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Die ERMETH vereinigte niitzliche Merkmale in einer Kombination, die selten
anzutreffen war. Viele der Ideen hatten wir von unseren Gastaufenthalten in USA
und von Besuchen in England mitgebracht. Weitere, iiberaus wertvolle Merkmale
kamen auf Grund der Tatsache hinzu, dass mehrjihrige Erfahrungen aus dem
praktischen Betrieb mit der Z4 verwertet werden konnten. Die ERMETH-Equipe
hatte damit einen Vorzug, den die wenigsten Hochschulgruppen, die mit dem Bau
von Elektronenrechnern beschéftigt waren, aufzuweisen hatten.

Die ERMETH ging 1955 in Betrieb. Es war die letzte Gelegenheit fiir den Selbstbau
eines Computers. Inzwischen hatte die Industrie den Ball aufgenommen, und eine
kleine Gruppe an einer Hochschule hatte keine Chance mehr mitzuhalten. Nach
einer Reihe von erfolgreichen Betriebsjahren hatte auch die ERMETH ausgedient.
Damit zog sich das Institut fiir angewandte Mathematik von der Hardware-Szene,
wo es ein kurzes, aber intensives Gastspiel gegeben hatte, zuriick.

An der Software-Front ist die ETH unvermindert - und unveréndert erfolgreich -
tatig geblieben. Sowohl in der numerischen Analysis als auch in den Programmie-
rungssprachen ist in den vergangenen Jahrzehnten ein ununterbrochener Fluss von
bedeutenden und allgemein anerkannten Ergebnissen entstanden, der noch heute
andauert. Die ETH Ziirich ist auf der Landkarte der Computerwissenschaften
deutlich sichtbar eingezeichnet; die Saat auf diesem Feld trégt reiche Friichte. Das
Feld wurde von 1948 bis 1950 hergerichtet und erstmals beackert. Wie sah die
Forschungsszene unseres Landes damals aus? Der Nationalfonds war bereits
gegriindet; der Wissenschaftsrat und das Bundesamt fir Bildung und Wissenschaft
existierten noch nicht. Aber die Zeit hatte ein gewaltiges Plus fiir sich: Es war eine
Periode des raschen Aufstiegs; von Jahr zu Jahr standen mehr Mittel zur Verfiigung.
Es ist eine Erfahrungstatsache, die sich immer wieder bestétigt, dass solche Perioden
fir die Wissenschaften besonders fruchtbar sind.

Die Zeit der Mittelknappheit, in der wir heute leben, ist bedeutend schwieriger. Ich
hoffe trotzdem, dass sich in 30 Jahren eine Gruppe von Zuhorern, so wie wir heute,
in einem Horsaal versammeln wird, um einer Pioniertat der Jahre 80 und 81 zu
gedenken! A.P. Speiser, Brown Boveri Baden

Kipp-Ikosaeder I

Zur Betrachtung stehen zentrisch-symmetrische Ikosaeder vom topologischen Typ
des reguldren, also berandet von 20 Dreiecken, die zu finft in den 12 Ecken
zusammenstossen. Ein konvexes Exemplar, etwa aus Karton oder diinnen Stiben
zusammengebaut, wird nach dem klassischen Satz von A. Cauchy (1813) selbst bei
gelenkiger Verbindung der Elemente starr sein. Bei vorhandenen Hohlkanten
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braucht dies jedoch nicht der Fall zu sein, und wenn zwei mégliche Formen nicht
allzu verschieden sind, so kann mit sanfter Gewalt ein Umkippen von einer
Position in die andere herbeigefiilhrt werden, wie dies fiir Kipp-Oktaeder bereits
dargelegt wurde [4].

Riicken die beiden Positionen zusammen, so hat man ein Wackelpolyeder mit
infinitesimaler Beweglichkeit, die praktisch durchaus merkbar ist. Nach der Ent-
deckung der merkwiirdigen «orthogonalen Ikosaeder» durch Jessen [3] - das sind
solche, deren Seitenflichen lings s@mtlicher 30 Kanten rechtwinklig zusammen-
stossen - hat Goldberg [2] die Wackeligkeit einer hochsymmetrischen Sonderform
dieser lkosaeder bemerkt und in einer noch unveroffentlichten Note auch die
entsprechenden Kippformen beschrieben. Wihrend in einer demniéchst erschei-
nenden Arbeit [S5] des Verfassers gezeigt wird, dass iiberhaupt alle orthogonalen
Ikosaeder (mit Mittelpunkt) sowie simtliche dazu affinen Ikosaeder wackelig sind,
scheint die Erfassung von Kipp-lkosaedern in voller Allgemeinheit aussichtslos
zu sein. Schon die vorliegende Behandlung von Sonderformen mit ausgeprédgten
Symmetrieverhéltnissen fihrt auf Probleme hoheren Grades.

Nachdem R. Bricard (1897) durch Stabmodelle realisierbare Gelenkoktaeder
gefunden hat, die eine stetige Deformation endlichen Ausmasses gestatten, und
Connelly [1] jingst sogar einschligige Kartonmodelle geschlossener 18-Flache
konstruiert hat, ist es wahrscheinlich, dass es auch stetig bewegliche Ikosaeder
gibt. Hieriiber ist allerdings noch nichts bekannt.

I. Ikosaeder mit drei orthogonalen Symmetrieebenen

1. Unter Zugrundelegung eines kartesischen Koordinatensystems (O; x,y, z) ver-
teilen sich die zwolf Ikosaederecken auf drei in den Koordinatenebenen ange-
nommene Rechtecke A DA’ D’, BEB’ E’ und CFC’ F’, festgelegt durch

A(a,y,0), B(0,b,z), C(x,0,¢) mit a>x>0, b>y>0, ¢>2z>0. (1.1)

Die iibrigen neun Ecken ergeben sich durch Spiegelung an den Koordinatenachsen
gemiss Figur 2. Die Langseiten der Rechtecke bilden die Hohlkanten des
Ikosaeders, und deren Enden sind jeweils mit den benachbarten Ecken der beiden
anderen Rechtecke zu verbinden, so etwa 4, D’ mit B und E usw. Schreibt man
noch die Léngen dieser zusitzlichen Kanten durch AB=d, BC=e und CA=f
vor, so lduft die Ermittlung der Gestalt des Ikosaeders auf die Auflosung des
folgenden Gleichungstripels hinaus:

a2+ b—y)+22=d?, xX*+b*+(c—z=€*, (a—x)+y*+ci=f2. (1.2)

Dies ist gleichbedeutend mit der Bestimmung der acht Schnittpunkte von drei
durch die Gleichungen beschriebenen Drehzylindern I'y, I'y, I';, ist also eine
Aufgabe 8.Grades, die im allgemeinen nicht reduzibel und daher nicht elementar
zu bewiltigen ist. Nach Summierung der Gleichungen (1.2) siecht man iibrigens,
dass alle acht Schnittpunkte einer Kugel X~
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R R
r2=%(d2+e2+f2)——%(a2+b2+c2) (1.3)

angehoren.

2. In dem von Goldberg betrachteten Sonderfall a=b=c, d=e=f vereinfachen
sich die Verhiltnisse, weil aus Symmetriegriinden zwei Lésungen x=y=2z existie-
ren, die gemiss (1.2) durch

2x2—2ax+Qa*—d?)=0 .1)

bestimmt sind. Ist die Diskriminante 4=2d?—3a? dieser quadratischen Gleichung
positiv, also a\/3/2 <d<aV'2, so hat die Gleichung zwei positive Losungen,
und man hat ein Kipp-Tkosaeder mit zwei reellen Positionen. Ist jedoch 4=0,
also d/a=17225, so liegt das durch x=a/2 gekennzeichnete Wackelikosaeder
Goldbergs vor [2])).

3. Zwecks Behandlung des allgemeinen Falles empfiehlt sich die Verschiebung
des Koordinatensprungs O in den Mittelpunkt M der Kugel 2 (1.3). Mit der
entsprechenden Koordinatentransformation

A 4 3.1
At A G1)

gehen die Gleichungen (1.2) und (1.3) iiber in

=)+ 5 -t (o3 e oee-v
(3.2)

E+n?+=r.

Am besten ist es nun, zunichst graphisch die Schnittkurve g des Drehzylinders
I'y mit der Kugel X (3.2, erste bzw. dritte Gleichung) zu ermitteln (Fig.1).

KreuzriB Aufrif

(b/2,-c/2)
Figur 1. Graphische Auflésung des Gleichungssystems (3.2).

1) Die iibrigen sechs Positionen dieses Ikosaeders sind imagindr und lassen sich nach Auflésung
einer quadratischen Gleichung fur u=(x+y+ z)/a (die u=3+2iV6 liefert) auf eine kubische
Gleichung in x zuriickfithren.
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Diese Raumquartik g erscheint im Aufriss als doppelt iiberdeckter Kreisbogen,
und ihr Kreuzriss ist nach geldufigen Regeln der darstellenden Geometrie leicht
hinzuzufiigen. Die so gewonnene (symmetrische) Bildkurve 4.Ordnung ist dann
mit dem Bildkreis des Zylinders I", (3.2, zweite Gleichung) zu schneiden. Nach
Zuriickfihrung der Schnittpunkte 1,2,... in den Aufriss kénnen dann die Koor-
dinaten ¢, 5, { abgelesen werden. - Zur numerischen Auswertung berechnet man
zu den so gefundenen (reellen) Niherungswerten fir { aus den ersten beiden
Gleichungen (3.2) die zugehorigen Werte » und £, um anschliessend durch
fortgesetzte Verbesserung (regula falsi) auch die dritte Gleichung (3.2) zu befrie-
digen. Mit einem Taschencomputer geht dies ziemlich rasch.

Auf diese Weise wurden fir die der Abbildung zugrundeliegende Annahme
a=8,b=6,c=4,d=9,e=f=7 die Losungswerte

x,=3,5513, y,=3,6344, 2,=33770;
x,=2,6941,  ,=22016,  z,=1,6037 (3.3)

ermittelt. Figur 2 zeigt die beiden Positionen des gut funktionierenden Modells.

1. Position E F

2.Position

Fl
Figur 2. Kipp-Ikosaeder mit drei orthogonalen Symmetrieebenen.
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4. Im Falle eines Wackelikosaeders der vorliegenden Art wird die Raumkurve ¢
vom Zylinder I', beriihrt. Hier diirfen differentielle Anderungen der Positions-
parameter x, y, z die Bedingungen (1.2) nicht beeintrichtigen. Damit die ent-
sprechenden Gleichungen

(y—b)dy+2dz=0, xdx+(z—c)dz=0, (x—a)dx+ydy=0 4.1)

fur die Inkremente eine nichttriviale Losung besitzen, muss die Koeffizienten-
determinante verschwinden. Dies liefert die Wackelbedingung

xyz+(x—a)(y—b)(z—c)=0. 4.2)
Sie wird erfiillt durch
a b c
—] g = = — .t = 1 . 4.
*“T1r1 YT Ura ey ™A 43)

Hierzu gehdren gemiss (4.1) die Wackelkomponenten

1+ 14+ 14+v
1A : .
b ve

dx:dy:dz= 4.4)

Mit A=u=v=1 erhidlt man Wackelikosaeder, die zum Goldbergschen affin sind
[2, 5); fiir sie gilt x=a/2, y=b/2, z=c/2 und dx:dy:dz=1/a:1/b:1/c. Die Kugel
2’ (1.3) ist hier mit r=0 auf einen Punkt zusammengeschrumpft.

Mit anderen Werten gelangt man jedoch zu einer neuen Familie von Wackel-
ikosaedern, die zu den orthogonalen Ikosaedern von Jessen [3] nicht mehr affin
sind. So zeigt Figur 3 das zur Annahme a=b=c=1 und i=4, uy=v=-1/2
gehorige Tkosaeder mit x=1/5, y=z=2 (d=V'6, e=V/51 /5, f=\/'141 /5), das

Figur 3. Neuartiges Wackelikosaeder.
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zehn Hohlkanten aufweist?). Dieses Ikosaeder besitzt iibrigens neben der Wackel-
stellung zwei weitere reelle, jedoch iiberschlagene Positionen; nach dem in Ab-
schnitt 3 dargelegten Verfahren findet man niimlich noch

x,=—009834, y,=—08403, z,=12701;
x3=—0,7827,  y,=—12091,  z,=0,3463. (4.5)

Ein Umspringen des schwierig zu bauenden Stabmodells zwischen diesen beiden
Positionen findet trotz der verwirrenden Struktur des Stabwerks bei richtiger
Anordnung der Stibe tatsichlich statt. Der Ubergang zur Wackelform ist allerdings,
abgesehen von der iibermissigen Beanspruchung des Materials, schon aus topolo-
gischen Griinden nicht méglich.

W. Wunderlich, Wien
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Die Methode der finiten Elemente zur Losung von elliptischen
Randwertaufgaben

1. Zur Problemstellung

In einem friitheren Beitrag [5] wurde die historische Entwicklung der Methode der
finiten Elemente aus der Sicht der ingenieurmissigen Anwendungen skizziert,
wobei aber schon darauf hingewiesen wurde, dass das Verfahren unter diesem
Namen spiter auch zur Losung von partiellen Differentialgleichungen herange-
zogen wurde. Im folgenden wollen wir uns nur mit einem konkreten Fall befassen
und daran den Grundgedanken und die wesentlichen Teilschritte bis zur Losung
der Aufgabe darstellen. Wir betrachten lineare elliptische Randwertaufgaben mit
Laplaceschem Differentialoperator, welche in einem weitgehend beliebigen Grund-
gebiet und unter recht allgemeinen Randbedingungen zu l6sen sind. Mit dieser

2) Mit den bei x4 und v zugelassenen negativen Vorzeichen werden die Ungleichungen in (1.1)
ausser Kraft gesetzt.
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