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Kleine Mitteilungen

Abschiitzung der Primzahlfunktion mit elementaren Methoden

In Anfingerkursen iiber elementare Zahlentheorie wird meistens

<m(n)<c, lonn furalle n=z=n, (1)

1 logn

mit 7 (n) als Anzahl der Primzahlen =#n bewiesen. In Lehrbiichern findet man fir
(c1; €25 np) zum Beispiel (1/12;4;2) in [8], (log2/4; 32 log2; 2) in [6], (1/6; 6; 2) in [1]
oder (2/3;8/5;3) in [5] und [9]. Der Primzahlsatz garantiert in (1) ¢,=1—c¢,
¢;=14¢ und die Existenz von ny=n,(¢) fiir alle ¢ > 0. Aus den bekannten Beweisen
ist jedoch eine explizite Bestimmung von ny(¢) undurchfithrbar. In [7] ist
(1;5 /4; 114) fur (1) genannt, allerdings wurde dies mit funktionentheoretischen
Mitteln und mit Hilfe von Rechenanlagen erzielt. Hier soll ganz elementar
(0,92;1,26; 11) fiir (1) bewiesen werden (siehe (15) und (16)).

Fiir Primzahlen p und ganze Zahlen A> 1, a wird

(30 h)!h! _TI

A= "5 m) 10 W6 h)! T pS0h

r @)

betrachtet. Hierin gilt fiir a nach der Formel von Legendre

e N N SRR I

mit t=[log30 & /log p] und [x] als grosster ganzer Zahl = x.
Wird h=vp'+r,0=r<p',y= 0, ganz, eingesetzt, so folgt

30 15r 10r 6r
P (5[] ).
p 4 p p
Sodann ergibt r mit sp'/30=r< (s+1)p' /30 und 0 = 5=29

K) s s s s—1 s—2 s—4
—l<——=d=5s—|—|-|=—|—-|— - - - .
< i~ [2] [3] [s]és 2 3 5 <2

Damit gilt auch 0= 4;=1, das heisst, 4, ist ganzzahlig, und aus (3) folgt a = ¢, also
p*=30h. Einsetzen in (2) ergibt

a4,= 11 Gony II p II ,

p=+\/30h V30h<p<15h 15h<p<30h
= (30 h)"(\/ﬂ’ (15 h)n(lSh)——n(\/ib‘h) (30 h)n(30h)—7r(15h) . (5)
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Weiterhin gilt 4,=1 fiir alle p mit Sh<p<30h, was mit 4, aus (3) jeweils fir
Sh<p<6h6h<p<(15/2)h,(15/2)h<p<10h,10h<p<15h und 15h<p<30h
unmittelbar einzusehen ist. Das Produkt aller dieser Primzahlen teilt also die ganze
Zahl A,, das heisst

A= H p 11 p= (5 P USH=7(5h) (15 pyr G0k =n(I5h) 6)
Sh<p<15h 15h<p<30h
Fiir
— (i) 1 ;
Yn . n VT ( )

ldsst sich elementar nachweisen (siehe etwa [2] oder [3])
e=yl>y2>"'>yn>7n+l>'”>2‘ (8)

Die rechte Seite von (8) lasst sich bestmoglich (Stirlingsche Formel) durch V27
=limy, ersetzen, was aber im weiteren nicht benétigt wird, so dass auf den Beweis
mit Hilfe des Wallisschen Produkts (siehe etwa [2]) hier verzichtet werden kann.
Wird n! aus (7) in (2) eingesetzt und (8) benutzt, so ergeben sich

A= yls’;?:';"m j;(:h . g= ”3'16 log (24 - 3° . 55=0921292..., ©)
o116 - 2 < 130k < T30h7h «Th _5’_’ (10)
Y1sV1o  Vish¥ion  Pish¥won¥en  VionVen 4 ’
30ha-——;—logSOh-—l,16<logAh<30ha. (11)
Aus (5) und (11) werden

1
n (30 h)log30h—(n (15h)—n (V30 h)) log2>30ha— 5 log30h—1,16
und mit der Abkiirzung

logn

,,n=£ﬂ_§_ 12)
n

g +n(15h)-—7z(\/30h)1 ,_ log30h _ 1,16

M30n>a 0h %8BS Ts0n  30n°

(13)

Fiir n mit 30 h=n<30(h+ 1) folgt aus (13) wegen nn,> (n—30) 73,

(-2 o (o(752)-ve) a2 ey
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Fir n= 1160 ist die rechte Seite von (14) sicher >a, denn nach Ersetzen von
7 ((n—30) /2) durch (12) und Anwenden von #,,> a fir m< n als Induktionsvoraus-
setzung (m= 11) ergibt sich

a(n—30)log2

n—30
2

~30
—\/ﬁlogz-l—o§£'12—-——)>3oa+1,16,

2log

was wegen der Monotonie der linken Seite fir n= 1160 erfullt ist.

Zur Sicherung des Induktionsanfangs werden noch die kleinsten ganzen Zahlen
n1(1=i=15,n;=1160) mit n (n;,)log(n;—1)=a(n,— 1) aus einer Primzahltafel
bestimmt (n,=881,n;=659,...,n0="73,...,n6=11), und damit gilt #,>a auch fiir
n;, 1 =n<n; wegen der Monotonie von n/logn.

Zusammen ist bewiesen

n

>0,921292

n(n)>a
logn logn

fir n=11. (15)

Aus (6) und (11) mit der Abkiirzung (12) folgt

<(l+ log2 )(a+—1~ N log3 )
30 log 15k 6 7" Qlogl5h M54

Mit 30(h—1)=n<30h und n= 380000 folgt hieraus wegen nn, < (n+30) 5y,

<(l+~3—0)(1+—lo~———g2 >(+L + log 3 )<
Mn n 10g(n/2) a 6']5h 2log(n/2) Mi5h 113>

wenn 7,=1,;3<1,255059 fiur m<n als Induktionsvoraussetzung benutzt wird
(m=2).

Fiir den Induktionsanfang werden aus einer Primzahltafel die grossten ganzen
Zahlen n; (1=i=76,n=117) mit =n(n;,.,)log(n;+1)<n;;;(n;+1) bestimmt
(n,=130,n3=138,...,n30=1300,...,n;;=439492), und damit gilt »,<#,,; auch fur
nj<n=n;, . Fur2=n=117 ist 5,,= n,,; leicht nachzupriifen, und somit gilt

1255059 -
ogn logn

7'C(n)§77“3 1 fir n=2. (16)

Die Abschitzung nach unten lisst sich mit dem Ansatz A, aus (2) bei grosserem ny
nicht verbessern. Bei n= 113 ist 5, maximal. Mit sehr grossem n, ist die obere Ab-
schitzung mit dem Ansatz (2) bis zu #,<1,106 zu verbessern. Diese Werte sind
asymptotisch schon bei Tschebyschew (siche [10] oder [4]) zu finden.

Heiko Harborth, Hans-Joachim Kanold, Arnfried Kemnitz, TU Braunschweig
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Aufgaben

Aufgabe 850. 7 (n) bezeichne die Anzahl der Teilerd;vonn: 1=d,<d,< - <d,(;=n.
Wir setzen

t(n)—1 T (n)
gn):=1+ h(n):=——:-
zgl 1+ 1 4 (n)
Man zeige, dass logn die richtige Grossenordnung von A (n) ist. P. Erdos

loglogn

Losung: Wir setzen

Fny:=h(n) 0B8R ‘°g1°g" . lim supf(e)=L

und zeigen, dass L= 1 ist.

Beweis: 1. Sei ¢ >0 beliebig klein, fest gewihlt; sei n=pl' ], peP. Aus

1
1+
Fy= [p'~¢]+1 loglogp+log[p'~c] _~ [p'~¢] (loglogp . log[p“el)
L [p'~“]logp 14 P71\ logp logp
P P
folgt

f(n)»1—¢ fur p—-owo.
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