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Kleine Mitteilungen

Abschätzung der Primzahlfunktion mit elementaren Methoden

In Anfängerkursen über elementare Zahlentheorie wird meistens

Ci <n(n)<c2- für alle n=n0 (1)
logn logn

mit n (n) als Anzahl der Primzahlen _i n bewiesen. In Lehrbüchern findet man für
(cx,c2,np) zum Beispiel (l/l2;4;2) in [8], (log2/4; 32 log2; 2) in [6], (l/6; 6; 2) in [1]
oder (2/3;8/5;3) in [5] und [9]. Der Primzahlsatz garantiert in (1) cx=l — e,

c2=l + e und die Existenz von n0 n0(e) für alle e >0. Aus den bekannten Beweisen
ist jedoch eine explizite Bestimmung von n0(e) undurchführbar. In [7] ist
(1; 5/4; 114) für (1) genannt, allerdings wurde dies mit funktionentheoretischen
Mitteln und mit Hilfe von Rechenanlagen erzielt. Hier soll ganz elementar
(0,92; 1,26; 11) für (1) bewiesen werden (siehe (15) und (16)).
Für Primzahlen/? und ganze Zahlen h>l,a wird

(30h)\h\ ttAh~
(I5h)l(l0h)\(6h)\ "^ao/0 (2)

betrachtet. Hierin gilt für a nach der Formel von Legendre

mit t [log 30 h/logp] und [x] als grösster ganzer Zahl _i x.
Wird h vp1 + r, 0 r <pl, v,= 0, ganz, eingesetzt, so folgt

Sodann ergibt r mit sp1 /30 =§_ r < (s+ l)pl/30 und 0 _i s* 29

s
A [sl [sl [sl s-l s-2 s-4 ^-^-iö^^-'-LtJ-LtJ-LtJ**—2—3—r-<2-

Damit gilt auch 0____d,_i 1, das heisst, Ah ist ganzzahlig, und aus (3) folgt a t, also

pa _g 30 h. Einsetzen in (2) ergibt

Ah= n (3o/o u p u p
p&yßÖh y/3Öh<p<X5h X5h<p<30h

^(30/i)rc(^^)(15Ä)Ä(15Ä)~^(x^)(30A)?r(30Ä)~7r(15/,). (5)
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Weiterhin gilt Ax l für alle p mit 5h<p<30h, was mit Ax aus (3) jeweils für
5h<p<6h,6h<p<(l5/2)h,(15/2)h<p< I0h,l0h<p< 15h und I5h<p<30h
unmittelbar einzusehen ist. Das Produkt aller dieser Primzahlen teilt also die ganze
Zahl_4Ä, das heisst

_4Ai__ II p II p^(5hy^X5h^-n^h\l5hy^^-n^X5h\ (6)
5h<p<X5h X5h<p<30h

Für

r--nl(i)'vz (7)

lässt sich elementar nachweisen (siehe etwa [2] oder [3])

e=yx>y2>-->yn>yn+x>-->2. (8)

Die rechte Seite von (8) lässt sich bestmöglich (Stirlingsche Formel) durch \2n
hmyn ersetzen, was aber im weiteren nicht benötigt wird, so dass auf den Beweis

mit Hilfe des Wallisschen Produkts (siehe etwa [2]) hier verzichtet werden kann.
Wird n\ aus (7) in (2) eingesetzt und (8) benutzt, so ergeben sich

ywhJh e30^
__

1

yX5hyX0hy6h
Ah~

«¦
* *¦ 75oP a== lo log(2H"3'' 55)=0'921292-' <9>

e-u6<_l_<_J^L_< y*kVh
<

7k <^f (10)
y^yio yxshyxoh yxshyxohyeh 7\ohV6h 4

30Aa-ylog30/t-l,16<logy4Ä<30Äa. (11)

Aus (5) und (11) werden

^(30Ä)log30Ä-(7r(15Ä)-^(\/3C^))log2>30/ifl---log30/i--l,16

und mit der Abkürzung

^_^___ii_. (12)

n(15h)-n(VXh)1 log30/» 1,16
'»*>.fl+ 3ÖÄ 1°82—6ÖT"3Ö*- (13)

Für« mit 30ft_=n<30(Ä+ 1) folgt aus (13) wegen nrjn>(n-30)riy0h

{* 30\/ /»-30\ /—\ Iog2 log(n-30) 1,16 \ „_x
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Für «i__1160 ist die rechte Seite von (14) sicher >a, denn nach Ersetzen von
n ((n — 30)/2) durch (12) und Anwenden von nm> a für m < n als Induktionsvoraussetzung

(m= 11) ergibt sich

_(»-30)log2_/-iog2_log(W2-30)>3()a+u6)
21og^-

was wegen der Monotonie der linken Seite für n= 1160 erfüllt ist.
Zur Sicherung des Induktionsanfangs werden noch die kleinsten ganzen Zahlen
«i+1(1___j_s 15,«1 1160) mit n(nx+x)log(nx— l)=a(nx— l) aus einer Primzahltafel
bestimmt («2 881,«3 659,...,«10=73,...,«16 11), und damit gilt nn>a auch für
nx+x n<nx wegen der Monotonie von n/logn.
Zusammen ist bewiesen

n (n)>a-^—> 0,921292—^— für n=ll. (15)
log« log«

Aus (6) und (11) mit der Abkürzung (12) folgt

/ log2 w 1 log3 \

Mit 30 («- l)=_i« < 30 « und n= 380000 folgt hieraus wegen nnn<(n + 30) n30h

/ 30 W log2 w 1 log3 \
^<l1+v)l1+io^(«^)(fl+T^+iioi(^H<'?i'3'

wenn nm^r/XX3< 1,255059 für m<n als Induktionsvoraussetzung benutzt wird
(m=2).
Für den Induktionsanfang werden aus einer Primzahltafel die grossten ganzen
Zahlen «i+1(l__i/__i76,«1= 117) mit 7r(«,+i)log(«-+ 1)<«113(«I+1) bestimmt
(«2= 130,«3= 138,...,«30= 1300,...,«77 439492), und damit gilt nn<rjXX3 auch für
nx<n nx+x. Für 2_s«___117ist«w_g«113 leicht nachzuprüfen, und somit gilt

n(n)^nXX3-^—< 1,255059-^— für n_s2. (16)
log« log«

Die Abschätzung nach unten lässt sich mit dem Ansatz Ah aus (2) bei grösserem «0
nicht verbessern. Bei «= 113 ist nn maximal. Mit sehr grossem «0 ist die obere
Abschätzung mit dem Ansatz (2) bis zu nn< 1,106 zu verbessern. Diese Werte sind
asymptotisch schon bei Tschebyschew (siehe [10] oder [4]) zu finden.

Heiko Harborth, Hans-Joachim Kanold, Arnfried Kemnitz, TU Braunschweig
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Aufgaben

Aufgabe 850. r («) bezeichne die Anzahl der Teiler d, von « l=dx<d2< <dX(rx) n
Wir setzen

T(w)-1 d r(n\
«(»)-!+ I /-, h(n)=^\

,-i «i+i g(*)

Man zeige, dass - die richtige Grössenordnung von «(n) ist P Erdos
log log«

Losung Wir setzen

log log«
/(«) =«(«) f * hm sup/(«)=L

lOg« A1-+00

und zeigen, dass L= 1 ist

Beweis 1 Sei e > 0 beliebig klein, fest gewählt, sei « =p^x e\ p e P Aus

i+ l

f(n)~ fr ]+1 1°g1<>8/>+to8b'l"'1^ \Pl~e\ f loglog.» logfr1'*] \
,_._____! lP1_c]log^ \pl~E] \ log/7

+
log^

folgt

f(n)-*l — e für />-*oo
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