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On lattice polytopes having interior lattice points

Let V(K) denote the volume of a convex body K in the Euchdean J-space Ed, and
let G(K) and G°(K) be defined by G(K)~card (KnZ*) and G°(K) card
(int Kn Z**), where Zd denotes the set of all the lattice points in Ed, i.e., points having
only integral coordinates.
The following theorems of Minkowski are well known.

Theorem A (see [2], p.76). IfKisa centrally Symmetrie convex body in Ed and G°(K)
l,thenV(K)<Zld.

Theorem B (see [2], p.79 and 96). IfKisa centrally Symmetrie convex body in Ed and
(?(K)=l, then G(K)<z3d; ifG°(K)=l and V(K) 2d, then K is a convex polytope
and it has at most ld+ x

— 1 facets.

There are no analogues of theorems A and B for convex bodies which are not
centrally Symmetrie. The purpose of this paper is to give some information on V(P)
and G(P) in the case where P is a lattice polytope (i.e., P has all of its vertices in Zd)
satisfying Gr°(P)=n9n^:l. We will see that Fnad G behave very different from the
centrally Symmetrie case.
Let g(d9ri) and v(d9n) be defined for n_>l and <i_>2 as follows: g(d,n)=sup
{G(P)\PaEd,G°(P) n}andv(d,n) sup{V(P)\PczEd,G0(P) n}.
Scott,[3] proved that g(2,l)=10 and that g(l,n)=3n + 6 for all h_>2. Our main
result is the following

Theorem. For all d9 d_> 4, andfor alln,n^l,

v(d,n)^—^-l2 and g(d,n)^———2L

where a 0.5856...; v(3,n)^6(n+l), g(3,n)^l6n + 23, v(4,l)2>147 and g(4,l)
2>680.

We need the following

Lemma, jjf(an);jLx is definedbyax=*l andad=*JJ*Z\ &% + 1 for d^i 1, then

(i) 01 2,02=3,03 7,04=43 and a5=1807;

(ii)foralld9d*l9l-i-~(lfraYl;
i-iö, \,__i /

(iii)for all d9 </_> 4, JT at _> lld~a where a=0.5856
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Proof of the lemma: (i) is trivial, (ii) is true for d= 1, and if it is true for d, then by
induction

4+1 1 (d \-l 1 /</+! x-l-Si-Ö4-^r-QäW
Let the real a be defined by 22 a

axa2a3a4 =1806, with J=4; thus a 0.5856
Suppose (iii) holds for d, then

ä+l /d \2
ig«.>(g«,)2t2>^--2^+,->

hence it holds for d+ 1.

Proof of the theorem: Let k=ax for i= l,...,d- l,fcrf=2(flrf- 1), and let Sf be the
d-simplex defined by

Sd=^(xx,...,xd)eEd\xx^0, S^l}.
By (ii) we have

£-<l and r+V_-if
hence (l,...,l)eintSf and (1 1,2)# intSf; kx<k2<--<kd imply that (^(Sf)

1. For general n,n > 1, replace kd=l(ad—\) by /c^=(w+ l)(flrf- 1), and obtain
the (i-simplex S^. It follows that the only lattice points of intSd are (1,..., l,y) for
1 <*j <, n, hence G° (Sd) /?.

As for the volume of Sd, V(Sd)= (l/d\)UltL x k=((n+ l)/tf) (aä- l)2 and by (iii):

ad-l^22d~l~a, therefore v(d,n)^ ^±_L 22*~*.
a!

TocomputeG(S'3)letc/^3and5=^n{x1=0}n{x2 0}.
It is easy to see that for each te äff5
G (S+1)<, G(S) and equality iffx is a lattice point.
If Q_2 denotes the unit cube in äffS and Vd„2 the volume in affS, we have

Vd_2(S)= J G(S+t)dt<G(S)<G(S*).
Q-2

With 6 Vd_2(S) d{d-1) V(Sd) we have

c(SJ)s__zi.K(sS=_lti_^..
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The case d= 3: Clearly: V(S\)=6(n+1).
To compute G(S3n) we count the integers x3 > 0 satisfying

3(n+l)xx + 2(n+l)x2 + x3<*6(n+l)

for (xx,x2) (0,0), (0,1), (0,2), (1,0), (1,1) and (2,0).
Easy computation gives G (Sl) 16 n + 23.

Thecaserf=4: V(S$=141.
To compute G (S^) we count the pairs (x3,x4) of integers x3 > 0, x4 > 0 satisfying

42jc1 + 28x2 + 7x3 + x4^84

for (xx,x2) (0,0), (0,1), (0,2), (0,3), (1,0), (1,1), (2,0).
Counting yields G (Sf) 680.
This completes the proofof the theorem.
We raise the following conjeeture:

v(d,n)<oo forall d_>3 and n>l
We remark that the conjeeture implies g(d,n)<oo by Blichfeldt ([1], p.55):
G (P) <, d\ V(P) + d for nondegenerate lattice polytopes (compare [4]).
Similar problems may be asked for the number of /-dimensional faces of convex
lattice polytopes _P satisfying (7° (P) n, where 0 __; i<, d — 1.

J. Zaks, University ofHaifa and C.R.M.A., University of Montreal,
M.A. Perles, Hebrew University, Jerusalem,

J. M. Wills, University of Siegen, West Germany
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Kleine Mitteilungen

A note on the successive remainders of the exponential series

1. For real x ^ 0, we have by Taylor's theorem

0„(*), (1.1)

(1.2)

e*=l +
X

TT
- +

X2

2!
¦ +

xn x"+1

(n+l)!
where

c/>n(x) ex0n(x)
9 O<0„(„)< 1.
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