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zehn Hohlkanten aufweist?). Dieses Ikosaeder besitzt iibrigens neben der Wackel-
stellung zwei weitere reelle, jedoch iiberschlagene Positionen; nach dem in Ab-
schnitt 3 dargelegten Verfahren findet man niimlich noch

x,=—009834, y,=—08403, z,=12701;
x3=—0,7827,  y,=—12091,  z,=0,3463. (4.5)

Ein Umspringen des schwierig zu bauenden Stabmodells zwischen diesen beiden
Positionen findet trotz der verwirrenden Struktur des Stabwerks bei richtiger
Anordnung der Stibe tatsichlich statt. Der Ubergang zur Wackelform ist allerdings,
abgesehen von der iibermissigen Beanspruchung des Materials, schon aus topolo-
gischen Griinden nicht méglich.

W. Wunderlich, Wien
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Die Methode der finiten Elemente zur Losung von elliptischen
Randwertaufgaben

1. Zur Problemstellung

In einem friitheren Beitrag [5] wurde die historische Entwicklung der Methode der
finiten Elemente aus der Sicht der ingenieurmissigen Anwendungen skizziert,
wobei aber schon darauf hingewiesen wurde, dass das Verfahren unter diesem
Namen spiter auch zur Losung von partiellen Differentialgleichungen herange-
zogen wurde. Im folgenden wollen wir uns nur mit einem konkreten Fall befassen
und daran den Grundgedanken und die wesentlichen Teilschritte bis zur Losung
der Aufgabe darstellen. Wir betrachten lineare elliptische Randwertaufgaben mit
Laplaceschem Differentialoperator, welche in einem weitgehend beliebigen Grund-
gebiet und unter recht allgemeinen Randbedingungen zu l6sen sind. Mit dieser

2) Mit den bei x4 und v zugelassenen negativen Vorzeichen werden die Ungleichungen in (1.1)
ausser Kraft gesetzt.
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mathematischen Aufgabenstellung werden eine Reihe von typischen Problemen der
Physik und der Elektrotechnik erfasst. Gegeniiber den gelidufigen und leichter
verstindlichen Differenzenmethoden weist das Verfahren der finiten Elemente
einige fur die Rechenpraxis ins Gewicht fallende Vorteile auf. So erlaubt die
Methode eine sehr flexible und problemgerechte Approximation des Grundge-
bietes, eine eventuell notwendige, nur lokal feinere Diskretisation des Gebietes,
und sie fithrt stets auf lineare Gleichungssysteme mit symmetrischer und positiv
definiter Matrix. Die genannten Eigenschaften erkliren die Beliebtheit und die
Verbreitung der Methode zur praktischen Lésung von elliptischen Randwertauf-
gaben.

2. Theoretische Grundlage
In einem vorgegebenen zusammenhingenden Gebiet G=R? mit dem stiickweise

stetig differenzierbaren Rand C soll folgende typische elliptische Randwertaufgabe
gelost werden:

Uty +p(x,y)u=f(x,y) nG, (1)
u=0 (s) auf Cy, )
ou +a(s)u=y(s) auf G, . €))
on

Darin bedeuten p(x,y)<0 und f(x,y) in G gegebene Funktionen des Ortes, s
die Bogenlinge auf dem Rand, ¢(s) eine gegebene Funktion der Bogenlinge
auf einem Teil des Randes C;, a (s) und y (s) gegebene Funktionen auf dem Rest
des Randes C, mit der Eigenschaft C,uC,=C, C;n C,=0 und du/dn die Ablei-
tung von u in Richtung der dusseren Normalen der Randkurve C, (vgl. Fig.1).
Eines der beiden Randstiicke C, oder C, kann leer sein.

AY

C,

\ B3

Figur 1
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Die Behandlung und numerische Losung der elliptischen Randwertaufgabe (1), (2),
(3) nach der Methode der finiten Elemente beruht entweder auf einem Extremal-
prinzip oder auf der Methode von Galerkin [4]. Im folgenden soll das Extremal-
prinzip die Grundlage bilden. So gilt der fundamentale

Satz. Die mindestens stetige und stiickweise stetig differenzierbare Funktion u(x,y),
welche das Funktional

1 1
1= || [5 @+~ 2 pcpisepn] aray
G @

+§[—12—a(s)u2—y(s)u] ds

minimiert unter Beriicksichtigung der einzigen Nebenbedingung (2), lost notwendiger-
weise die Randwertaufgabe (1), (2), (3).

Fiir den Beweis des Satzes sei etwa auf [4, 6] verwiesen.

Die Aussage des Satzes zeigt gleichzeitig eine fir die praktische Durchfithrung
dusserst wichtige Unterscheidung der beiden Randbedingungen der Randwertauf-
gabe auf. In der Formulierung als Extremalaufgabe ist nur die Dirichletsche Rand-
bedingung (2) zu beriicksichtigen, welche deshalb oft als Zwangsbedingung be-
zeichnet wird. Die Cauchysche Randbedingung (3) erweist sich beim Beweis des
Satzes vermittels Variationsrechnung als eine natiirliche Nebenbedingung, welche
die Losungsfunktion der Extremalaufgabe automatisch erfiillt. Dirichletsche Rand-
bedingungen auf dem Teilstiick C; sind aber einfacher zu beriicksichtigen als -
Cauchysche Randbedingungen auf C,.

3. Das prinzipielle Vorgehen

Zur approximativen Losung der Extremalaufgabe (4) unter Beriicksichtigung von
(2) wird das Gebiet G zunichst in einfache Teilgebiete, den Elementen, zerlegt.
Als Elemente kommen Dreiecke, Parallelogramme, Vierecke und in Verfeinerung
auch krummlinige Dreiecke und Vierecke in Frage. In Figur 2 ist eine konkrete
grobe Einteilung einer Viertelellipse mit den Halbachsen a=2 und b=1 in
geradlinige Dreieckelemente dargestellt. Mit einer dem Gebiet G angepassten, evtl.
lokal feineren Triangulierung erreicht man selbst mit geradlinigen Elementen
eine gute Approximation von G.

In jedem der Elemente wird fiir die gesuchte Funktion u(x,y) ein problemgerech-
ter Ansatz so gewihlt, dass insbesondere die im Satz geforderte Stetigkeitsbedin-
gung beim Ubergang von einem Element ins benachbarte leicht zu erfiillen ist.
Hierfir eignen sich ganzrationale Funktionen der beiden Ortskoordinaten sehr
gut, wie beispielsweise lineare oder quadratische Funktionen fiir Dreieckelemente.



H.R. Schwarz: Die Methode der finiten Elemente zur Losung von elliptischen Randwertaufgaben 161

p

10
0.5
X
=g
0.5 10 1.5 2.0
Figur2
u(x,y)=ci+cyx+cyy, (5)
u@,y)=ci+cyx+c3y+cgx2+csxy+cgy?. (6)

Eine lineare Funktion (5) ist in einem beliebigen Dreieck eindeutig bestimmt
durch die drei Funktionswerte in den Eckpunkten. Auf jeder Seite des Dreiecks
reduziert sich (5) auf eine lineare Funktion der Bogenlinge, welche durch die
beiden Funktionswerte in den Eckpunkten eindeutig festgelegt ist. Bei iibereinstim-
menden Funktionswerten in den Seitenendpunkten von zwei angrenzenden Drei-
eckelementen ist damit die Stetigkeit des Funktionsansatzes gewihrleistet. Die
stiickweise stetige Differenzierbarkeit ist fiir (5) offensichtlich auch erfiillt.

Zur eindeutigen Festlegung eines quadratischen Ansatzes (6) in einem beliebigen
Dreieck sind die sechs Funktionswerte in den Eckpunkten und in den Seiten-
mittelpunkten erforderlich. Die zugehorige zweidimensionale Interpolationsaufgabe
ist stets eindeutig losbar [4]. Der Ansatz (6) reduziert sich zudem auf jeder
Dreiecksseite auf eine quadratische Funktion der Bogenlinge, welche ihrerseits
durch die drei Funktionswerte in den beiden Endpunkten und im Mittelpunkt
aufgrund der Eindeutigkeit des quadratischen Interpolationspolynoms wiederum
eindeutig bestimmt ist [6]. Analog zum linearen Ansatz folgen daraus die erfor-
derlichen Stetigkeitsbedingungen.

Aus dem eben Gesagten wird klar, dass die Funktionswerte #; in den genannten
Punkten P; die problemgerechten Grossen darstellen, um die Ansitze in jedem
Element eindeutig zu beschreibeén. Die Eckpunkte, fiir den quadratischen Ansatz
auch die Seitenmittelpunkte, stellen die Knotenpunkte und die zugehorigen, zu
bestimmenden Funktionswerte die Knotenvariablen der Aufgabe dar.

Sobald man eine problemgerechte Triangulierung des Grundgebietes G und den
Typ des Ansatzes gewihlt hat, ist das Funktional (4) in Abhéngigkeit der Knoten-
variablen darzustellen. Diese Aufgabe erledigt man fiir die einzelnen Elemente,
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die im einfachsten Fall Dreiecke und geradlinige Kantenstiicke sind. Unter der
vereinfachenden Annahme, dass sowohl die Funktionen p (x,y) und f(x,y) wenig-
stens fiir die einzelnen Dreieckelemente als auch a (s) und y (s) fiir die einzelnen
Kantenstiicke konstant sind, reduziert sich die Aufgabe darauf, die Integrale

L={{(+u)dxdy, L=[wdxdy, ©L=[fudxdy, 0
T T T

I,={utds, Is={uds )]
R R

fur den betreffenden Ansatz zu berechnen. Darin bedeutet 7' ein Dreieck in
beliebiger Lage und R ein Randstiick des approximierten Randes C,. Sei T ein
allgemeines Dreieck nach Figur 3 mit den Eckpunkten P;(x,y,), (i=1, 2, 3),
welche im Gegenuhrzeigersinn durchnumeriert sind. Zur tatsidchlichen Durch-
fihrung der Integration wird zweckmaissigerweise ein lokales (&,#)-Koordinaten-
system eingefiihrt, dessen Nullpunkt im Eckpunkt P; liege. Im lokalen Koordi-
natensystem sollen weiter die beiden andern Eckpunkte die normierten Koordina-

AY

R (’%34)
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Figur 3

ten (1, 0) bzw. (0, 1) erhalten, so dass dem Dreieck T das Einheitsdreieck T
entspricht. Den Ubergang leistet die linear affine Transformation

x=x1+—x) &+ (x3—x1)7 )
y=n+02—y)E+0s—y)n.

Die Integrale (7) transformieren sich mit

Up=Us U, 1y, u=u:&,+u,n,, (10)

0 (x.y) Xy=X1 Y2~y
dé dn= V270 gedp=JdEd 11
FEm LM |xymxy yy—yy| FIn=Tdedn ()

dxdy=
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nach einer elementaren Rechnung in

Li=afju}dEdn+2b[[usu,dédn+cffuddédy, (12)
Ty To Ty

L=J[w?dsdy, L=J{[udédy (13)
To To

mit den allein von der Geometrie des Dreiecks 7" abhingigen Konstanten

a=[(x3— x>+ —y)A/ (14)
b=—[(x3—x,) (3= x)+ (3= y) 02—y , (15)
o =[(t3—x1)*+ (=217 | (16)

Die Werte fir a, b und ¢ entstehen unter Beriicksichtigung der Tatsache, dass
die partiellen Ableitungen £,, ¢, 5, und 5, die Elemente der Inversen der
Jacobi-Matrix der Transformation (9) sind.

Die fiinf in (12) und (13) auftretenden Integrale sind nur vom verwendeten Ansatz
im Dreieckelement 7" abhingig.

Fiir den linearen Ansatz (5) beispielsweise stellt sich die Funktion u(&,7) in
den lokalen Koordinaten mit den Knotenvariablen u,, u,, u; in den entsprechen-
den Eckpunkten dar als

ul&n=A0—-¢—nu+luy+nu;. a7

Nach Substitution von (17) in (12) und (13) und nach Ausfithrung der Integra-
tion ergibt sich offensichtlich fiir 7, und I, je eine quadratische Form und fiir
I eine lineare Form in den drei Knotenvariablen. Die Ergebnisse lassen sich
mit dem Knotenelementvektor u, = (u,u,, u;)” zusammenfassen in

Il=uérseue9 12=uzMeuea I3=bzue- (18)

Darin stellen S, die Steifigkeitselementmatrix, M, die Massenelementmatrix und
b, den Elementvektor dar und sind zahlenmaéssig gegeben durch [4]

| [a+2b+c —(a+b) —(b+0) ;211 ;
S, —(a+b) a b , M, 121, b="
11

2 —(b+c) b c 24 2 i

1
1
1

. (19)

Analog liefern I, und I5 quadratische bzw. lineare Formen in den Knoten-
variablen des Randstiickes R.

Die Uberlegungen iibertragen sich sinngemsiss auf den quadratischen Ansatz (6),
wobei anstelle von (17) fir u(f,n) eine Linearkombination von sechs Basis-
funktionen mit den sechs Knotenvariablen u; bis ug der sechs Knotenpunkte
des Dreieckelementes tritt. Die Matrizen S, und M, sowie der Vektor b, sind
von der Ordnung sechs [4].
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Zusammengefasst liefert jedes Element (Dreieck oder Kantenstiick) zum Funktional
(4) eine quadratische Funktion der beteiligten Knotenvariablen in der Form

1
I=> Wl du+dly. (20)

Die Addition iiber alle Elemente ergibt folglich fiir das Funktional eine quadra-
tische Funktion in allen der Elementeinteilung und dem gewihlten Ansatz ent-
sprechenden und durchnumerierten Knotenvariablen u,,u,, ..., uy

~,

I=—aT Au+dTa, a=u,uy,...,uy)T. (21)

1
2
Der erhaltene Ausdruck (21) fiir das Funktional I[u] ist unter Beriicksichtigung
der Dirichletschen Randbedingung (2) zu minimieren. Dies geschieht dadurch,
dass die Knotenvariablen, welche auf dem eventuell approximierten Randstiick C,
liegen, gleich den vorgegebenen Randwerten gesetzt werden. Das bedeutet, dass
die Randbedingungen vermoge Interpolation auf dem Rand approximativ erfiillt
werden. Um fiir das Folgende eine konkrete Situation zu schaffen, sollen die nicht
durch Randbedingungen vorgeschriebenen Knotenvariablen die Indizes 1 bis n,
die iibrigen die Indizes n+ 1 bis N erhalten.

Werden nun die Randwerte in (21) eingesetzt, modifiziert sich (21) zum Aus-
druck

=%—uTAu+dTu+f, u=(uy,uy,...,u)7, (22)

worin 4 die Untermatrix der Ordnung n von A darstellt, gebildet aus den ersten -
n Zeilen und Kolonnen, d aus d hervorgeht und f eine Konstante bedeutet. Die
notwendige Bedingung fiir ein Minimum von (22) lautet

Au+d=0. (23)

Die unbekannten Knotenvariablen ergeben sich als Lésung des symmetrischen
Gleichungssystems (23) mit positiv definiter Matrix 4.

Damit ist der Losungsgang vollstindig skizziert, bestechend aus der geeigneten
Triangulierung des Gebietes G, Numerierung der Knotenpunkte, Datenvorberei-
tung (Koordinaten der Eckpunkte und Daten der einzelnen Elemente), Kompilation
der Matrix 4 und des Vektors d, Beriicksichtigung der Randbedingungen und
Auflésung des Systems (23).

4. Einiges zur Losung der linearen Gleichungssysteme
Die zu l6senden linearen Gleichungssysteme (23) sind symmetrisch und besitzen

eine positiv definite Koeffizientenmatrix. Die GauBsche Elimination ist deshalb mit
Pivots lings der Diagonale durchfithrbar, wobei die Symmetrie erhalten bleibt



H.R. Schwarz: Die Methode der finiten Elemente zur Lésung von elliptischen Randwertaufgaben 165

[6]. Der erforderliche Rechenaufwand reduziert sich dabei auf rund die Hilfte
im Vergleich zur Losung eines allgemeinen Gleichungssystems.

Im Fall von komplexen Strukturen mit vielen Elementen [5] oder bei feiner
Elementeinteilung des Gebietes im Fall von elliptischen Randwertaufgaben ist
die Zahl der unbekannten Knotenvariablen sehr gross und betrigt in prakti-
schen Anwendungen mehrere hundert bis mehrere tausend. Die Methode der
finiten Elemente besitzt aber die wesentliche Eigenschaft, sehr schwach besetzte
Gleichungssysteme zu liefern. Dies ist aufgrund der Kompilation der Gesamt-
matrix der quadratischen Form offensichtlich, denn es kénnen nur jene Elemente
einen additiven Beitrag zur i-ten Zeile, zugehorig zur i-ten Knotenvariablen,
liefern, denen die i-te Variable angehért, und zwar nur in jene aussendiagonalen
Positionen, denen Knotenvariable entsprechen, welche denselben Elementen an-
gehoren. Im Vergleich zur grossen Zahl der Unbekannten sind in jeder Zeile
relativ wenige Koeffizienten von Null verschieden. Die durchschnittliche Zahl
der von Null verschiedenen Elemente pro Zeile ist stark problemabhingig und
dann auch von den verwendeten Ansitzen. Sie bewegt sich in der Gréssenordnung
zwischen 10 und 100.

Bei geeigneter Numerierung der Knotenvariablen erhidlt die Matrix A4 =(ay)
des Gleichungssystems eine Bandstruktur. Unter einer Bandmatrix mit der Band-
breite m < n versteht man eine Matrix mit der Eigenschaft

a;=0 furalle i,k mit |i—k|>m. (24)

Der Gaufische Algorithmus mit Pivots in der Diagonale ldsst die Bandstruk-
tur unverindert. Folglich sind fiir die praktische Durchfiihrung nur die Matrix-
elemente der Diagonale und etwa der m unteren Nebendiagonalen im Rechen-
automaten zu speichern. Ferner betrdgt der Rechenaufwand zur Ldsung eines
symmetrischen, positiv definiten Bandgleichungssystems grossenordnungsmissig
nur

1
ZBand= —i— nm? (25)

multiplikative Operationen [3]. Aus okonomischen Griinden hinsichtlich Spei-
cherplatz und Rechenaufwand ist die Bandbreite m zu minimieren. Zur Bestim-
mung der optimalen Numerierung sind heuristisch begriindete Algorithmen ent-
wickelt worden, welche auf graphentheoretischen Uberlegungen beruhen [4].

Eine Verfeinerung des Begriffs der Bandstruktur fihrt zur Hiille oder Enveloppe
eine Matrix. Sei f;(4) der Kolonnenindex des ersten von Null verschiedenen
Elementes a;; der i-ten Zeile, d.h.

fi(d)=min{j|a;#0,j<i}. (26)

Damit definiert man die Enveloppe der Matrix 4 als die Menge der Index-
paare

Env(4)={(.j)|f,d)<j<i,1<i<n}. @7)
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Die Kardinalitit der Enveloppe heisst das Profil der Matrix. Es kann leicht
verifiziert werden, dass sich der GauBsche Eliminationsprozess vollstindig in der
Hiille der Matrix A abspielt [4]. Damit kann der Speicherbedarf fiir die Matrix
in der Regel recht drastisch auf das Profil reduziert werden.

Der zur Verfugung stehende Speicherplatz im Zentralspeicher von modernen
Grossrechenanlagen reicht jedoch bei weitem nicht aus, die grossen Gleichungs-
systeme mit Speicherung der Elemente des Bandes oder der Hiille zu losen.
Deshalb sind spezielle Rechentechniken entwickelt worden, unter denen die Front-
l6sungsmethode [4] zu erwidhnen ist. Hier wird der Aufbau der Gesamtmatrix 4
und der Eliminationsprozess in geeignetem Wechsel so vollzogen, dass bei einer
Bandmatrix der Bandbreite m grossenordnungsmissig nur etwa m?/2 Matrix-
elemente im Zentralspeicher gleichzeitig vorhanden sein miissen. Damit lassen
sich sehr respektable Gleichungssysteme losen.

Neben der direkten Eliminationsmethode, welche fiir lange Zeit als das effizien-
teste Vorgehen angesehen worden ist, gewinnen in neuester Zeit iterative Losungs-
verfahren ihre praktische Bedeutung zuriick und vermogen in vielen Fillen die
Gleichungssysteme mit wesentlich kleinerem Speicherbedarf und auch Rechenauf-
wand zu losen. Der grundsétzliche Vorteil der iterativen Methoden besteht namlich
darin, dass sie die gegebene Matrix des Systems unverindert beniitzen und somit
die schwache Besetzung vollkommen ausniitzen konnen. Fir den Rechenpro-
zess selbst sind deshalb nur die von Null verschiedenen Matrixelemente mit
der Information ihrer Position abzuspeichern. Als besonders effizient erweisen sich
zwei Modifikationen der Methode der konjugierten Gradienten von Stiefel und
Hestenes [1, 3]. Falls eine sog. Vorkonditionierung des zu losenden Gleichungs-
systems angewandt wird, liefert das iterative Verfahren die Losung in erstaunlich
wenig Iterationsschritten und damit mit entsprechend kleiner Rechenzeit [2, 4].
Dieser kleine Abriss moge zeigen, dass die Methode der finiten Elemente auf dem
Gebiet der Numerik der linearen Algebra neue Akzente gesetzt und interessante
Impulse vermittelt hat. H.R. Schwarz, Universitit Ziirich
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