt. Mac Lane [4] beschrieb die planaren Graphen durch die Existenz einer
speziellen Kreisbasis. Darüber hinaus gibt es noch eine Reihe von sehr verschiedenartigen,

mehr oder weniger komplizierten Planantätskriterien1), auf die hier nicht
näher eingegangen wird.
Nachstehend soll eine kombinatorische Charakterisierung der planaren Graphen
aufgezeigt werden, welche sich durch besondere Einfachheit sowohl in der Formu-

1) Man vergleiche dazu [1], S.88
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lierung als auch in der Herleitung auszeichnet. Es werden dazu zwei Begriffe
benötigt.
Ein Gittergraph Qn sei ein Graph mit den Knotenpunkten atJ (1 i,j^n), welche wie
folgt durch Kanten miteinander verbunden sind:

<^+.>{J:!:::::„-i}' (««.wf]:.;:::;;"1}-

Unter einer Vergröberung2) eines Graphen F versteht man einen Graphen F'9
welcher durch Herausnahme und Kontraktion von Kanten aus F erzeugt werden
kann.
Damit lässt sich jetzt aussprechen:

Planaritätskriterium. Ein Graph F ist dann und nur dann planar, wenn er
Vergröberung eines Gittergraphen Qn ist.

Beweis: Der Gittergraph Qn ist offensichtlich planar. Zerlegt man nämlich ein
(geometrisches) Quadrat ABCD durch Ziehung von jeweils n-2 Parallelen zu den
Seiten AB und AD in (n— l)2 Teilquadrate, so erhält man den zum Gittergraphen
Qn isomorphen ebenen Gittergraphen Qn, wenn man geeignete Strecken und Punkte
als Kanten und Knotenpunkte auszeichnet. Da jede Vergröberung eines planaren
Graphen stets wiederum ein planarer Graph ist, hat man noch zu zeigen, dass jeder
ebene Graph F Vergröberung eines Qn ist.
Nun lässt sich zu jedem ebenen Graphen F stets ein ebener Graph T(3) mit den
folgenden Eigenschaften angeben:

(I) Jeder Knotenpunkt aeF^3) ist vom Grade v (a)= 3.

(II) Der Graph T(3) ist aufF kontrahierbar.

Da sich weiter jede Unterteilung U(F) eines Graphen F auf F kontrahieren lässt,
hat man jetzt nur noch die folgende Aussage zu beweisen:

(A) Zu jedem ebenen Graphen T(3) gibt es stets einen ebenen Gittergraphen Qn

derart, dass eine Unterteilung U(F^3)) von T(3) Teilgraph von Qn ist.
Der Beweis von (A) wird durch vollständige Induktion nach der Anzahl ax (r(3)) der
Kanten von F(3) erbracht. Es sei dazu angenommen, dass (A) für alle ebenen

Graphen F(3) mit ax (F(3)) < r bereits bewiesen ist, was für r= 2 sicher zutrifft.
Jetzt bezeichne T(3) einen ebenen Graphen mit ax(F^3)) r und k (ax,a2) eine
Kante von F(3). Nach der Induktionsannahme gibt es dann einen ebenen
Gittergraphen Qm, so dass gilt U(F^ — k)^Qm. Um auch eine Unterteilung U(k) der
Kante k in Qm einzeichnen zu können, hat man im allgemeinen eine
«Verfeinerung» von Qm vorzunehmen. Dazu zeichne man in Qm weitere Parallelen zu
AB und AD derart ein, dass jedes Teilquadrat von Qm in 4 Quadrate zerlegt wird.
Man erhält auf diese Weise den ebenen Gittergraphen Q2m-X mit der «feineren»
Unterteilung U'(F(3)—k) von F^3)—k als Teilgraphen. Jetzt kann man aber sicher
eine Unterteilung U(k) der Kante k=(ax,a2) als Weg derart in Q2m-X einzeichnen,

2) Der Begriff wird von H. Sachs ([1], S.213) eingeführt.
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o o~

Figur 1 r -> r (3)- (/(r <3)) cß^ Vergroberung- r

dass £/(&) ausser den Endpunkten keine weiteren Punkte mit U'(F^3)-k) gemeinsam

hat. Dabei wird U(k) im allgemeinen an die zu den Knotenpunkten ax bzw.
a2 benachbarten Knotenpunkte von Uf(F(3)-k) angeheftet werden müssen, welche
bei der «Verfeinerung» von Qm neu hinzugekommen und daher in Uf(F^ — k) vom
Grade 2 sind.
Damit ist (A) durch vollständige Induktion gezeigt und zugleich der Beweis des
Planaritätskriteriums abgeschlossen.
Man kann das eben bewiesene Kriterium in gewisser Hinsicht als Gegenstück zum
Kriterium von Kuratowski ansehen. Während dort die planaren Graphen «von
innen» durch die einfachsten nicht planaren Graphen (K5,K33) charakterisiert
werden, werden sie hier «von aussen» durch einen in seiner Struktur besonders
einfachen planaren Graphen (Qn) beschrieben: Mit Hilfe des Begriffs der
Vergröberung lassen sich die beiden Sätze nämlich wie folgt zusammenfassend formulieren:

Ein Graph F ist dann und nur dann planar,
\ weder K5 noch K33 Vergröberung von F \
\ F Vergröberung eines Qn f

Horst Bergmann, Hamburg
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On a certain selection process

A fundamental selection model in mathematicai population genetics is that of
Fisher-Wright-Haldane (cf. e.g. [1-7]). Since it seems to be impossible to give a

complete global analysis of this model for general fitness parameters we restrict
ourselves to the case where all the heterozygotes of the population have fitness

equal to 1. Under this additional assumption a complete global analysis of the
continuous version of this model is performed.
Consider a population the individuals of which differ only in one Single locus with m
alleles Ax, ...,Am. Letpx (t) denote the frequency of Ax at time t and let^ denote the
fitness of the genotype AjAj. Then the model equations of the continuous Fisher-
Wright-Haldane selection model read as follows:

A(0-A(0(i,(/»p;(0;7-i,....iw)-*(0),
0(t) Z(fjkPj(t)pk(t);j,k=l,...,m) (1)

(w^U'-l «,ä(0)_»0,I(A(0);;-1 m)-1^0/y-/;i for all i,j).It is

well-known that the Solutions of (1) exist on the whole of [0, oo), that 0 (Ot0 < oo

and thatpt(t)-+Q for all /= l,...,m both for t->oo (cf. e.g. [1]). We now make the

following additional assumption:

f l if l<>i<j<,m.

For the sake of simphcity ofnotation we also assume

px(0),...,pm(0)>0.

Now put ax:=fxx— 1 for all i= l,...,m. Then (1) reads as follows:

pl=pl(l + axPx-0), 0=l+Z(ajpf;j=l,...,m).

Lemma 1. For alli=l,...,m there exists lim pt (t) —:pv
.-?00

Proof: Let 1 < i'.<,m. Then (2axpx + 1 - 0)2 4axpx + (l- 0)2 which converges. Hence
\2axpx+1 — 0\ and - since 2axpt+l-0 is continuous - also 2axpx+l-0
converge. If ax=£0 this shows convergence of px. If ax 0 thenpx—px(1 — 0) which
shows (remember _PT!) that px(t) becomes monotonous for sufficiently large t
completing the proof of the lemma.

In the following for arbitrary functions x9y:[09oo)-*Rx^y means that x(t)^y(t)
forall/e[0,oo).

Lemma 2. Let x9 g e Cx [0, oo) and assume x xgon [0, oo). Ifx (0) *= 0 then x 0.

Proofof lemma 2: Easy, since the differential equation jc=xg is linear.
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Lemma 3

(i)px>Oforalli= l,...,m.
(ii) If 1 <_ i,j <; m and axpx (0) | ajPj (0) then alPl fajPj.

Proof: Apply lemma 2 to the differential equations pl=pl(l+alp-0) and
(alpl-aJpJ)' (axpx-aJpJ)(l+axpx + aJpJ-0).

Lemma4.Assume 1 <>i,j<,m andaxpx<djpj. Thenpx 0.

Proof: Otherwise (pl/pjy==(pl/pJ)(alpl-'aJpJ) would converge to some element of
[— oo,0) contradicting/?,//?, > 0.

Theorem 5. Let /n_> 1, letfy(l <, i,j<, m) be non-negative real numbers such thatfy— 1

for i±j and let p x (t),... ,pm (t) denote the (unique) Solutions ofthe system

Pi(t)=Pi(t){X{fjPj(t)\j=l,...,m)
-^{fjkPj(t)Pk(t)\j,k=l,...,m))

(l^i^m) of non-linear first order differential equations with initial values

Px (0),...,pm(0)>0. Then (i)-(iii) hold:
(i) Assume there exists some je IL. ,m] such that/..>l. Then lim,^^ px(t)

(fxx-l)-x(I((fJJ-iyxV=l,...,m,(fJJ-l)pJ(0)=max\(f^
l,...,m}))"Mf(/;i-l)^(0) max[(4^-l)^(0)|A:=l,...,m}andhm^x/?/(0 0

otherwise (/ 1,..., m).
(ii) Assumefx)<> 1 for all i,j=l,...,m and assume there exists some ve [l,...,m] such

that/vv=l. Then lim,-«, Pl(t)=pt(0) (Z(pJ(0);j=l,...,m,fJJ=l))-x if/A-l and

lim,_ oo px (t) 0 otherwise (/ 1,..., m).
(iii) Assume/;,<1 for all i=l,...,m. Then lim^x pt(t)=(l-f„yl (r^l-j^r1;
j= l,...,m))~x for alW l,...,m.

Proof:
(i) WLOG, asps(0)=max\akpk(0)\k=l,...,m). Suppose, there exists some

we|l,...,m} with aupu(0)<asps(0) such that^w>0. Then aupu<asps by lemma 3

and aupu^asps by lemma 4. Now (ps/pu)=(ps/Pu)(asPs~*uPu)>Q and hence

auhs<Ps(^)/Pu(^)<Ps/Pu^o.u/as, a contradiction. Thereforepx 0 for all /= l,...,m
with axpx(0)<asps(0). From lemma 3 it follows that (/>,//>,)'= 0 for all /,;= l,...,m
with axpx (0) üjPj (0) asps (0) which together with I (px; i 1,..., m) 1 yields (i).

(ii) Lemma 4 implies£ 0 for all /= l,...,m with ax<0. Moreover, (pjpj)'~0 for
all i,j=l,...,m with a, ay 0 which together with Z(px;i=l,...,m)=l yields (ii).
(iii) From lemma 4 it follows axpx a}pj for all i,j=l,...9m which together with

Z(px;i= l,...,/w)= 1 yields (iii).

Remark: These results are exactly the same as in the discrete time case (cf. [4])

though completely different methods are used within the corresponding proofs.
H. Länger, Vienna
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Zur Existenz von pythagoreischen Quadern mit vorgegebener Raumdiagonale

1. Pythagoreische Rechtecke undpythagoreische Quader

Ein rechtwinkliges Dreieck mit ganzzahligen Seitenmasszahlen a, b und c bezeichnet
man bekanntlich als pythagoreisches Dreieck. Zwei kongruente pythagoreische
Dreiecke lassen sich dann zu einem pythagoreischen Rechteck zusammensetzen,
bei welchem Seiten und Diagonale ganzzahlige Langenmasszahlen besitzen.
In Analogie dazu sprechen wir hier von einem pythagoreischen Quader, falls alle
Kanten und die Raumdiagonale ganzzahlige Längenmasszahlen besitzen. Sind
a,b,c die Kantenmasszahlen und ist d die Längenmasszahl der Diagonale, so muss
also ä2 a2 + b2 + c2 mit a,b,ceN gelten, wobei hier N= [1,2,3, ..} Es sei
angemerkt, dass ggT(a,b,c)= 1 nicht verlangt wird, wie dies bei der Untersuchung der
sog. primitiven pythagoreischen Dreiecke erforderlich ist.

2. Beweis des Satzes von Hurwitz uber pythagoreische Quader mit vorgegebener
Raumdiagonale

Die Frage nach der Existenz von pythagoreischen Quadern mit vorgegebener
Raumdiagonale deN ist gleichwertig zu der Frage, für welche deN die Gleichung
a2 + b2 + c2 d2 in N mindestens eine Lösung besitzt. Die Antwort gibt der folgende

Satz von Hurwitz. Die Zahlen 2k und 5 • 2k mit ke [0,1,2,3,...} sind die einzigen
natürlichen Zahlen, die nicht als Längenmasszahl der Raumdiagonale eines pythagoreischen

Quaders in Frage kommen. (Vgl. [1], S.2711), und [2], S. 101.)

Wir zeigen: Zu d^2k • 5' mit ke [0,1,2,3,...} und le {0,1} gibt es mindestens eine

Lösung von a2+b2+c2=d2 in N.

1) Für diesen Literaturhinweis bm ich Herrn E Trost zu Dank verpflichtet
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