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Konvergenz und monotone Einschliessung für das Steffensen-
Verfahren

Bei der Berechnung der Nullstellen einer reellen Funktion sind einschliessende
monotone Näherungsfolgen vorteilhaft, da diese bei jedem Iterationsschritt
erkennen lassen, für welchen Zahlenwert die Lösung garantiert werden kann.
Bereits in der 20er Jahren des vorigen Jahrhunderts gaben Fourier bzw. Dandelin
Lösungseinschliessungen für das Newton-Verfahren bzw. für eine Kombination des

Newton-Verfahrens mit der Regula falsi an (siehe [2]). Lösungseinschliessungen für
Verfahren vom Regula-falsi-Typ stammen von Schmidt [3] aus dem Jahre 1970.

In dieser Arbeit wird das Steffensen-Verfahren mit einer Art Sekantenverfahren,
das die «Steffensen-Richtung» für die Sekante verwendet, kombiniert. Die so

erzeugten Iterationswerte liefern einschliessende monotone Näherungsfolgen für die
Nullstellen reeller konvexer Funktionen. Der Beweis des Einschliessungssatzes
enthält einen Konvergenzbeweis für das Steffensen-Verfahren, der ohne Differen-
zierbarkeitsforderungen an die Funktion auskommt. Dieser Konvergenzsatz wird
nach der Auflistung einiger Eigenschaften konvexer Funktionen als erstes bewiesen.

1. Elementare Eigenschaften konvexer Funktionen

Definition. Eine auf einem Intervall I definierte Funktion f(x) heisst konvex auf I9

wennfürje zwei Punkte x9y e I und X e [0,1 ] gilt

f(Xx + (l-X)y)*Xf(x)+(l~X)f(y).

Im Intervall (x9y)al sind die Werte einer konvexen Funktion kleiner als die

entsprechenden Werte der Sekante durch die Punkte (x,f(x)) und (y,f(y)).
Verwendet man für die Steigung die Abkürzung

öf(x,y):=
x-y
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so bedeutet dies für alle z mit x^.z-=y

f(z)^f(x) + Sf(x,y)(z-x)

Die folgenden Hilfssatze enthalten emige elementare Aussagen uber konvexe
Funktionen, die spater benotigt werden Sie sind bereits (bis auf unwesentliche
Modifikationen) in [3] aufgeführt

Hilfssatz 1.Furx,yeIund) $ [0,1],z Xx + (l-X)yelgilt

f(Xx + (l-X)y)*Xf(x) + (l-X)f(y)

(Beweis siehe [3])
Der Hilfssatz sagt aus, dass der Funktionswert grosser als der entsprechende
Sekantenwert ist, fur zel mit z<x bzw z>y Dies lasst sich auch folgendermassen

beschreiben

Zusatz Furz^x<j>bzw x<y^z gilt

f(z)*f(x) + öf(x,y)(z-x)

Hilfssatz 2. Giltfiy)>f(z)fury>z,y,zel, dann istf(y)>f(x)fury>x=z
Beweis Es existiert em X e [0,1 ] mit x Xy+(1 - X) z und X + 1

f(x)=f(Xy+(l^X)z)^Xf(y) + (l-X)f(z)<Xf(y) + (l-X)f(y)=f(y),daf(x)kon^
und nach Voraussetzung

Hilfssatz 3. Fur x=^x0 und x,x0el gelte f(x)^f(xo) + c(x — x0), wobei c eine
Konstante ist Fury,zel,y^z undy,z^Xqfolgt damit

öf(y,z)=c

Beweis Annahme öf(y,z)>c für gewisse y9zel mit y<z^x0
f(xQ)^f(y) + df(y,z)(xQ—y) nach Zusatz zu Hilfssatz 1 Mit der Ungleichung
öf(y,z)(x0—y)> c(x0—y) kann man die erste Ungleichung nach unten abschätzen

f(xo)>f(y)+c(xo-y)

Durch Umformen erhalt man

f(y)<f(xo)+c(y~x0),

und dies ist ein Widerspruch zur Voraussetzung, da y< x0
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Zusatz Gilt die Voraussetzung von Hilfssatz 3 für xu. x0, dann folgt

öf(y,z)=c für y,zel, y + z und y,z=x0

2. Globaler Konvergenzsatz für das Steffensen-Verfahren

Die Iterationsvorschrift des Steffensen-Verfahrens zur Bestimmung der Nullstelle
emer reellen Funktion/(x) einer reellen Veränderlichen lautet

(0(xk)-xk)2
X^ Xk-0(0(xk))-20(xk) + xk

mit *<**>-**+/<**>

Diese Iterationsvorschrift entsteht z B durch Kombination eines Verfahrens der
sukzessiven Approximation

xk=xk+x 0 (xk) xk+f(xk) (1)

mit dem Sekantenverfahren

xk +1= xk~f(xk) 7;—:—7} r> (2)
f(xk)-f(*k-x)

indem man in (2) xk_x durch xk bzw f(xk_x) durch f(xk) aus (1) ersetzt Man
betrachtet also die Sekante durch die Punkte (xk,f(xk)) und (xk,f(xk))

Satz 1 (Konvergenzsatz) Die Funktion f(x) sei auf einem Intervall I konvex Es

existieren innere Punkte a,bel,a<b mitf(a)<0 undf(b)>0 Dann besitzt f genau
eine Nullstelle x in [a, b] undfur die durch das Steffensen- Verfahren

x0 so gewählt, dassf(xo) > 0 und x0=xo+/(*o)e A

xk ^=xk+f(xk),

Xk+x *k-f(xk) *;~^ (*-0,l,2, (3)
f(xk)-f(xk)

definierte Folge {xk} gilt (falls das Verfahren nicht bereits nach endlich vielen

Schritten gestoppt werden kann)
(i) ^o>-^i> >xk>xk+x> >x,
(u) hmjcÄ:=Jc

k-+co

Beweis Aus der Konvexität von / auf / folgt die Stetigkeit von / auf [a,b]cl,
und somit existiert aufgrund der Voraussetzung mindestens eine Nullstelle
Annahme Es existieren zwei Nullstellen u, v mit a= u < v

f(v)=0>f(a) nach Voraussetzung => f(v)>f(u) nach Hilfssatz 2 Widerspruch zur
Annahme, dass u ebenfalls Nullstelle
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D.h. in [a,b] gibt es genau eine Nullstelle von/, die mit x bezeichnet wird.
Der Nachweis der Aussage (i) erfolgt durch vollständige Induktion.
Das Beweisschema für den Induktionsanfang und den Induktionsschluss ist formal
das gleiche. Daher wird hier nur der Induktionsschluss von k nach k+ 1

durchgeführt. Den Induktionsanfang erhält man, indem xk durch x0 bzw. xk+x durch xx
ersetzt wird.
Zu zeigen ist: x < xk+ x < xk.
Aus xk=xk+f(xk) folgt xk—xk=f(xk)>0 nach Induktionsannahme (bzw. nach
Voraussetzung im Fall k=0), und somit ist

xk>xk. (4)

Weiterhin ist/(ic^)>0 (aus (4) und nach Voraussetzung), d.h. f(xk)>f(x), und
mit Hilfssatz 2 erhält man wegen xk> xk> x:

f(xk)>f(xk). (5)

(4) und (5) bewirken, dass

xk—xk

f(Xk)-f(*k) '

Damit folgt aus (3) und da.f(xk)>0:

xk+i=xk-/(xk)f(*r-Aw<xk-

Wir betrachten jetzt die Gerade g(x) durch die Punkte (xk9f(xk)) und (xk,f(xk)):

g (*) =/(**) + ¥(*h xk) (x- xk).

g(x) hat genau eine Nullstelle x=xk+l9 da öf(xk, xk) + 0. Aus dem Zusatz zu
Hilfssatz 1 erhält man, da xk+x < xk < xk:

f(xk+x)^f(xk) + öf(xk,xk)(xk+x-xk)=g(xk+x) 09

d.h. f(xk+x)^0. Falls f(xk+x)—09 bricht man das Verfahren ab. Ist f(xk+x)>0,
so folgt xk+1 > Je, und insgesamt hat man die gewünschte Doppelungleichung

x<xk+\<xk.

Mit Hilfssatz 2 kann man folgern:

f(xk+x)<f(xk),

dax<xk+x<xk und/(x)=0 <f(xk).
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Damit ist jetzt gezeigt:

a) Die Funktionswerte/^) nehmen mit wachsendem k monoton ab,
b) die Iterationsfolge {xk} ist monoton fallend und nach unten beschränkt.

Wegen b) existiert der Grenzwert hm^^x^x*. Es bleibt zu zeigen, dass x* gleich
der einzigen Nullstelle x vonf(x) in [a,b] ist.

Da x0 innerer Punkt von / sein soll, existiert ein xel mit x>x0. Mit Hilfssatz 1

erhält man für x__i x0:

f(x) __-/(*<)) + öf(x0, x) (x- x0) =/(x0) + c(x- x0)

mit c:= öf(x0,x). Aus Hilfssatz 3 folgt damit:

V(xh*k)=c, da xk,xk<x0.

Insgesamt gilt:

0<öf(xk,xk) c. (6)

Die Iterationsvorschrift (3) lässt sich umschreiben zu

f(xk) + öf(xk, xk) (xk+x-xk) 0. (1)

Da limxfc=x*, erhält man wegen (6) aus (7):
k^oo

f(x*) 0,

und somit folgt aus der Eindeutigkeit der Nullstelle:

x* x.

3. Monotone Einschliessung

Für die Berechnung der Nullstellen sind einschliessende Iterationsfolgen vorteilhaft,

da man durch sie ein Intervall kennt, in dem die gesuchte Lösung liegt.
Die Länge des Intervalls verkleinert sich mit wachsender Iterationszahl, falls die
Folgen monoton sind.
Um mit dem Steffensen-Verfahren monotone Einschliessung zu erhalten, wird
ausser der bisher betrachteten Iterationsfolge {xk} eine weitere Folge {yk} erzeugt.
Dazu startet man zusätzlich von einem Punkt (yof(yo)) mit/(y0)<0 und
verwendet für die jeweiligen «Steffensen-Sekanten» dieselbe Steigung wie für den
entsprechenden Iterationswert xk, d. h.

yk+x~yk-f(yk) f(Xk~%, (k=o,i,2,...).
f(Xk)-f(xk)
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Die so definierte Folge {yk} ist monoton wachsend und konvergiert von der
gegenüberliegenden Seite gegen x. Zusammen mit der Folge {xk} hat man somit
für die Nullstelle x von f(x) eine Einschliessung, die mit jedem Iterationsschritt
verbessert wird.

Satz 2 (Einschliessungssatz). Die Funktion f sei auf einem Intervall I konvex, und
es existieren innere Punkte a,bel,a<b mitf(a)<0 undf(b)>0. Dann besitztfgenau
eine Nullstelle x e [a, b] undfür die beiden Folgen {xk} und {yk}, die durch

x0 so gewählt, dassf(x0) > 0 und x0 x0 +f(x0) e I,

xk •**+/(**)>

xk~xkXk+x-xk-f(xk)-
f(*k)-f(xk)

bzw.

y0 so gewählt, dass f(y0) < 0

yk+i=yk-f(yk) nXk~_X/(5tk) (* o,U,...)

definiert sind, gelten die folgenden Aussagen (falls der Algorithmus nicht bereits
nach endlich vielen Schritten beendet werden kann):

0) yo<yx< ••• <yk<yk+x< •-• <x< <xk+x<xk< ••• <xx<x0,
(ii) f(x0)>f(xx)> -">f(xk)>f(xk+x)> ••• >0,

(iii) '\imxk=]imyk x.
k-*co k-+ao

Beweis: Die Eindeutigkeit der Nullstelle Je in [a,b] und die Aussagen bezüglich der
Folge {xk} wurden bereits in Satz 1 gezeigt.
Die Ergebnisse bezüglich der Folge {yk} werden wiederum durch Induktion
nachgewiesen. Da hier ebenfalls Induktionsanfang und -schluss analog verlaufen, wird
nur der Induktionsschluss von k nach k + 1 gezeigt.
Zu zeigen ist: yk <yk+ x < x.
Aus

xk—xk
yk+1 ^yk^ftyk) "77—:—77Z~rf(*k)-f(xk)

folgt wegen (4), (5) und f(yk)<0 (nach Induktionsannahme bzw. nach Voraussetzung

im Fall k 0):

yk+l-yk=-m)/M-fk)>0-

Um yk+l<x zu zeigen, wird die Gerade h(x)=f(yk)+Sf(xk,xk)(x—yk) durch
(ybftyk)) betrachtet.
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h(x) hat dieselbe Steigung wie die entsprechende Gerade g(x) durch (xk,f(xk)).
Da öf(xk,xk) + 0, besitzt h(x) genau eine Nullstelle x=yk+x. Zu zeigen ist nun:
h (x) _*/(*) für yk _ü x xk.
Aus dem Zusatz zu Hilfssatz 1 ergibt sich:

f(x)^f(xk) + c(x-xk) mit c öf(xhyk) und yk<xk<x.

Mit dem Zusatz zu Hilfssatz 3 lässt sich zeigen:

öf(xk,yk) öf(xh xk), wobei xk=xk +f(xk).

Damit und aus der Konvexität vonf(x) ergibt sich füryk= x xk:

f(x) ^f(yk) + öf(yh xk) (x - yk) *kf(yk) + öf(xk, xk) (x -yk) h (x).

Dayk+ x Nullstelle von h (x) ist, folgt:

0 h(yk+x)^f(yk+x).

lstf(yk+x) 0, wird das Verfahren abgebrochen.
Ansonsten giltf(yk+x)<0, und somit istyk+ x<x. Zusammenfassend erhält man die

gewünschte Doppelungleichung

yk<yk+x<*-

Die Folge {yk} ist also monoton wachsend und nach oben beschränkt, daher
existiert der Grenzwert limk^aoyk=y*.
Im Beweis von Satz 1 wurde gezeigt: 0<öf(xk,xk) c.

Die Iterationsvorschrift für die Folge {yk} lässt sich umschreiben zu

f(yk)+öf(xk, xk) (yk+x-yk)=Q-

Wegen lim^^y^y* folgt daraus/(y*) 0, und somit gilt^# x.
In Satz 1 wurde bereits limk_o0xk x* x bewiesen, und insgesamt hat man nun
erhalten:

x*=y* x.

Numerische Beispiele

Zur Demonstration der monotonen Einschliessung mit dem Steffensen-Verfahren

dienen die Aufgaben:

a)/(*)=^-+x-8 0, b)/(x)=l-x2+ — 0.
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Die Rechnungen wurden mit dem programmierbaren Taschenrechner TI 59
durchgeführt. Als Fehlerschranke wurde e= 10"8 gewählt. Man kann leicht zeigen, dass

obige Funktionen bezüglich des gewählten Startintervalls den Voraussetzungen von
Satz 2 genügen.

Beispiel a) Beispiel b)

n n
Xn

yn

0 5.0 0 5.0
2.0 4.0

1 4.701022817 1 4.919557209
2.163650669 4.170735719

2 4.388077738 2 4.850157334
2.376550057 4.389082364

3 4.075678220 3 4.806271562
2.653027472 4.619540854

4 3.798652245 4 4.792236635
2.991747545 4.762538562

5 3.614516310 5 4.791087405
3.326996363 4.790452815

6 3.550923683 6 4.791080374
3.514003857 4.791080135

7 3.545042818 7 4.791080374
3.544510259 4.791080375

8

9

3.544997830
3.544997742

3.544997828
3.544997828

P. Baptist, Bayreuth
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