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Konvergenz und monotone Einschliessung fiir das Steffensen-
Verfahren

Bei der Berechnung der Nullstellen einer reellen Funktion sind einschliessende
monotone Nidherungsfolgen vorteilhaft, da diese bei jedem Iterationsschritt er-
kennen lassen, fiir welchen Zahlenwert die Losung garantiert werden kann.

Bereits in der 20er Jahren des vorigen Jahrhunderts gaben Fourier bzw. Dandelin
Losungseinschliessungen fiir das Newton-Verfahren bzw. fiir eine Kombination des
Newton-Verfahrens mit der Regula falsi an (siehe [2]). Losungseinschliessungen fiir
Verfahren vom Regula-falsi-Typ stammen von Schmidt [3] aus dem Jahre 1970.

In dieser Arbeit wird das Steffensen-Verfahren mit einer Art Sekantenverfahren,
das die «Steffensen-Richtung» fiir die Sekante verwendet, kombiniert. Die so
erzeugten Iterationswerte liefern einschliessende monotone N#herungsfolgen fur die
Nullstellen reeller konvexer Funktionen. Der Beweis des Einschliessungssatzes
enthilt einen Konvergenzbeweis fiir das Steffensen-Verfahren, der ohne Differen-
zierbarkeitsforderungen an die Funktion auskommt. Dieser Konvergenzsatz wird
nach der Auflistung einiger Eigenschaften konvexer Funktionen als erstes bewiesen.

1. Elementare Eigenschaften konvexer Funktionen

Definition. Eine auf einem Intervall I definierte Funktion f(x) heisst konvex auf I,
wenn fiir je zwei Punkte x,y€l und A€ [0, 1] gilt

f(Ax+(1A=2y) = )+ = Df0).

Im Intervall (x,y)cI sind die Werte einer konvexen Funktion kleiner als die
entsprechenden Werte der Sekante durch die Punkte (x,f(x)) und (». (). Ver-
wendet man fiir die Steigung die Abkiirzung

of (x,y):= ————f(x; :J;(y) ;
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so bedeutet dies fiir alle z mit x=z=y:

J@)=f()+f(x,y) 2~ x).

Die folgenden Hilfssitze enthalten einige elementare Aussagen iiber konvexe
Funktionen, die spiter benottigt werden. Sie sind bereits (bis auf unwesentliche
Modifikationen) in [3] aufgefiihrt.

Hilfssatz 1. Fiir x,ye I und /¢ [0,1], z=Ax+(1—A)yel gilt:

fOx+A=D»)= A () +(1=Df0).
(Beweis siehe [3].)
Der Hilfssatz sagt aus, dass der Funktionswert grésser als der entsprechende

Sekantenwert ist, fiir ze/ mit z<x bzw. z>y. Dies lidsst sich auch folgender-
massen beschreiben:

Zusatz: Fir zsx <y bzw. x<y=z gilt:

f@z=f(x)+f (x.y) (z—x).

Hilfssatz 2. Gilt f(y)> f (2) fiir y> z, y,ze I, dann ist f(y) > f (x) fiir y> x = z.

Beweis: Es existiert ein 1€ [0, 1] mit x=Ay+(1—A)zund A%1.
f)=f(Ay+0=1)z2) = )+ (A =D )< )+ =) f)=f(), da f(x) konvex

und nach Voraussetzung.

Hilfssatz 3. Fiir x=xo und x,xoel gelte f(x)=f(xg)+c(x—xo), wobei c eine
Konstante ist. Fiir y,ze I, y¥+ z und y,z = x folgt damit:

of v,z)=c.
Beweis: Annahme: 6f(y,z) > c fur gewisse y,ze I mit y < z= x,,.

f(x0)zf()+6f(r,2) (xo—y) nach Zusatz zu Hilfssatz 1. Mit der Ungleichung
of (y,z) (xo—y)> ¢ (xo— y) kann man die erste Ungleichung nach unten abschitzen

Sx)>f()+c(xo—y).

Durch Umformen erhilt man

SO <f(xp)+c(y—xp),

und dies ist ein Widerspruch zur Voraussetzung, da y < x,.
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Zusatz: Gilt die Voraussetzung von Hilfssatz 3 fir x = x¢, dann folgt:

of n.z)=zc fur y,zel, y#z und y,zz=x,.

2. Globaler Konvergenzsatz fiir das Steffensen-Verfahren

Die Iterationsvorschrift des Steffensen-Verfahrens zur Bestimmung der Nullstelle
einer reellen Funktion f(x) einer reellen Verdnderlichen lautet:

I CICN AL
KT @ (@ (x)) =20 (x)+ x4

mit D (x)=x;+f(xp).

Diese Iterationsvorschrift entsteht z. B. durch Kombination eines Verfahrens der
sukzessiven Approximation

Xp=Xp+1=P (xp)=xp+[(x) N
mit dem Sekantenverfahren

Xgg— Xg—1

SR —fCex—r)

2)

X+ 1=X—f(xp)

indem man in (2) x;_; durch %, bzw. f(x,_;) durch f(X;) aus (I) ersetzt. Man
betrachtet also die Sekante durch die Punkte (x,f(xz)) und ( %,/ (%z)) .

Satz 1 (Konvergenzsatz). Die Funktion f(x) sei auf einem Intervall I konvex. Es
existieren innere Punkte a,bel, a<b mit f(a)<O0 und f(b)>0. Dann besitzt f genau
eine Nullstelle % in [a, b] und fiir die durch das Steffensen-Verfahren

Xo S0 gewdhlt, dass f(x)> 0 und %o=xo+f(xp)€l,

Xk =xp+f(xp),
Xp— Xg

S = (%)

definierte Folge {x,} gilt (falls das Verfahren nicht bereits nach endlich vielen
Schritten gestoppt werden kann):

D) xo>x1> - >xp>Xp41> - > X,

(1) lim x;=x.

k— o0

(k=0,1,2,...) 3)

X 1=Xg—f(xp)

Beweis: Aus der Konvexitit von f auf I folgt die Stetigkeit von f auf [a,b]c 1,
und somit existiert aufgrund der Voraussetzung mindestens eine Nullstelle.
Annahme: Es existieren zwei Nullstellen u,v mitasu<v.

f(=0>f(a) nach Voraussetzung = f(v)>f(u) nach Hilfssatz 2. Widerspruch zur
Annahme, dass u ebenfalls Nullstelle.
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D.h. in [a, b] gibt es genau eine Nullstelle von £, die mit X bezeichnet wird.

Der Nachweis der Aussage (i) erfolgt durch vollstindige Induktion.

Das Beweisschema fiir den Induktionsanfang und den Induktionsschluss ist formal
das gleiche. Daher wird hier nur der Induktionsschluss von k& nach k+1 durch-
gefihrt. Den Induktionsanfang erhilt man, indem x; durch xy bzw. x;,; durch x,
ersetzt wird.

Zu zeigen ist: X < X 1< Xp.

Aus Xp=x;+f(x;) folgt %,—xx=f(x;)>0 nach Induktionsannahme (bzw. nach
Voraussetzung im Fall k= 0), und somit ist

)'Ek>xk. (4)

Weiterhin ist f(%;)>0 (aus (4) und nach Voraussetzung), d.h. f(%;)>f(x), und
mit Hilfssatz 2 erhédlt man wegen X; > x; > x:

&> (x0). ®)
(4) und (5) bewirken, dass

Xp— X

fo =1~
Damit folgt aus (3) und da f(x;)>0:

0.

Xp— Xy

e & X
fe)—fG) "
Wir betrachten jetzt die Gerade g (x) durch die Punkte (x4, f(xz)) und (%, /(X)) :

X p1=Xp—f(xg)

g (x)=f(xx)+ of (xp, Xi) (x — x1) -

g(x) hat genau eine Nullstelle x=x;,,;, da df(xy, X))+ 0. Aus dem Zusatz zu
Hilfssatz 1 erhédlt man, da x; | <xp<X;:

S )= () +0f (e, Xp) (X 41— Xp) =8 (X +1)=0,

d.h. f(xx,+1)=0. Falls f(xz,)=0, bricht man das Verfahren ab. Ist f(x;.)>0,
so folgt x; 1> X, und insgesamt hat man die gewiinschte Doppelungleichung

X<Xpp1<Xg.
Mit Hilfssatz 2 kann man folgern:
S ) <f(x0),

da X<Xp 1 <Xg undf()'é)=0<f(xk).
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Damit ist jetzt gezeigt:

a) Die Funktionswerte f(x;) nehmen mit wachsendem k monoton ab,
b) die Iterationsfolge {x,} ist monoton fallend und nach unten beschrinkt.

Wegenb)existiert der Grenzwert lim, _, , x, = x*. Es bleibt zu zeigen, dass x* gleich
der einzigen Nullstelle X von f(x) in [a, b] ist.

Da X, innerer Punkt von [ sein soll, existiert ein e/ mit %> %,. Mit Hilfssatz 1
erhélt man fir x = x,:

Sx)=f(X0)+ 8f (X0, X) (x — %o) =f (X0} + ¢ (x — %)
mit c¢:= §f (%o, X). Aus Hilfssatz 3 folgt damit:
of (xp, Xp)=c, da x;, %, <%p.
Insgesamt gilt:
0<dof (xp, Xp)=c. (6)

Die Iterationsvorschrift (3) ldsst sich umschreiben zu

S+ 0f (g, ) (Xpe 41— x4) =0, @)
Da lim x; = x*, erhilt man wegen (6) aus (7):

k— o0

f(x*)=0,

und somit folgt aus der Eindeutigkeit der Nullstelle:

x*=x.

3. Monotone Einschliessung

Fiir die Berechnung der Nulistellen sind einschliessende Iterationsfolgen vorteil-
haft, da man durch sie ein Intervall kennt, in dem die gesuchte Losung liegt.
Die Linge des Intervalls verkleinert sich mit wachsender Iterationszahl, falls die
Folgen monoton sind.

Um mit dem Steffensen-Verfahren monotone Einschliessung zu erhalten, wird
ausser der bisher betrachteten Iterationsfolge {x,} eine weitere Folge {y;} erzeugt.
Dazu startet man zusitzlich von einem Punkt (yo.f(yo)) mit f(y)<O und ver-
wendet fiir die jeweiligen «Steffensen-Sekanten» dieselbe Steigung wie fiir den
entsprechenden Iterationswert x;, d. h.

g%

SO —f(%p)

Ye+1=Ye—=f () (k=0,1,2,...).
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Die so definierte Folge {y,} ist monoton wachsend und konvergiert von der
gegeniiberliegenden Seite gegen x. Zusammen mit der Folge {x,} hat man somit
fiir die Nullstelle X von f(x) eine Einschliessung, die mit jedem Iterationsschritt
verbessert wird.

Satz 2 (Einschliessungssatz). Die Funktion f sei auf einem Intervall I konvex, und
es existieren innere Punkte a,be I, a< b mit f(a)<O0 und f(b)>0. Dann besitzt f genau
eine Nullstelle x € [a, b] und fiir die beiden Folgen {x;} und {y;}, die durch

Xo so gewdhlt, dass f(x0)> 0 und %o=xo9+f(xg) €1,

X =xp+f(xp),
Xp— X

SxR)=f (i)

X+1=Xk—f(xg)

bzw.
yo so gewihlt, dass f(yg)<0

Yir1=Yk—S 1) k=0,1,2,..)

f(xk) f( k)

definiert sind, gelten die folgenden Aussagen (falls der Algorithmus nicht bereits
nach endlich vielen Schritten beendet werden kann):

1) Yo < <Yr<Prs1<' <<+ <Xpyp ] <X < -+ <X <X

(ii) f(xo)>f(x))> - >f(xp)>f(xg41)> - >0

(iii) Tlimx,= hmyk =X.
ko0

Beweis: Die Eindeutigkeit der Nullstelle % in [a,b] und die Aussagen beziiglich der
Folge {x,} wurden bereits in Satz 1 gezeigt.

Die Ergebnisse beziiglich der Folge {y;} werden wiederum durch Induktion nach-
gewiesen. Da hier ebenfalls Induktionsanfang und -schluss analog verlaufen, wird
nur der Induktionsschluss von k nach k + 1 gezeigt.

Zu zeigen ist: y, < yp 1< X.

Aus

Xp— X
SCe)—f (%)

folgt wegen (4), (5) und f(,)<O (nach Induktionsannahme bzw. nach Voraus-
setzung im Fall k= 0):

Yee1=Yi—f )

Xp— Xk

S&x—f (xk)

Yer1—=Ye=—f )

Um y,, ;<X zu zeigen, wird die Gerade h(x)=f(yi)+ 0f (xi, %) (x—y) durch
(¥if ) betrachtet.
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h(x) hat dieselbe Steigung wie die entsprechende Gerade g(x) durch (x,.f(x;)).
Da Jf (x4, X;)+0, besitzt h(x) genau eine Nullstelle x=y,_. ;. Zu zeigen ist nun:
h(x)=f(x) fur y=x= x;.

Aus dem Zusatz zu Hilfssatz 1 ergibt sich:

fO)zf(xp)+c(x—x,) mit c=0f(xpy) und y<xp<x.
Mit dem Zusatz zu Hilfssatz 3 lasst sich zeigen:

Of X Vi) =0f (Xpxp),  wobel  Xp=x,+f(xy).
Damit und aus der Konvexitit von f(x) ergibt sich fiir y, = x= x;:

S)=f)+0f i xi) X = y) =f i) +0f X, x1) (x — yi) =h (x).

Da y; . ; Nullstelle von 4 (x) ist, folgt:

0=h(i+)=fOk+1)-

Ist f(yx+1)=0, wird das Verfahren abgebrochen.
Ansonsten gilt f(y,1) <0, und somit ist y,, | < %. Zusammenfassend erhélt man die
gewiinschte Doppelungleichung

Ye<Viks1<X.

Die Folge {y;} ist also monoton wachsend und nach oben beschrdnkt, daher
existiert der Grenzwert limy _, ,, yx=)*.

Im Beweis von Satz 1 wurde gezeigt: 0 < df (x4, Xg)=c.

Die Iterationsvorschrift fiir die Folge {y,} ldsst sich umschreiben zu

SO +0f (xp X)) k41— ¥ =0.

Wegen lim, _, ., y,,= y* folgt daraus f(y*)=0, und somit gilt y* = X.
In Satz 1 wurde bereits lim,_, ., x,=x* =X bewiesen, und insgesamt hat man nun
erhalten:

x*=y*=x.

Numerische Beispiele

Zur Demonstration der monotonen Einschliessung mit dem Steffensen-Verfahren
dienen die Aufgaben:

3 4

X
Z_4x-8=0, b)f()=1-x+77=0.

a) f(X)= 10 24
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Die Rechnungen wurden mit dem programmierbaren Taschenrechner T1 59 durch-
gefiihrt. Als Fehlerschranke wurde ¢ =108 gewihlt. Man kann leicht zeigen, dass
obige Funktionen beziiglich des gewihlten Startintervalls den Voraussetzungen von
Satz 2 geniigen.

Beispiel a) Beispiel b)
n n *n
Vn Yn
0 5.0 0 5.0
2.0 40
1 4.701022817 1 4919557209
2.163650669 4.170735719
2 4.388077738 2 4850157334
2.376550057 4.389082364
3 4.075678220 3 4806271562
2.653027472 4.619540854
4  3.798652245 4 4.792236635
2.991747545 4.762538562
5 3.614516310 5 4.791087405
3.326996363 4.790452815
6  3.550923683 6 4.791080374
3.514003857 4.791080135
7 3.545042818 7 4.,791080374
3.544510259 4.791080375
8 3.544997830
3.544997742
9  3.544997828
3.544997828
P. Baptist, Bayreuth
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