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zehn Hohlkanten aufweist2). Dieses Ikosaeder besitzt ubngens neben der Wackelstellung

zwei weitere reelle, jedoch überschlagene Positionen; nach dem in
Abschnitt 3 dargelegten Verfahren findet man nämlich noch

Xl -0,9834, ^ -0,8403, zx= 1,2701;
jt2=-0,7827, j2=-1,2091, z2=0,3463. (4.5)

Ein Umspringen des schwierig zu bauenden Stabmodells zwischen diesen beiden
Positionen findet trotz der verwirrenden Struktur des Stabwerks bei richtiger
Anordnung der Stäbe tatsächlich statt. Der Übergang zur Wackelform ist allerdings,
abgesehen von der übermassigen Beanspruchung des Materials, schon aus
topologischen Gründen nicht möglich.

W. Wunderlich, Wien
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Die Methode der finiten Elemente zur Lösung von elliptischen
Randwertaufgaben

1. Zur Problemstellung

In einem früheren Beitrag [5] wurde die historische Entwicklung der Methode der
finiten Elemente aus der Sicht der ingenieurmässigen Anwendungen skizziert,
wobei aber schon darauf hingewiesen wurde, dass das Verfahren unter diesem
Namen später auch zur Lösung von partiellen Differentialgleichungen herangezogen

wurde. Im folgenden wollen wir uns nur mit einem konkreten Fall befassen
und daran den Grundgedanken und die wesenthchen Teilschritte bis zur Lösung
der Aufgabe darstellen. Wir betrachten lmeare elliptische Randwertaufgaben mit
Laplaceschem Differentialoperator, welche in einem weitgehend beliebigen Grundgebiet

und unter recht allgemeinen Randbedingungen zu lösen smd. Mit dieser

2) Mit den bei /* und v zugelassenen negativen Vorzeichen werden die Ungleichungen in (11)
ausser Kraft gesetzt
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mathematischen Aufgabenstellung werden eine Reihe von typischen Problemen der
Physik und der Elektrotechnik erfasst. Gegenüber den geläufigen und leichter
verständlichen Differenzenmethoden weist das Verfahren der finiten Elemente
einige für die Rechenpraxis ins Gewicht fallende Vorteile auf. So erlaubt die
Methode eine sehr flexible und problemgerechte Approximation des Grundgebietes,

eine eventuell notwendige, nur lokal feinere Diskretisation des Gebietes,
und sie führt stets auf lineare Gleichungssysteme mit symmetrischer und positiv
definiter Matrix. Die genannten Eigenschaften erklären die Beliebtheit und die
Verbreitung der Methode zur praktischen Lösung von elliptischen Randwertaufgaben.

2. Theoretische Grundlage

In einem vorgegebenen zusammenhängenden Gebiet Gc=R2 mit dem stückweise
stetig differenzierbaren Rand C soll folgende typische elliptische Randwertaufgabe
gelöst werden:

inG, (1)uxx + uyy+p(x,y)u=f(x,y)

u cp(s)

du

dn
+ a(s)u y (s)

aufCx,

aufC2.

(2)

(3)

Darin bedeuten p(x,y)<,0 und f(x,y) in G gegebene Funktionen des Ortes, s

die Bogenlänge auf dem Rand, cp(s) eine gegebene Funktion der Bogenlänge
auf einem Teil des Randes Cx, a (s) und y (s) gegebene Funktionen auf dem Rest
des Randes C2 mit der Eigenschaft CxuC2 C, CxnC2 $ und du/dn die Ableitung

von u in Richtung der äusseren Normalen der Randkurve C2 (vgl. Fig. 1).
Eines der beiden Randstücke Cx oder C2 kann leer sein.

.Y

c

G

Figur 1
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Die Behandlung und numerische Lösung der elliptischen Randwertaufgabe (1), (2),
(3) nach der Methode der finiten Elemente beruht entweder auf einem Extremal-
prinzip oder auf der Methode von Galerkin [4], Im folgenden soll das Extremal-
prinzip die Grundlage bilden. So gilt der fundamentale

Satz. Die mindestens stetige und stückweise stetig differenzierbare Funktion u(x,y),
welche das Funktional

/[M]= \\ [\(^+ t#"~y /K*,jV+/(*,>>)"] dxdy
G

+ $[ya(_)«2-y (_)„]*
(4)

minimiert unter Berücksichtigung der einzigen Nebenbedingung (2), löst notwendigerweise

die Randwertaufgabe (l), (2), (3).

Für den Beweis des Satzes sei etwa auf [4,6] verwiesen.
Die Aussage des Satzes zeigt gleichzeitig *eine für die praktische Durchführung
äusserst wichtige Unterscheidung der beiden Randbedingungen der Randwertaufgabe

auf. In der Formulierung als Extremalaufgabe ist nur die Dirichletsche
Randbedingung (2) zu berücksichtigen, welche deshalb oft als Zwangsbedingung
bezeichnet wird. Die Cauchysche Randbedingung (3) erweist sich beim Beweis des
Satzes vermittels Variationsrechnung als eine natürliche Nebenbedingung, welche
die Lösungsfunktion der Extremalaufgabe automatisch erfüllt. Dirichletsche
Randbedingungen auf dem Teilstück Cx sind aber einfacher zu berücksichtigen als

Cauchysche Randbedingungen auf C2.

3. Das prinzipielle Vorgehen

Zur approximativen Lösung der Extremalaufgabe (4) unter Berücksichtigung von
(2) wird das Gebiet G zunächst in einfache Teilgebiete, den Elementen, zerlegt.
Als Elemente kommen Dreiecke, Parallelogramme, Vierecke und in Verfeinerung
auch krummlinige Dreiecke und Vierecke in Frage. In Figur 2 ist eine konkrete
grobe Einteilung einer Viertelellipse mit den Halbachsen a=2 und 6=1 in
geradlinige Dreieckelemente dargestellt. Mit einer dem Gebiet G angepassten, evtl.
lokal feineren Triangulierung erreicht man selbst mit geradlinigen Elementen
eine gute Approximation von G.

In jedem der Elemente wird für die gesuchte Funktion u(x,y) ein problemgerechter
Ansatz so gewählt, dass insbesondere die im Satz geforderte Stetigkeitsbedingung

beim Übergang von einem Element ins benachbarte leicht zu erfüllen ist.
Hierfür eignen sich ganzrationale Funktionen der beiden Ortskoordinaten sehr

gut, wie beispielsweise lineare oder quadratische Funktionen für Dreieckelemente.
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Figur 2

u(x,y) cx + c2x + c3y,

u(x9y) cx + c2x + c3y+c4x2 + c5xy+c6y2.

(5)

(6)

Eine lineare Funktion (5) ist in einem beliebigen Dreieck eindeutig bestimmt
durch die drei Funktionswerte in den Eckpunkten. Auf jeder Seite des Dreiecks
reduziert sich (5) auf eine lineare Funktion der Bogenlänge, welche durch die
beiden Funktionswerte in den Eckpunkten eindeutig festgelegt ist. Bei übereinstimmenden

Funktionswerten in den Seitenendpunkten von zwei angrenzenden
Dreieckelementen ist damit die Stetigkeit des Funktionsansatzes gewährleistet. Die
stückweise stetige Differenzierbarkeit ist für (5) offensichtlich auch erfüllt.
Zur eindeutigen Festlegung eines quadratischen Ansatzes (6) in einem beliebigen
Dreieck sind die sechs Funktionswerte in den Eckpunkten und in den
Seitenmittelpunkten erforderlich. Die zugehörige zweidimensionale Interpolationsaufgabe
ist stets eindeutig lösbar [4J. Der Ansatz (6) reduziert sich zudem auf jeder
Dreiecksseite auf eine quadratische Funktion der Bogenlänge, welche ihrerseits
durch die drei Funktionswerte in den beiden Endpunkten und im Mittelpunkt
aufgrund der Eindeutigkeit des quadratischen Interpolationspolynoms wiederum
eindeutig bestimmt ist [6]. Analog zum hnearen Ansatz folgen daraus die
erforderlichen Stetigkeitsbedingungen.
Aus dem eben Gesagten wird klar, dass die Funktionswerte w, in den genannten
Punkten Px die problemgerechten Grössen darstellen, um die Ansätze in jedem
Element eindeutig zu beschreiben. Die Eckpunkte, für den quadratischen Ansatz
auch die Seitenmittelpunkte, stellen die Knotenpunkte und die zugehörigen, zu
bestimmenden Funktionswerte die Knotenvariablen der Aufgabe dar.
Sobald man eine problemgerechte Triangulierung des Grundgebietes G und den
Typ des Ansatzes gewählt hat, ist das Funktional (4) in Abhängigkeit der
Knotenvariablen darzustellen. Diese Aufgabe erledigt man für die einzelnen Elemente,
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die im einfachsten Fall Dreiecke und geradhnige Kantenstücke sind. Unter der
vereinfachenden Annahme, dass sowohl die Funktionen p(x,y) und f(x,y) wenigstens

für die einzelnen Dreieckelemente als auch a (s) und y (s) für die einzelnen
Kantenstücke konstant sind, reduziert sich die Aufgabe darauf, die Integrale

h §(u2x + u2y)dxdy, I2 \\u2dxdy, I3 \\udxdy,

I$ \u2ds,
R

I5 \uds
R

(1)

(8)

für den betreffenden Ansatz zu berechnen. Darin bedeutet T ein Dreieck in
beliebiger Lage und R ein Randstück des approximierten Randes C2. Sei T ein
allgemeines Dreieck nach Figur 3 mit den Eckpunkten Px(xx,yx), (i=l, 2, 3),
welche im Gegenuhrzeigersinn durchnumeriert sind. Zur tatsächlichen
Durchführung der Integration wird zweckmässigerweise ein lokales (£, ^-Koordinatensystem

eingeführt, dessen Nullpunkt im Eckpunkt Px liege. Im lokalen
Koordinatensystem sollen weiter die beiden andern Eckpunkte die normierten Koordina-

Sc*.,a^.i3

T
¦p>,.0

i_os._.r^s

Figur 3

ten (1,0) bzw. (0, 1) erhalten, so dass dem Dreieck T das Einheitsdreieck _T0

entspricht. Den Übergang leistet die linear affine Transformation

x=xx + (x2-xx)£ + (x3-xx)n
y^yi+fo-ydi+fo-ydv •

Die Integrale (7) transformieren sich mit

«x^fx+ Mirtf*» uy=u^y + unny,

dxdy~^Mi)d^= x2-xx y2-yx
*3~*i y*-y\

d£dn=Jd£dn

(9)

(10)

(11)
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nach einer elementaren Rechnung in

h-a\\u\d^dn + 2b\\u^und^dn + c\\u\d^dn,
To To T0

I2=j\\u2dtdn,
To

l3=J\\ud^dn
To

mit den allein von der Geometrie des Dreiecks T abhängigen Konstanten

a [(x3-xx)2 + (y3-yx)2]/j,

b -[(x3-xx)(x2-xx) + (y3-yx)(y2-yx)]/j,

c [(x2-xx)2 + (y2-yx)2]/j.
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(12)

(13)

(14)

(15)

(16)

Die Werte für a, b und c entstehen unter Berücksichtigung der Tatsache, dass

die partiellen Ableitungen £X9 <^y, rjx und ny die Elemente der Inversen der
Jacobi-Matrix der Transformation (9) sind.
Die fünf in (12) und (13) auftretenden Integrale sind nur vom verwendeten Ansatz
im Dreieckelement T abhängig.
Für den hnearen Ansatz (5) beispielsweise stellt sich die Funktion u(£,n) in
den lokalen Koordinaten mit den Knotenvariablen ux, u2, u3 in den entsprechenden

Eckpunkten dar als

u(£,n) (l-£-rj)ux + £u2 + r/u3. (17)

Nach Substitution von (17) in (12) und (13) und nach Ausführung der Integration

ergibt sich offensichtlich für Ix und I2 je eine quadratische Form und für
I3 eine hneare Form in den drei Knotenvariablen. Die Ergebnisse lassen sich
mit dem Knotenelementvektor ue (ux, u2, u3)T zusammenfassen in

Ix uJSeue, I2 ujMeue, I3 bTeue. (18)

Darin stellen Se die Steifigkeitselementmatrix, Me die Massenelementmatrix und
be den Elementvektor dar und sind zahlenmässig gegeben durch [4]

SP=-
1

~a + 2b + c -(a + b) ~(b + c)

• M<=ir
"21 r

•*-.
1

-(a + b) a b 1 2 1 1

l-(b+ c) b c .1 1 2. .1

(19)

Analog hefern I4 und I5 quadratische bzw. hneare Formen in den
Knotenvariablen des Randstückes R.
Die Überlegungen übertragen sich sinngemäss auf den quadratischen Ansatz (6),
wobei anstelle von (17) für u(£,n) eine Linearkombination von sechs
Basisfunktionen mit den sechs Knotenvariablen ux bis u6 der sechs Knotenpunkte
des Dreieckelementes tritt. Die Matrizen Se und Me sowie der Vektor be sind
von der Ordnung sechs [4].
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Zusammengefasst liefert jedes Element (Dreieck oder Kantenstück) zum Funktional
(4) eine quadratische Funktion der beteiligten Knotenvariablen in der Form

ie^julAt+d?*- (20)

Die Addition über alle Elemente ergibt folglich für das Funktional eine quadratische

Funktion in allen der Elementeinteilung und dem gewählten Ansatz
entsprechenden und durchnumerierten Knotenvariablen ux,u2,...,uN

I^~üT Äü+dFü, ü=(ux,ul9...9uN)T. (21)

Der erhaltene Ausdruck (21) für das Funktional I[u] ist unter Berücksichtigung
der Dirichletschen Randbedingung (2) zu minimieren. Dies geschieht dadurch,
dass die Knotenvariablen, welche auf dem eventuell approximierten Randstück Cx

hegen, gleich den vorgegebenen Randwerten gesetzt werden. Das bedeutet, dass

die Randbedingungen vermöge Interpolation auf dem Rand approximativ erfüllt
werden. Um für das Folgende eine konkrete Situation zu schaffen, sollen die nicht
durch Randbedingungen vorgeschriebenen Knotenvariablen die Indizes 1 bis n,
die übrigen die Indizes n-l-1 bis _V erhalten.
Werden nun die Randwerte in (21) eingesetzt, modifiziert sich (21) zum
Ausdruck

I=YUTAu+(Fu+f9 u=(ux,u2,...,un)T, (22)

worin A die Untermatrix der Ordnung n von Ä darstellt, gebildet aus den ersten
n Zeilen und Kolonnen, d aus d hervorgeht und / eine Konstante bedeutet. Die
notwendige Bedingung für ein Minimum von (22) lautet

Au+d=0. (23)

Die unbekannten Knotenvariablen ergeben sich als Lösung des symmetrischen
Gleichungssystems (23) mit positiv definiter Matrix A.
Damit ist der Lösungsgang vollständig skizziert, bestehend aus der geeigneten
Triangulierung des Gebietes G, Numerierung der Knotenpunkte, Datenvorbereitung

(Koordinaten der Eckpunkte und Daten der einzelnen Elemente), Kompilation
der Matrix Ä und des Vektors d, Berücksichtigung der Randbedingungen und
Auflösung des Systems (23).

4. Einiges zur Lösung der linearen Gleichungssysteme

Die zu lösenden linearen Gleichungssysteme (23) sind symmetrisch und besitzen
eine positiv definite Koeffizientenmatrix. Die Gaußsche Elimination ist deshalb mit
Pivots längs der Diagonale durchführbar, wobei die Symmetrie erhalten bleibt
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[6]. Der erforderhche Rechenaufwand reduziert sich dabei auf rund die Hälfte
im Vergleich zur Lösung eines allgemeinen Gleichungssystems.
Im Fall von komplexen Strukturen mit vielen Elementen [5] oder bei feiner
Elementeinteilung des Gebietes im Fall von elliptischen Randwertaufgaben ist
die Zahl der unbekannten Knotenvariablen sehr gross und beträgt in praktischen

Anwendungen mehrere hundert bis mehrere tausend. Die Methode der
finiten Elemente besitzt aber die wesenthche Eigenschaft, sehr schwach besetzte

Gleichungssysteme zu liefern. Dies ist aufgrund der Kompilation der Gesamtmatrix

der quadratischen Form offensichtlich, denn es können nur jene Elemente
einen additiven Beitrag zur i-ten Zeile, zugehörig zur i-ten Knotenvariablen,
liefern, denen die i-te Variable angehört, und zwar nur in jene aussendiagonalen
Positionen, denen Knotenvariable entsprechen, welche denselben Elementen
angehören. Im Vergleich zur grossen Zahl der Unbekannten sind in jeder Zeile
relativ wenige Koeffizienten von Null verschieden. Die durchschnittliche Zahl
der von Null verschiedenen Elemente pro Zeile ist stark problemabhängig und
dann auch von den verwendeten Ansätzen. Sie bewegt sich in der Grössenordnung
zwischen 10 und 100.

Bei geeigneter Numerierung der Knotenvariablen erhält die Matrix A (axk)
des Gleichungssystems eine Bandstruktur. Unter einer Bandmatrix mit der Bandbreite

m < n versteht man eine Matrix mit der Eigenschaft

axk 0 füralle i,k mit \i—k\>m. (24)

Der Gaußsche Algorithmus mit Pivots in der Diagonale lässt die Bandstruktur

unverändert. Folglich sind für die praktische Durchführung nur die
Matrixelemente der Diagonale und etwa der m unteren Nebendiagonalen im
Rechenautomaten zu speichern. Ferner beträgt der Rechenaufwand zur Lösung eines

symmetrischen, positiv definiten Bandgleichungssystems grössenordnungsmässig
nur

ZBand=y"»*2 (25)

multiphkative Operationen [3]. Aus ökonomischen Gründen hinsichtlich
Speicherplatz und Rechenaufwand ist die Bandbreite m zu minimieren. Zur Bestimmung

der optimalen Numerierung sind heuristisch begründete Algorithmen
entwickelt worden, welche auf graphentheoretischen Überlegungen beruhen [4].
Eine Verfeinerung des Begriffs der Bandstruktur führt zur Hülle oder Enveloppe
eine Matrix. Sei f(A) der Kolonnenindex des ersten von Null verschiedenen
Elementes aXJ der Men Zeile, d. h.

fx(A)=min{j\aXJ?0,j^i}. (26)

Damit definiert man die Enveloppe der Matrix A als die Menge der Indexpaare

Env(^)= {(i,j) \f (A)^j^ i, !<_/<_*}. (27)
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Die Kardinalität der Enveloppe heisst das Profil der Matrix. Es kann leicht
verifiziert werden, dass sich der Gaußsche Eliminationsprozess vollständig in der
Hülle der Matrix A abspielt [4]. Damit kann der Speicherbedarf für die Matrix
in der Regel recht drastisch auf das Profil reduziert werden.
Der zur Verfügung stehende Speicherplatz im Zentralspeicher von modernen
Grossrechenanlagen reicht jedoch bei weitem nicht aus, die grossen Gleichungssysteme

mit Speicherung der Elemente des Bandes oder der Hülle zu lösen.
Deshalb sind spezielle Rechentechniken entwickelt worden, unter denen die
Frontlösungsmethode [4] zu erwähnen ist. Hier wird der Aufbau der Gesamtmatrix A
und der Eliminationsprozess in geeignetem Wechsel so vollzogen, dass bei einer
Bandmatrix der Bandbreite m grössenordnungsmässig nur etwa m2/2
Matrixelemente im Zentralspeicher gleichzeitig vorhanden sein müssen. Damit lassen
sich sehr respektable Gleichungssysteme lösen.
Neben der direkten Eliminationsmethode, welche für lange Zeit als das effizienteste

Vorgehen angesehen worden ist, gewinnen in neuester Zeit iterative
Lösungsverfahren ihre praktische Bedeutung zurück und vermögen in vielen Fällen die
Gleichungssysteme mit wesentlich kleinerem Speicherbedarf und auch Rechenaufwand

zu lösen. Der grundsätzliche Vorteil der iterativen Methoden besteht nämlich
darin, dass sie die gegebene Matrix des Systems unverändert benützen und somit
die schwache Besetzung vollkommen ausnützen können. Für den Rechenpro-
zess selbst sind deshalb nur die von Null verschiedenen Matrixelemente mit
der Information ihrer Position abzuspeichern. Als besonders effizient erweisen sich
zwei Modifikationen der Methode der konjugierten Gradienten von Stiefel und
Hestenes [1, 3]. Falls eine sog. Vorkonditionierung des zu lösenden Gleichungssystems

angewandt wird, liefert das iterative Verfahren die Lösung in erstaunlich
wenig Iterationsschritten und damit mit entsprechend kleiner Rechenzeit [2,4].
Dieser kleine Abriss möge zeigen, dass die Methode der finiten Elemente auf dem
Gebiet der Numerik der linearen Algebra neue Akzente gesetzt und interessante
Impulse vermittelt hat. H. R. Schwarz, Universität Zürich
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