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Anmerkung: Die Autoren danken Herrn Professor L. Fejes Töth für die vielen
interessanten Diskussionen während seines Aufenthaltes in Salzburg und für
sein Interesse am Fortgang dieser Arbeit.

F. östereeicher und J. Linhart, Universität Salzburg
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Kleine Mitteilungen

Über den Rang gewisser zirkulanter Matrizen (zu Problem 764A)

Es sei stets/? eine Primzahl ^2 und Cp die zirkulante Matrix

1 1/2 l/(p-l) 1/fe-ir
1/2 1/3 l/(p-l) 1

.l/(p-l) 1 l/(p'-3) l/fo-2),

In [4] stellte Spindelböck die Aufgabe, den Rang von Cp m Zp9 dem Primkörper der
Charakteristik p9 zu ermitteln. Hier sollen nun einige Aussagen über den fraglichen
Rang abgeleitet werden; dabei wird sich zeigen, dass wir im Augenblick weit davon
entfernt sind, etwa eine handliche Formel angeben zu können, die Rang (Cp) für
jedes vorgegebene/? liefert.
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Sind vx,...,vp„x die Nullstellen von Xp~x- 1 in Zp, ist Vp die Vandermondematrix
(vj~ 1)i^,,y</, und wird schliesslich

fP(X):=Y,Xk-l/k (1)

gesetzt, so ist

fp(V\) ••• ^(Vp-l)
vr%(v,) v-J./.Cv..,)

tf-'/,0.) v^/.(Vl)
Nach dem kleinen Fermatschen Satz sind die vx,...,vp__x genau die von Null
verschiedenen Elemente von Zp. Da Vp regulär ist, gilt also für den gesuchten Rang

Rang(Ci7)=Jp-l-card{weZ/?|//?(w) 0}. (2)

Die Lösung des Problems in [4] ist also gleichbedeutend mit der Bestimmung der
genauen Anzahl der in Zp gelegenen Nullstellen von^ für jede Primzahl/? ^ 3.

Proposition \.fp hat in Zp die einfache Nullstelle 1; jede von 1 verschiedene, in Zp
gelegene Nullstelle ist genau zweifach. Daher gelten die Ungleichungen

l^card{weZp\fp(w) 0}<>(p-l)/2 (3)

bzw.

(p-l)/2^Rang(Cp)^p-2, (4)

und die Schranken sind scharf.

Beweis: Zuerst betrachten wir die aus (1) folgenden Identitäten

Xf;(X)+fp(X)=(Xfp(X))'=txk~x (XP^ (5)
k~X k**2

bzw.

Xf;>(X) + 2f'p(X)=t Tt(x-j).
¦ ' j~2

Jp -r —* ' fc__2 j~2
(6)

Nun ist^(l)=0 nach dem Satz von Lagrange, vgl. etwa [2J; gemäss (5) ist 1 jedoch
eine einfache Nullstelle. Sei nun weZp, w^ 1 eine Nullstelle von^; sicher ist w^O,



Grad des Polynoms Anzahl der Nullstellen Lage der Nullstellen
gP(X)'.=fp(X)/(X- 1) von gp m Zp vong^

0 0 _

2 0 -
4 2 3 und 5

8 0 -
10 2 4 und 10

14 0 -
16 2 8 und 12

20 0 -
26 0 -
28 2 6 und 26
34 2 11 und 27
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und aus (5) bzw. (6) folgtj£(w) 0 bzw.^'(w)=^0. Damit ist (3) und wegen (2) auch
(4) klar. Dass die in (3) gegebene Abschätzung scharf ist, zeigt die erste Zeile der
nachstehenden Tabelle.

Pnmzahl/7

3

5

7
11

13

17

19

23

29
31

37

Wir entnehmen weiter der Tabelle, dass das Polynom

gp(X):=fp(X)/(X-l)eZp[X]

für die aufgeführten /?= 1 (mod 6) genau zwei verschiedene Nullstellen in Zp hat.
Wir zeigen später, dass gp für jedes p= 1 (mod 6) in Zp mindestens zwei Nullstellen
hat, so dass die untere Schranke in (3) für diese /? auf 3 angehoben und somit die
obere Schranke in (4) für dieselben/? auf/? —4 herabgedrückt werden kann.

Proposition 2. Für w e Z^XJO} ist

wfp(w)=-fp(w-x); (7)

weZp ist also Nullstelle vonfp genau dann, wenn diesfür w~x zutrifft.

Beweis: Nach dem kleinen Fermatschen Satz ist namhch

h^(w)='zV/*=§^
k=X k~X y=l

Hat man also eine von 1 und -1 verschiedene Nullstelle weZp vonfp, so findet
man sofort w~x ^ w als weitere Nullstelle vonfp.

Proposition 3. In Zp gelten die Gleichungen1)

fp(X)=(i-xp-(i-xy)/Px (8)

und also

(l-X)fp(l-X)=Xfp(X). (9)

1) Man beachte, dass hier rechts jeder Koeffizient des Zählerpolynoms durch/? teilbar ist.
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Daher gilt für weZp\{0,l}: w ist Nullstelle von fp genau dann, wenn dies für l-w
zutrifft.

Beweis: Fürk= l,...,p- 1 schreiben wir yk:= (P )/p und haben also

k\yk (p-l)--(p-k+l)=(-l)k-x(k-l)\ (modp).

Dies liefertyk (- l)k~x/k (modp) und daher modulo/?2

(l-^=l-_Y/>+/£V^

Damit ist (8) gezeigt; die restliche Behauptung ist dann klar.
Im Hinblick auf die Nullstellenaussagen der Propositionen 2 und 3 wird man sich
natürhch für solche weZp interessieren, die w~x 1 - w erfüllen.

Proposition 4. Sei /?> 5. X(l -X)= 1 hat in Zp genau dann Wurzeln, und zwar zwei
verschiedene, wenn /?= 1 (mod 6) ist. Ist /?= 1 (mod 6), so sind diese tatsächlich
Nullstellen von gp und damit vonfp.

Beweis: w(w-l)= -l in Zp ist hier gleichbedeutend mit (2h>-1)2= -3(modp).
Nach dem quadratischen Reziprozitätsgesetz und seinen Ergänzungssätzen gilt bei
/?> 5 für das Legendre-Symbol

(-T)-<-"-*(7)-(i)
und dies ist 1 genau dann, wenn /?= 1 (mod 3) ist, was mit /?= 1 (mod 6) äquivalent
ist. Sei nun /?= 1 (mod 6) und w0eZp eine der beiden Lösungen von X(l-X)=l.
Sicher ist w0^ 0,1 und also nach (9) und (7)

HW?(>n))=(i->n)).^(i^

wegen w0=£ - 1 folgt hieraus^(w0) 0.
Das hier gefundene Ergebnis erklärt in unserer Tabelle das Auftreten zweier
Nullstellen von gp in Zp für die /?__; 37, die kongruent 1 modulo 6 sind. Wenn man aber
aufgrund der Tabelle vermutet, gp habe stets zwei bzw. keine Nullstelle, je nachdem
ob/?= 1 bzw. £ 1 (mod 6) ist, so wird sich dies sogleich als unzutreffend erweisen.
Sei weiterhin/?_> 5. Dann sind 2, (p+ l)/2, p- 1 paarweise verschiedene Elemente
von Zp, die überdies von 0 und 1 und [falls/?= 1 (mod 6) ist] von den Wurzeln von
X(l — X)= 1 verschieden sind. Setzen wir

Hp:={l,(p+l)/l,p-l],

so gilt nach den Propositionen 2 und 3: lst^(w)=0 für ein weHp, so verschwindet
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fp an jeder Stelle von Hp. Nach Proposition 3 ist dies aber mit dem Bestehen der
Kongruenz

y 2 (modp2) (10)

von Wieferich [6] gleichbedeutend, die von den Untersuchungen zur Fermatschen
Vermutung über xP+yP=zP her wohlbekannt ist, vgl. etwa [3]. Ob (10) unendlich
viele Lösungen/? besitzt, ist bis heute nicht sicher; das bisher beste Ergebnis stammt
von Brillhart, Tonascia und Weinberger [1] und besagt, dass unterhalb 3 • 109 alleine
die Primzahlen 1093 und 3511 der Bedingung (10) genügen. Da beide Primzahlen
kongruent 1 modulo 6 sind, haben nach Proposition 4 die g1093 bzw. g35U wenigstens
fünfNullstellen in Z1093 bzw. Z3511.

Lassen wir nun aus Zp die 0,1,2, (p+ l)/2,p- 1 und im Falle/?= 1 (mod6) noch die
beiden Wurzeln von _Y(1-_¥)=1 fort, so bleibt jedenfalls eine durch 6 teilbare
Anzahl von Elementen übrig, die sich wie folgt auf lauter disjunkte Klassen zu je
sechs Elementen verteilen: Ist w ein behebiges übriggebliebenes Element, so ist nach
den Propositionen 2 und 3 entweder jedes oder keines der folgenden, paarweise
verschiedenen Elemente

w, w~x, l — w~x9 w(w—l)~x, (1 — w)~x, l — w

von Zp Nullstelle von fp. Fassen wir diese sechs Elemente zur Menge Gp (w)
zusammen, so können wir schliesshch formulieren:

Proposition 5. Ist/?= 1 (mod6) und w0eZp eine Wurzel von X(l-X)=l, so gibt es

w1,...>(/,_7)/6eZ/,\{0,l,H;o,w0_1,2,1/2,-1} derart, dass die Gp(wx),...,Gp(w(p_1)/6)
paarweise disjunkt sind und die Zerlegung

Zp\{0,1,Wq,Wqx} HpvGp(wx)u'-uGp(w(p_7)/6)

die Eigenschaft besitzt, dass das Verschwinden von fp an einer Stelle von Gp bzw. Hp
sogleich das Verschwinden von fp an jeder Stelle von Gp bzw. Hp impliziert. Ist
/?==5(mod6), so gibt es analog wx,...,w(p_5y6eZp\{0,1,2,l/2, — 1} derart, dass die

Zerlegung

Zp\{0,l} HpuGp(wx)w-uGp(w(p_5)/6)

die vorher aufgeführte Eigenschaft hat.

Damit erschöpfen sich unsere Aussagen über die Nullstellenverteilung von^ bei
behebigem /?_>5. Wie oben schon erwähnt, kennen wir nur zwei /?-Werte

1 (mod6), für die die drei Elemente von Hp Nullstellen wonfp sind. Istp>l, so
fällt jedenfalls 3 e Zp in ein Gp9 ob jedes der sechs Elemente dieses Gp tatsächlich
Nullstelle vonfp ist oder keines, hängt nach Proposition 3 ab von der Frage, ob die

Kongruenz

y 1P+1 (modp2) (11)



Kleine Mitteilungen 21

lösbar ist oder nicht. Hinsichtlich (11) sind unsere Kenntnisse jedoch genauso
lückenhaft wie bezüglich (10).
Abschliessend erwähnen wir, dass die in (1) eingeführten Polynome fp und ihre
Nullstellen in Zp eine wichtige Rolle spielen bei vielen Untersuchungen zur Fermat-
Vermutung im sog. «ersten Fall», wenn also keines der x,y,z durch/? teilbar ist, vgl.
etwa [3] und [5].

Peter Bundschuh, Mathematisches Institut der Universität Köln

LITERATURVERZEICHNIS

1 J Bnllhart, J Tonascia und P Weinberger On the Fermat Quotient In Computers m Number
Theory, S 213-222, New York 1971

2 G H Hardy und E.M Wnght An Introduction to the Theory of Numbers, 2 Aufl Oxford 1945

3 P Ribenboim 13 Lectures on Fermat's Last Theorem New York, Heidelberg, Berlin 1979
4 K Spmdelböck. Problem 764A El Math 57,44(1976)
5 H S Vandiver Note on Euler Number Cntena for the First Case of Fermat's Last Theorem

Am J Math 62, 79-82 (1940)
6 A Wiefench* Zum letzten Fermatschen Theorem J reme angew Math 730,293-302(1909)

© 1982 Birkhauser Verlag, Basel 0013-6018/82/010016-06 $1.50+0 20/0

Eine räumliche Deutung der Vierseiteigenschaft von Bodenmiller

In der eukhdischen Ebene n gilt der auf Bodenmiller ([6], S. 1003) zurückgehende

Satz. Die Thaieskreise über den Gegeneckenpaaren eines Vierseits liegen in einem
Kreisbüschel.

Beweise dieses Satzes stammen u.a. von Schlömilch [3], Mobius [2], Chasles [1] und
Study [5]. Für den hier gegebenen einfachen Beweis interpretieren wir Abb. 1 als

/Vcc-&

8?

Abb f
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Zentralriss eines räumlichen Objektes. Die mit XCU,YCU,ZCU beschrifteten Diagonalecken

des gegebenen Vierseits V={gx,...,g4] werden als die Fluchtpunkte dreier
Durchmesser einer Kugel 0 aufgefasst. Die Durchmesserendpunkte X,X, Y, Y,Z,Z
sind Ecken eines 0 eingeschriebenen Oktaeders mit sechs Paaren paralleler Kanten,
die jeweils nach den mit ACU,ÄCU,BCU,Bcu, &„,(?„ beschrifteten Ecken von V fluchten
(vgl. Abb. 2). Um die Lage des Augpunktes O der Zentralprojektion auf n zu
ermitteln, koppeln wir zwei der Paare antipodischer Kugelpunkte, etwa X,X und Y, Y
zu einem Rechteck. Die Fluchtpunkte ACU,ÄCU orthogonaler Seiten dieses Rechtecks
müssen dann aus dem Augpunkt O unter rechtem Winkel gesehen werden; somit
hegt 0 auf der Thaieskugel *FAÄ üt>er dem Gegeneckenpaar ACU,ÄCU von V
(vgl. Abb. 2). Koppelt man das verbleibende Paar von Durchmesserendpunkten Z

Augpunkt

M/distam

^ *
(XYzr

93

Aug-

M^
7

fty1 A> MXL

h
Abb. 2

und Z etwa mit Y und f, so liefert obige Überlegung eine weitere Thaieskugel WBB
über IF^Bl durch O. Das dritte mögliche Rechteck {Z,X,Z,X} ist nun durch die
vorher verwendeten bereits mitbestimmt und kann daher keine weitere, von den
ersten beiden unabhängige Bedingung für O hefern. Damit liegt die aus {Z,X,Z,X}
abgeleitete Thaleskugel WCq über dem Fluchtpunktepaar C°u, Ccu in dem von *FAA-

und WBB aufgespannten Kugelbüschel. Die Spurkreise von ^aä^bb^cc m n
sind aber die Thaieskreise kAA^BB^cc ^er den Gegeneckenpaaren des Angabe-
vierseits Fund gehören somit, wie behauptet, einem Kreisbüschel an.
Für den Augpunkt O gelten die Bedingungen Oe*Faä^bb un(* OeWc^. Mit
jedem Punkt O ist auch der zu n symmetrische Punkt ein möghcher Augpunkt für
die gesuchte Zentralprojektion, so dass unabhängig von der Realität von O die
Normalprojektion H von O auf n stets reell ausfällt. Der Punkt H heisst «Hauptpunkt»

der Zentralprojektion aus O auf % und hegt auf der Spur s der zu n
normalen Chordalebene von WAA und WBg, also auf der Chordalen der Spurkreise
kÄÄ,kßB von Vaä>¥bb-. Aus dem Bodenmillerschen Satz folgt somit, dass H nur bis
auf (behebige) Wahl aufs festgelegt ist.
Bei einer Zentralprojektion mit dem Hauptpunkt H sind nun die Fluchtelemente A\\
und 0% einer Geraden a und einer zu ihr normalen Ebene a notwendig so
beschaffen, dass HAcu±acu gilt. Gibt man also H aufs vor, so ist die Fluchtspur a£ not-
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wendig die Normale auf HACU durch Äcu Wahlen wir H insbesondere so, dass acu

m ÄCUBCU fallt (vgl Abb 3), dann muss wegen Hes auch HBCU±ACUBCU gelten und H

%e8_T

N234

U2
H=H<123

34t

'AI

Abb

ist der Hohenschnittpunkt HX23 des Dreiecks {Acu,Bcu,Ccu}={gx,g2,g3} Nebenbei
ergibt sich, dass Q,Q wegen CcueAcuBcu g2 und g2LHC°u ebenfalls Fluchtpunkte
orthogonaler Richtungen sind und ein eventuell reeller1), zu H gehöriger Augpunkt
O auch auf der Thaleskugel WCq hegt Mit gleicher Schlussweise lasst sich auch für
die ubngen Teildreiseite von V nachweisen, dass deren Hohenschnittpunkte mit s
inzidieren Wir haben damit folgenden Satz bewiesen (vgl [4], S 223, und [6],
S 1003)
Die Hohenschnittpunkte der vier Teildreiseite {gl9gpgk} (hj,k Pw ^» e 1» A) eines
Viersens [gx, ,g4} der euklidischen Ebene sind kollmear mit der gemeinsamen
Chordalen der Bodenmillersehen Thaieskreise dieses Viersens

G Weiss, Technische Universität Wien, A
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