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46 Kleine Mitteilungen

The case d=3: Clearly: V(S3)=6(n+1).
To compute G(S2) we count the integers x> 0 satisfying

3(n+Dx;+2(n+ D) x4+ x3<6(n+1)

for (x1,x2)=(0,0), (0, 1), (0,2), (1,0), (1,1) and (2,0).

Easy computation gives G (S3)=16n+23.

The case d=4: V(S =147.

To compute G (S7) we count the pairs (x3, x4) of integers x3 > 0, x,> 0 satisfying

42x1+28)C2+7X3+X4S 84

for (xl’x2)= (09 O)v (0’ l)a (Os 2)’ (03 3)’ (1 ’ 0)’ (19 1)9 (2’ O)
Counting yields G (S)= 680.

This completes the proof of the theorem.

We raise the following conjecture:

v(d,n)<oo forall d>3 and n>1.

We remark that the conjecture implies g(d,n)< oo by Blichfeldt ([1], p.55):

G (P)<d!V(P)+d for nondegenerate lattice polytopes (compare [4]).

Similar problems may be asked for the number of i-dimensional faces of convex

lattice polytopes P satisfying G°(P)=n, where 0<i<d—1.

J. Zaks, University of Haifa and C.R.M.A_, University of Montreal,
M. A. Perles, Hebrew University, Jerusalem,

. J.M. VWills, University of Siegen, West Germany
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A note on the successive remainders of the exponential series

1. Forreal x# 0, we have by Taylor’s theorem

eX——1+x+x2+ L2 il
1t 21 n! " (n+1)!

P (x), (1.1)

where

@, (x)=ex0x) 0<0,(x)<1. (1.2)
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The behavior of ¢,(x) for x=—n, and n large, is considered by Copson [1] in
connection with a related problem of Ramanujan. (For the latter, see Karamata
[2].) Here we wish to consider ¢, (x) and 6, (x) as functions of n for x fixed. We
prove two monotonicity properties and advance two conjectures.

2. Asequence {u,};_ o of real numbers is called totally monotone if

(=14 u, >0, k=0, n>0,
where 4 is the forward difference operator, du,=u,, | — u,.

Proposition 1. If x>0, the sequence |¢,}* , is totally monotone; if x<O0, then
1 Ap, 1o is totally monotone.
Proof: Using the integral form of the remainder term one finds

1 1
¢, (X)=(n+1D)[rmel=Dxdr=1+x[r*1el=0xdy, n=0.
0 0

This shows that, apart from an additive constant, {¢,}3_, is a moment sequence
on [0, 1], and therefore

1
(=1 dr g =x[(A=pfr+lel-0xdr k=1,
0

The assertion now follows immediately.
3. Turning to the sequence !4,}, we prove

Proposition 2. [f x # 0, then

(—1¥4k0,>0, for k=0,1,2, and lim0,=0.

n— o

Proof: For k=0, the stated inequality is trivial. For k=1, it follows from proposition
1, since

App=pr1— pp=e" [ = 1] 3.1

is negative for x >0 and positive for x <0.
To prove it for k=2, we let
Vo (X)=v_ (x)=¢,
x x"
v,,(x)=e"-— [1+—1‘!“+"'+—n‘—!“:|, n—0,1,2,...

Clearly,

v, (X)=v,_;(x), n=-1012,..., (3.2)



48 Kleine Mitteilungen

and from (1.1), (1.2) we have

n+1

= On
V, (x) (n_H)!e" , n=0,
implying that
eX420n n+3 vn(x)vn+2(x) n>0
n+2 n+ 1 (X) ’
Defining

Jo)=(n+3)v, () V2 (X)—(r+2)vi 1 (x), n=-2,—-10,1,..,
we must show (for n > 0) that
[ix)>0 if x>0, f,(x)<0 if x<O. (3.3)

We prove by induction on n that (3.3) holds true for n> —2. Clearly, (3.3)
is true if n= — 2. Using (3.2), we find that

7,
"%de nH] Vot 1fn+ 17 VnSns
ntl-=y +l[(n+4)vnvn+3—'(n+2)vn+lVn+2]
—.vn[(n+4)vn+1vn+3—(n+3)vrzz+2]=vn+2fn'
Therefore,

n+2()

fn+1(x) Vn+1(X)f 210

———f,(D)dt, 3.4)

the constant of integration being zero, since f,(x)=0(x?*"*3) as x—0, n>—2.
(For the same reason, the integrand in (3.4) is regular at t=0.) Using the induction
assumption (3.3), and noting that sgnv,,; (x)=(—1)" if x<0, it follows from (3.4)
that f, ., (x)=0 for x=0. This is (3.3) with n replaced by n+ 1, and thus completes
the induction.

Since {6,} is decreasing and bounded below by zero, the limit lim§,=0 exists.
Observing that noee

1=¢*%— et n>0,

n+ 2

and letting n— oo, we get 1 =¢*?, so that § =0. Proposition 2 is proved.

4. It might be conjectured that the sequence {f,} is totally monotone for every
x#0. However, this appears to be false. For x=31.5 it was found by computa-
tion that 4*0,3= —1.8443798...x1077, while 4*0,>0 for all n# 18 in the range
0<n<26. On the other hand, there is numerical evidence to suggest the following
two conjectures:

Conjecture 1. 436, <0 for every x#0.
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Conjecture 2. For x <0, the sequence |0,,} is totally monotone.
The second conjecture may be given the following equivalent form

(1Y (1-0%¢,)>0, k=0, n=0, x<0, @4.1)

where Q denotes the quotient operator

Qu,= “:l“ (u,#0).

n

For, by (1.2), we have

Qk¢n=exd"0,,,

from which the assertion follows.
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Ein Planaritiitskriterium fiir endliche Graphen

Im folgenden sei mit I” stets ein endlicher, schlichter und zusammenhingender
Graph bezeichnet.

Die erste rein kombinatorische Charakterisierung der planaren Graphen wurde
1930 von Kuratowski [2] gegeben. Danach ist ein Graph I dann und nur dann
planar, wenn er keine Unterteilung des vollstindigen Graphen K oder des voll-
stindigen paaren Graphen Kj ; als Teilgraphen enthilt. Whitney [3] zeigte, dass ein
Graph I' genau dann planar ist, wenn er einen kombinatorischen Dualgraphen
besitzt. Mac Lane [4] beschrieb die planaren Graphen durch die Existenz einer
speziellen Kreisbasis. Dariiber hinaus gibt es noch eine Reihe von sehr verschieden-
artigen, mehr oder weniger komplizierten Planaritétskriterien'), auf die hier nicht
ndher eingegangen wird.

Nachstehend soll eine kombinatorische Charakterisierung der planaren Graphen
aufgezeigt werden, welche sich durch besondere Einfachheit sowohl in der Formu-

1) Man vergleiche dazu [1], S.88.
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lierung als auch in der Herleitung auszeichnet. Es werden dazu zwei Begriffe
benotigt.

Ein Gittergraph Q, sei ein Graph mit den Knotenpunkten g;; (1=1,j = n), welche wie
folgt durch Kanten miteinander verbunden sind:

.=19"'9 ’ =1 -1
(@;,;j+1) {Jl= 1,._.,2_1} (aw’aIHJ){ =1 n } ;

Unter einer Vergroberung?®) eines Graphen I’ versteht man einen Graphen I/,
welcher durch Herausnahme und Kontraktion von Kanten aus I erzeugt werden
kann.

Damit lisst sich jetzt aussprechen:

Planarititskriterium. Ein Graph I' ist dann und nur dann planar, wenn er Ver-
groberung eines Gittergraphen Q, ist.

Beweis: Der Gittergraph Q, ist offensichtlich planar. Zerlegt man nidmlich ein
(geometrisches) Quadrat A BCD durch Ziehung von jeweils n—2 Parallelen zu den
Seiten AB und AD in (n— 1) Teilquadrate, so erhélt man den zum Gittergraphen
Q, isomorphen ebenen Gittergraphen Q,, wenn man geeignete Strecken und Punkte
als Kanten und Knotenpunkte auszeichnet. Da jede Vergroberung eines planaren
Graphen stets wiederum ein planarer Graph ist, hat man noch zu zeigen, dass jeder
ebene Graph I" Vergroberung eines 0, ist.

Nun lisst sich zu jedem ebenen Graphen I' stets ein ebener Graph I'® mit den
folgenden Eigenschaften angeben:

(I) Jeder Knotenpunkt ae I'® ist vom Grade v (a) = 3.
(I1) Der Graph I'® ist auf I" kontrahierbar.

Da sich weiter jede Unterteilung U (I") eines Graphen I auf I" kontrahieren lasst,
hat man jetzt nur noch die folgende Aussage zu beweisen:

(A) Zu jedem ebenen Graphen I'® gibt es stets einen ebenen Gittergraphen Q,
derart, dass eine Unterteilung U (I"®)von I'® Teilgraph von Q,, ist.

Der Beweis von (4) wird durch vollstindige Induktion nach der Anzahl a, (I"?®) der
Kanten von I"® erbracht. Es sei dazu angenommen, dass (4) fiir alle ebenen
Graphen I ®) mit a, (I’ ) < r bereits bewiesen ist, was fiir r=2 sicher zutrifft.

Jetzt bezeichne I'® einen ebenen Graphen mit a; (I"®)=r und k=(a,,a,) eine
Kante von I'®. Nach der Induktionsannahme gibt es dann einen ebenen Gitter-
graphen @, so dass gilt U(I'®—k)<@,,. Um auch eine Unterteilung U (k) der
Kante k in @, einzeichnen zu kénnen, hat man im allgemeinen eine «Ver-
feinerung» von @, vorzunehmen. Dazu zeichne man in Q,, weitere Parallelen zu
AB und AD derart ein, dass jedes Teilquadrat von Q,, in 4 Quadrate zerlegt wird.
Man erhilt auf diese Weise den ebenen Gittergraphen 9,,,_; mit der «feineren»
Unterteilung U’ (I'®—k) von I"®—k als Teilgraphen. Jetzt kann man aber sicher
eine Unterteilung U (k) der Kante k=(a,,a,) als Weg derart in Q,,,_, einzeichnen,

2) Der Begriff wird von H. Sachs ([1], S.213) eingefiihrt.
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Figur 1. F > TI® - U[Ir®)<Q,- Vergroberung— I'.

dass U (k) ausser den Endpunkten keine weiteren Punkte mit U’ (I"® — k) gemein-
sam hat. Dabei wird U (k) im allgemeinen an die zu den Knotenpunkten a; bzw.
a, benachbarten Knotenpunkte von U’ (I"® - k) angeheftet werden miissen, welche
bei der «Verfeinerung» von Q,, neu hinzugekommen und daher in U’ (I"® — k) vom
Grade 2 sind.

Damit ist (4) durch vollstindige Induktion gezeigt und zugleich der Beweis des
Planaritatskriteriums abgeschlossen.

Man kann das eben bewiesene Kriterium in gewisser Hinsicht als Gegenstiick zum
Kriterium von Kuratowski ansehen. Wahrend dort die planaren Graphen «von
innen» durch die einfachsten nicht planaren Graphen (K, Kj;3) charakterisiert
werden, werden sie hier «von aussen» durch einen in seiner Struktur besonders
einfachen planaren Graphen (Q,) beschrieben: Mit Hilfe des Begriffs der Ver-
groberung lassen sich die beiden Sétze namlich wie folgt zusammenfassend formu-
lieren:

Ein Graph I ist dann und nur dann planar,

[ weder Ks noch K, 5 Vergroberung von I ]

wen l I" Vergriberung eines Q,, f

Horst Bergmann, Hamburg

LITERATURVERZEICHNIS

1 H. Sachs: Einfithrung in die Theorie der endlichen Graphen II. Leipzig 1972.

2 G. Kuratowski: Sur le probléme des courbes gauches en topologie. Fund. Math. 15, 271-283 (1930).
3 H. Whitney: Nonseparable and planar graphs. Trans. Am. Math. Soc. 34, 339-362 (1932).

4 S. Mac Lane: A combinatorial condition for planar graphs. Fund. Math. 28, 22-32 (1937).

© 1982 Birkhéuser Verlag, Basel 0013-6018/82/020049-03$1.50+0.20/0



52 Kleine Mitteilungen
On a certain selection process

A fundamental selection model in mathematical population genetics is that of
Fisher-Wright-Haldane (cf. e.g. [1-7]). Since it seems to be impossible to give a
complete global analysis of this model for general fitness parameters we restrict
ourselves to the case where all the heterozygotes of the population have fitness
equal to 1. Under this additional assumption a complete global analysis of the
continuous version of this model is performed.

Consider a population the individuals of which differ only in one single locus with m
alleles 44, ...,4,,. Let p;(¢) denote the frequency of 4, at time ¢ and let f; denote the
fitness of the genotype 4;4;. Then the model equations of the continuous Fisher-
Wright-Haldane selection model read as follows:

biO=p:()(Z (fyp,@ij=1,....m) =D (1)),
® (1)=2 (frp; () pr (t);f,k=1,...,m) (1)

(m21,i=1,...,m,p;(0)20,2 (p;0);j=1,...,m) = 1,£;=0,f;=f; for all ij). It is
- well-known that the solutions of (1) exist on the whole of [0, c0), that @ (©)t1 P < 0
and that p;(r)—0 for all i=1,...,m both for t— oo (cf. e.g. [1]). We now make the
following additional assumption:

fi=1 if 1<i<j<m.

For the sake of simplicity of notation we also assume

ﬁl (O)s9pm(0)>0

Now puta;:=f;— 1 foralli=1,...,m. Then (1) reads as follows:

pi=pi(1+a,p;— D), ®=1+2(9;p5j=1,...,m).

Lemma 1. Forall i=1,...,m there exists lim p,(t)=:p;.

t—
Proof: Let 1<i<m. Then (2a,p;+ 1— D) =4a,p;+ (1 — ®)* which converges. Hence
|2a;p;+1—®| and - since 2a;p;+1—@ is continuous - also 2a;p;,+1—-@
converge. If a;#0 this shows convergence of p;. If a;=0 then p,=p,(1— @) which
shows (remember @1!) that p;(z) becomes monotonous for sufficiently large ¢
completing the proof of the lemma.

In the following for arbitrary functions x,y:[0,c0c)— Rx=y means that x (?)sy(¢)
for all 1€ [0, ).

Lemma 2. Let x,ge C! [0, o0) and assume x = xg on [0, o0). If x (0) §O then x%O.

Proof of lemma 2: Easy, since the differential equation x = xg is linear.
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Lemma 3

@ p;>0foralli=1,...,m.

@) If1<ij<manda,p,;(0) §(1jpj (0) then a,-péajpj.

Proof: Apply lemma 2 to the differential equations p;=p,;(1+a,p,—®) and
(@;pi—a;p;)) =(a;pi—a;p;))(1+a;p;+a;p;— D).

Lemma 4. Assume 1<i,j<manda;p;<a;p;. Then p;=0.

Proof: Otherwise (p,-/pj)'=(p,~/pj) (a;p;—a;p;) would converge to some element of
[— o0,0) contradicting p; /p; > 0.

Theorem 5. Let m= 1, let f;;(1<i,j < m) be non-negative real numbers such that fi=1
Jori#jandlet p\(t),...,pm(t) denote the (unique) solutions of the system

piO=p; (2 (fyp;(®)j=1,...,m)
—Z (fp; Opc (0);),k=1,...,m))

(I<i<m) of non-linear first order differential equations with initial values
21(0),...,pm(0)> 0. Then (i)-(iii) hold:

(i) Assume there exists some se!l.....m} such that f,>1. Then lim,,, p;(?)
== DN (Z (=D h=1,...m,(f;— D p;(0)=max [(fix— D)p (0) | k
=1L,...,m})) " if (f;— Dpi (0)=max [ (i — Dp 0) k= 1,...,m} and lim,_, . p;(1)=0
otherwise (i=1,...,m).

(ii) Assume f;< 1 for all ,j=1,...,m and assume there exists some ve {1,...,m} such
that f,,= 1. Then lim,—, o, p;())=p;(0) (Z (p;(0);j=1,....m.f;=1)) " if fy=1 and
lim,, . p; (1)=0 otherwise (i=1,...,m).

(iii) Assume f;<1 for all i=1,...,m. Then lim,,, p;()=(1-f)"" (Z((A1-f)7"
j=1...m)) foralli=1,...,m.

Proof:

(i) WLOG, a,p,(0)=max {a;p,(0)lk=1,...,m}. Suppose, there exists some
ue'l,...,m} with a,p, (0)<a,p,(0) such that p,>0. Then a,p,<a,p, by lemma 3
and au[’uzasps by lemma 4. Now (ps/pu).=(ps/Pu) (asps“aupu)>0 and hence
a,/a;<p;0)/p, 0)<p,/p,<a,/a,, a contradiction. Therefore j;=0 for alli=1,...,m
with a;p; (0)<a,p, (0). From lemma 3 it follows that (p,-/pj)'=0 for all i,j=1,....m
with a, p; (0)=a,p; (0)=a,p, (0) which together with Z (5;;i=1,...,m)=1yields (i).
(ii) Lemma 4 implies 5,=0 for all i=1,...,m with a;<0. Moreover, (p;/p;)' =0 for
all i,j=1,...,m with a;,=a;=0 which together with Z (5;i=1,...,m)=1 yields (ii).
(iii) From lemma 4 it follows a;p;=a;p; for all i,j=1,...,m which together with
2 (p;i=1,...,m)=1yields (iii).

Remark: These results are exactly the same as in the discrete time case (cf. [4])

though completely different methods are used within the corresponding proofs.
H. Lénger, Vienna
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Zur Existenz von pythagoreischen Quadern mit vorgegebener Raumdiagonale

1. Pythagoreische Rechtecke und pythagoreische Quader

Ein rechtwinkliges Dreieck mit ganzzahligen Seitenmasszahlen a, b und ¢ bezeichnet
man bekanntlich als pythagoreisches Dreieck. Zwei kongruente pythagoreische
Dreiecke lassen sich dann zu einem pythagoreischen Rechteck zusammensetzen,
bei welchem Seiten und Diagonale ganzzahlige Lingenmasszahlen besitzen.

In Analogie dazu sprechen wir hier von einem pythagoreischen Quader, falls alle
Kanten und die Raumdiagonale ganzzahlige Lingenmasszahlen besitzen. Sind
a,b,c die Kantenmasszahlen und ist d die Lingenmasszahl der Diagonale, so muss
also d?=a?+b%+c? mit a,b,ceN gelten, wobei hier N=1/1,2,3,...}. Es sei ange-
merkt, dass ggT (a,b,c)=1 nicht verlangt wird, wie dies bei der Untersuchung der
sog. primitiven pythagoreischen Dreiecke erforderlich ist.

2. Beweis des Satzes von Hurwitz iiber pythagoreische Quader mit vorgegebener
Raumdiagonale

Die Frage nach der Existenz von pythagoreischen Quadern mit vorgegebener
Raumdiagonale deN ist gleichwertig zu der Frage, fiir welche de N die Gleichung
a*+b*+ c2=d? in N mindestens eine Losung besitzt. Die Antwort gibt der folgende

Satz von Hurwitz. Die Zahlen 2% und 5 - 2% mit ke!0,1,2,3,...} sind die einzigen
natiirlichen Zahlen, die nicht als Lingenmasszahl der Raumdiagonale eines pythago-
reischen Quaders in Frage kommen. (Vgl. [1], S.271"), und [2], S.101.)

Wir zeigen: Zu d#2*- 5/ mit k€{0,1,2,3,...} und /€0, 1} gibt es mindestens eine
Losung von @+ b2+ c2=d?in N.

1) Fiir diesen Literaturhinweis bin ich Herrn E. Trost zu Dank verpflichtet.
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