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The forcibly-tree and forcibly-unieyclic degree sequences

Dedicated to Frank Boesch

1. Introduction

We follow the notation and terminology of [3] Thus the degree sequence n of a

graph G is written dx _> d2 _> _> dp A given nonincreasing sequence o of positive
integers is called graphical if a is the degree sequence of some graph Cntena for o
to be graphical are well known, see [3], p 58, or Hakimi and Schmeikel [2] which
presents a recent survey of the literature on graphical degree sequences
Let P be a property of graphs, such as hamiltonian, tree, umcychc, ete A graphical
sequence n is called potentially-P if there exists a graph G which reahzes n having
property P Similarly n isforcibly-P if it is not only potentially-P but every graph
which reahzes n satisfies property P The latter concept was mtroduced by Nash-
Wilhams [4] m his discussion of forcibly-hamiltonian degree sequences
It is easy to see [3], p 62, that a degree sequence (dx,d2, ,dp) is potentially-tree if
and only if 2 q _T, dx, every dx is positive and q =p — 1

Potentially-umcychc degree sequences were characterized by Boesch and Harary [1]
as precisely those graphical sequences dx, ,dp such that d3 > 1, dp > 0 and *Z>dt — 2p
Our present object is to charactenze forcibly-tree and forcibly-umcychc degree

sequences

Theorem 1. A graphical degree sequence dx^.d2^ dp^ 1 is forcibly-tree ifand only
ifeitherp 2 and dx d2 1 or d3 1 and dx + d2=p

Proof If a tree T contams a path of length 4, let v1v2v3V4V5 be its points Let G(T)
be the graph with pomt set V(T), whose lme set is E(G)=*E(T)u{vxv5,v2v4}
-~ (viv2> V4V5) Then G(T) is not a tree but has the same degree sequence as T Hence

no forcibly-tree degree sequence can be reahzed by a tree contammg P5 and so is

only reahzed by K2, a star or a double star The latter two famihes of trees satisfy

d3=l anddx + d2=p
For the converse it is clear that a degree sequence of the given type can only be the

degree sequence of a double star, a star or K2 These are precisely the trees with
diameter at most three D

Theorem 2. A graphical degree sequence dx^d2^ _>4_> 1 is forcibly-umcychc if
and only ifit is either one of the sequences 23,24,25,d$ddx-2,di2d}-2, where dx=*d*2.39

or satisfies rf3_>2,d4=l and dx + d2 + d3=p + 3

Proof The first step is to hst a family of umcychc graphs with the property that any
umcychc supergraph of one of these does not have a forcibly-umcychc degree

sequence These minimal umcychc graphs are the cycles C„,«->6, and the graphs in
figure 1
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Figure 1. Minimal unicycUc graphs with nonforcible degree sequences.
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We also show in figure 1 how to transform each mmimal graph into a nonunicychc
graph with the same degree sequence. In each case it is immediate that any unicychc
graph which contains the given graph as a subgraph can be similarly transformed.
Of course each cycle Cn, n _> 6, is sequentially equivalent to Cn _ 3 u K3
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Figure 2 The graphs with forcibly-umcychc degree sequences

Next we determine and display in figure 2 the unicychc graphs which contain no
subgraph from the forbidden family, i.e., no long cycle and none of the graphs in
figure 1.

Evidently the degree sequences of the graphs in figure 2 are precisely those given in
the Statement of theorem 2. It is easy to verify that each of these is forcibly-unicyclic.
In later Communications we plan to study forcibly-P degree sequences for other
properties P.

Geoffrey Exoo, Bell Laboratories, Holmdel, N.J. 07733

Frank Harary, University of Michigan, Ann Arbor, Mich. 48109
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