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On lattice polytopes having interior lattice points

Let V(K) denote the volume of a convex body K in the Euclidean d-space E?, and
let G(K) and G°(K) be defined by G(K)=card(KnZ?% and G°(K)=card
(int K~ Z%), where Z9 denotes the set of all the lattice points in E4, i.e., points having
only integral coordinates.

The following theorems of Minkowski are well known.

Theorem A (see [2], p.76). If K is a centrally symmetric convex body in E? and G° (K)
=1, then V(K)<24.

Theorem B (see [2], p.79 and 96). If K is a centrally symmetric convex body in E? and
G*(K)=1, then G(K)<3% if G*(K)=1 and V(K)=2¢, then K is a convex polytope
and it has at most 24+ 1 -2 facets.

There are no analogues of theorems A and B for convex bodies which are not
centrally symmetric. The purpose of this paper is to give some information on V(P)
and G (P) in the case where P is a lattice polytope (i.e., P has all of its vertices in Z%)
satisfying G°(P)=n,n>1. We will see that ¥ nad G behave very different from the
centrally symmetric case.

Let g(d,n) and v(d,n) be defined for n>1 and d=2 as follows: g(d,n)=sup
{G(P)|PcE4 G (P)=n} and v(d,n)=sup {V (P)| P< E4,G° (P)=n}.

Scott, [3] proved that g(2,1)=10 and that g(2,n)=3n+6 for all n=2. Our main
result is the following

Theorem. For alld,d=>4, and forall n,n>1,

n+1

d—a
6(d—-2)! 3

+1
sd )z il R st otd e D

a

where a=0.5856...; v(3,n)=6(n+1), g(3,n)=16n+23, v(4,1)>147 and g(4,1)
= 680.

We need the following

Lemma. If (a,)%. , is defined by a, =2 and a;=[ [%-| a;+ 1 for d=2, then
()a;=2,a,=3,a;=7,a,=43 and as= 1807,

(it) foralld,d=1,1- Z -—-(‘Id—[ a,-)—l;

i=1 4; i=1

(iii) for all d,d = 4, u a;>22"* where a=0.5856 ...
=
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Proof of the lemma: (i) is trivial, (ii) is true for d=1, and if it is true for d, then by
induction

l_dil-l__ (H '>——l

i=1 a =]

Qi+ (;[:[ )—1.

Let the real a be defined by 22" *=a,a,a;a,= 1806, with d=4: thus a=0.5856 ..
Suppose (iii) holds for d, then

d+1 d 2
d- d+1-
| ai>(Hai) 2222970 =0297774

i=1

hence it holds ford+ 1.

Proof of the theorem: Let k;=gq; for i=1,...,d—1,k;=2(a;— 1), and let $¢ be the
d-simplex defined by

d .
S‘li= {(xl,...,xd)eEdlx,-ZO, ZﬁSI}.

i=] ki
By (i1) we have
: 1 and + }:
— <1 an
i= lk i=1k ’

hence (1,...,1)eintS? and (1,...,1,2)¢ intS%; k;<k,< -+ <k, imply that G°(S%)
=1. For general n,n > 1, replace k;=2(a;—1) by ky=(n+1)(a;— 1), and obtain
the d-simplex $¢. It follows that the only lattice points of intS¢ are (1,...,1,/) for
1<j<n, hence G°(5%)=n.

As for the volume of 8¢, V' (S%)= (1/d) %  k;=((n+ 1)/d") (a,— 1)* and by (iii):

n+1

a—1>2247172 therefore v(d,n)= 22d ‘

To compute G(S?) letd>3 and S= 89N {x; =0}~ {x,=0}.

It is easy to see that for each te aff S

G (S+1)< G(S) and equality iff x is a lattice point.

If C;_, denotes the unit cube in aff § and V,_, the volume in aff S, we have

Via(S)= | G(S+Ddt<G(S)<G(S9).
With 6 V,_,(S)=d(d—1) V(5% we have

d(d-1) ntl gi-a

G(SD< 6 V(sD= 6(d—2)!
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The case d=3: Clearly: V(S3)=6(n+1).
To compute G(S2) we count the integers x> 0 satisfying

3(n+Dx;+2(n+ D) x4+ x3<6(n+1)

for (x1,x2)=(0,0), (0, 1), (0,2), (1,0), (1,1) and (2,0).

Easy computation gives G (S3)=16n+23.

The case d=4: V(S =147.

To compute G (S7) we count the pairs (x3, x4) of integers x3 > 0, x,> 0 satisfying

42x1+28)C2+7X3+X4S 84

for (xl’x2)= (09 O)v (0’ l)a (Os 2)’ (03 3)’ (1 ’ 0)’ (19 1)9 (2’ O)
Counting yields G (S)= 680.

This completes the proof of the theorem.

We raise the following conjecture:

v(d,n)<oo forall d>3 and n>1.

We remark that the conjecture implies g(d,n)< oo by Blichfeldt ([1], p.55):

G (P)<d!V(P)+d for nondegenerate lattice polytopes (compare [4]).

Similar problems may be asked for the number of i-dimensional faces of convex

lattice polytopes P satisfying G°(P)=n, where 0<i<d—1.

J. Zaks, University of Haifa and C.R.M.A_, University of Montreal,
M. A. Perles, Hebrew University, Jerusalem,

. J.M. VWills, University of Siegen, West Germany

REFERENCES

1 C.G. Lekkerkerker: Geometry of numbers. Wolters-Noordhoff, Groningen 1969.

2 H. Minkowski: Geometrie der Zahlen. Teubner, Leipzig 1910.

3 P.R. Scott: On convex lattice polygons. Bull. Austr. Math. Soc. 15, 395-399 (1976).

4 J.M. Wills: Gitterzahlen und innere Volumina. Comm. Math. Helv. 53, 508-524 (1978).

© 1982 Birkhduser Verlag, Basel 0013-6016/82/020044-03$1.50+ 0.20/0
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A note on the successive remainders of the exponential series

1. Forreal x# 0, we have by Taylor’s theorem

eX——1+x+x2+ L2 il
1t 21 n! " (n+1)!

P (x), (1.1)

where

@, (x)=ex0x) 0<0,(x)<1. (1.2)
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