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Die ERMETH vereinigte nützliche Merkmale in einer Kombination, die selten
anzutreffen war. Viele der Ideen hatten wir von unseren Gastaufenthalten in USA
und von Besuchen in England mitgebracht. Weitere, überaus wertvolle Merkmale
kamen auf Grund der Tatsache hinzu, dass mehrjährige Erfahrungen aus dem
praktischen Betrieb mit der Z4 verwertet werden konnten. Die ERMETH-Equipe
hatte damit einen Vorzug, den die wenigsten Hochschulgruppen, die mit dem Bau
von Elektronenrechnern beschäftigt waren, aufzuweisen hatten.
Die ERMETH ging 1955 in Betrieb. Es war die letzte Gelegenheit für den Selbstbau
eines Computers. Inzwischen hatte die Industrie den Ball aufgenommen, und eine
kleine Gruppe an einer Hochschule hatte keine Chance mehr mitzuhalten. Nach
einer Reihe von erfolgreichen Betriebsjahren hatte auch die ERMETH ausgedient.
Damit zog sich das Institut für angewandte Mathematik von der Hardware-Szene,
wo es ein kurzes, aber intensives Gastspiel gegeben hatte, zurück.
An der Software-Front ist die ETH unvermindert - und unverändert erfolgreich -
tätig geblieben. Sowohl in der numerischen Analysis als auch in den
Programmierungssprachen ist in den vergangenen Jahrzehnten ein ununterbrochener Fluss von
bedeutenden und allgemein anerkannten Ergebnissen entstanden, der noch heute
andauert. Die ETH Zürich ist auf der Landkarte der Computerwissenschaften
deutlich sichtbar eingezeichnet; die Saat auf diesem Feld trägt reiche Früchte. Das
Feld wurde von 1948 bis 1950 hergerichtet und erstmals beackert. Wie sah die
Forschungsszene unseres Landes damals aus? Der Nationalfonds war bereits
gegründet; der Wissenschaftsrat und das Bundesamt für Bildung und Wissenschaft
existierten noch nicht. Aber die Zeit hatte ein gewaltiges Plus für sich: Es war eine
Periode des raschen Aufstiegs; von Jahr zu Jahr standen mehr Mittel zur Verfügung.
Es ist eine Erfahrungstatsache, die sich immer wieder bestätigt, dass solche Perioden
für die Wissenschaften besonders fruchtbar sind.
Die Zeit der Mittelknappheit, in der wir heute leben, ist bedeutend schwieriger. Ich
hoffe trotzdem, dass sich in 30 Jahren eine Gruppe von Zuhörern, so wie wir heute,
in einem Hörsaal versammeln wird, um einer Pioniertat der Jahre 80 und 81 zu
gedenken! A. P. Speiser, Brown Boveri Baden

Kipp-Ikosaeder I

Zur Betrachtung stehen zentrisch-symmetrische Ikosaeder vom topologischen Typ
des regulären, also berandet von 20 Dreiecken, die zu fünft in den 12 Ecken
zusammenstossen. Ein konvexes Exemplar, etwa aus Karton oder dünnen Stäben
zusammengebaut, wird nach dem klassischen Satz von A. Cauchy (1813) selbst bei
gelenkiger Verbindung der Elemente starr sein. Bei vorhandenen Hohlkanten
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braucht dies jedoch nicht der Fall zu sein, und wenn zwei mögliche Formen nicht
allzu verschieden sind, so kann mit sanfter Gewalt ein Umkippen von einer
Position in die andere herbeigeführt werden, wie dies für Kipp-Oktaeder bereits
dargelegt wurde [4].
Rücken die beiden Positionen zusammen, so hat man ein Wackelpolyeder mit
infinitesimaler Beweghchkeit, die praktisch durchaus merkbar ist. Nach der
Entdeckung der merkwürdigen «orthogonalen Ikosaeder» durch Jessen [3] - das sind
solche, deren Seitenflächen längs sämtlicher 30 Kanten rechtwinklig zusammenstossen

- hat Goldberg [2] die Wackeligkeit einer hochsymmetrischen Sonderform
dieser Ikosaeder bemerkt und in einer noch unveröffentlichten Note auch die
entsprechenden Kippformen beschrieben. Während in einer demnächst erscheinenden

Arbeit [5] des Verfassers gezeigt wird, dass überhaupt alle orthogonalen
Ikosaeder (mit Mittelpunkt) sowie sämtliche dazu affinen Ikosaeder wackelig sind,
scheint die Erfassung von Kipp-Ikosaedern in voller Allgemeinheit aussichtslos

zu sein. Schon die vorliegende Behandlung von Sonderformen mit ausgeprägten
Symmetrieverhältnissen führt auf Probleme höheren Grades.
Nachdem R. Bricard (1897) durch Stabmodelle realisierbare Gelenkoktaeder
gefunden hat, die eine stetige Deformation endlichen Ausmasses gestatten, und
Connelly [1] jüngst sogar einschlägige Kartonmodelle geschlossener 18-Flache
konstruiert hat, ist es wahrscheinlich, dass es auch stetig bewegliche Ikosaeder
gibt. Hierüber ist allerdings noch nichts bekannt.

I. Ikosaeder mit drei orthogonalen Symmetrieebenen

1. Unter Zugrundelegung eines kartesischen Koordinatensystems (O; x,y,z)
verteilen sich die zwölf Ikosaederecken auf drei in den Koordinatenebenen ange-.
nommene Rechtecke ADA'D', BEB'E' und CFC'F, festgelegt durch

A(a,y,0), B(0,b,z), C(x,0,c) mit a>x>0, b>y>0, c>z>0. (1.1)

Die übrigen neun Ecken ergeben sich durch Spiegelung an den Koordinatenachsen
gemäss Figur 2. Die Langseiten der Rechtecke bilden die Hohlkanten des

Ikosaeders, und deren Enden sind jeweils mit den benachbarten Ecken der beiden
anderen Rechtecke zu verbinden, so etwa A,D' mit B und E usw. Schreibt man
noch die Längen dieser zusätzlichen Kanten durch AB=d, BC=e und CA=f
vor, so läuft die Ermittlung der Gestalt des Ikosaeders auf die Auflösung des

folgenden Gleichungstripeis hinaus:

a2+(b-y)2+z2 cf, x2+b2+(c-z)2=e2, (a-x)2+y2+c2=f. (1.2)

Dies ist gleichbedeutend mit der Bestimmung der acht Schnittpunkte von drei
durch die Gleichungen beschriebenen Drehzylindern Fx, F2, F3, ist also eine
Aufgabe 8. Grades, die im allgemeinen nicht reduzibel und daher nicht elementar
zu bewältigen ist. Nach Summierung der Gleichungen (1.2) sieht man übrigens,
dass alle acht Schnittpunkte einer Kugel E



W Wunderlich Kipp-Ikosaeder 1 155

(^y)24-(^-y)V(z-|)2^ mit

r2-

angehören.

±-(cf + e2+f)-j(a2+ b2 + c2) (1.3)

2. In dem von Goldberg betrachteten Sonderfall a b c, d=e=f vereinfachen
sich die Verhältnisse, weil aus Symmetriegründen zwei Lösungen x=y=z existieren,

die gemäss (1.2) durch

2x2-2ax + (2a2-cf) 0 (2.1)

bestimmt sind. Ist die Diskriminante A 2d2— 3 a2 dieser quadratischen Gleichung
positiv, also a\/3/2 <d<a\/~2 so hat die Gleichung zwei positive Lösungen,
und man hat ein Kipp-Ikosaeder mit zwei reellen Positionen. Ist jedoch A 0,
also d/a= 1,225, so liegt das durch x a/2 gekennzeichnete Wackelikosaeder
Goldbergs vor [2]x).

3. Zwecks Behandlung des allgemeinen Falles empfiehlt sich die Verschiebung
des Koordinatensprungs O in den Mittelpunkt M der Kugel E (1.3). Mit der
entsprechenden Koordinatentransformationabcy=n+-, z C+~ (3.1)x=Z+j, '-C+y
gehen die Gleichungen (1.2) und (1.3) über in

bK)H+fH=^ K)H-iH=^-
e+t,2 + r2.

(3.2)

Am besten ist es nun, zunächst graphisch die Schnittkurve q des Drehzylinders
Fx mit der Kugel E (3.2, erste bzw. dritte Gleichung) zu ermitteln (Fig. 1).

Kreuzriß Aufriß

(-a/2,c/2) A K T

^
(b/Z-c/2)

Figur 1 Graphische Auflösung des Gleichungssystems (3 2)

1) Die übngen sechs Positionen dieses Ikosaeders smd imaginär und lassen sich nach Auflösung
emer quadratischen Gleichung für ti (x+v+z)/a (die M 3±2*Vr6T liefert) auf eine kubische
Gleichung in x zurückfuhren
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Diese Raumquartik q erscheint im Aufriss als doppelt überdeckter Kreisbogen,
und ihr Kreuzriss ist nach geläufigen Regeln der darstellenden Geometrie leicht
hinzuzufügen. Die so gewonnene (symmetrische) Bildkurve 4. Ordnung ist dann
mit dem Bildkreis des Zylinders F2 (3.2, zweite Gleichung) zu schneiden. Nach
Zurückführung der Schnittpunkte 1,2,... in den Aufriss können dann die
Koordinaten <Jf, rj, C abgelesen werden. - Zur numerischen Auswertung berechnet man
zu den so gefundenen (reellen) Näherungswerten für f aus den ersten beiden
Gleichungen (3.2) die zugehörigen Werte rj und £, um anschliessend durch
fortgesetzte Verbesserung (regula falsi) auch die dritte Gleichung (3.2) zu befriedigen.

Mit einem Taschencomputer geht dies ziemlich rasch.
Auf diese Weise wurden für die der Abbildung zugrundeliegende Annahme
a ___ 8, b=6, c=4, d= 9, e =f= 1 die Lösungswerte

#1 3,5513,
jc2=2,6941,

Ji 3,6344,
J>2=2,2016,

zx 3,3770;

z2= 1,6037 (3.3)

ermittelt. Figur 2 zeigt die beiden Positionen des gut funktionierenden Modells.

^

2 Position

-u

Figur 2. Kipp-Ikosaeder mit drei orthogonalen Symmetrieebenen.
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4. Im Falle eines Wackelikosaeders der vorliegenden Art wird die Raumkurve q
vom Zylinder F2 berührt. Hier dürfen differentielle Änderungen der
Positionsparameter x9 y9 z die Bedingungen (1.2) nicht beeinträchtigen. Damit die
entsprechenden Gleichungen

(y-b)dy+zdz 0, xdx + (z-c)dz 0, (x-a)dx+ydy=0 (4.1)

für die Inkremente eine nichttriviale Lösung besitzen, muss die Koeffizienten-
determinante verschwinden. Dies liefert die Wackelbedingung

xyz + (x — a)(y—b)(z — c) 0.

Sie wird erfüllt durch

(4.2)

x y= z=- mit Xpv=l.
1 + A' ' 1+//' ' l + v

Hierzu gehören gemäss (4.1) die Wackelkomponenten

l+p l+v
dx:dy:dz= : A

b VC

(4.3)

(4.4)

Mit k=p=v=l erhält man Wackelikosaeder, die zum Goldbergschen affin sind
[2, 5]; für sie gilt x a/l, y^b/l, z=c/2 und dx:dy:dz= l/a: l/b:l/c. Die Kugel
E (1.3) ist hier mit r= 0 auf einen Punkt zusammengeschrumpft.
Mit anderen Werten gelangt man jedoch zu einer neuen Familie von Wackel-
ikosaedern, die zu den orthogonalen Ikosaedern von Jessen [3] nicht mehr affin
sind. So zeigt Figur 3 das zur Annahme a b c=l und k 4,u v -l/2
gehörige Ikosaeder mit x=l/5, y=z=2 (d=\^6, e= VW/5,/= V141 /5), das

Figur 3. Neuartiges Wackelikosaeder.
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zehn Hohlkanten aufweist2). Dieses Ikosaeder besitzt ubngens neben der Wackelstellung

zwei weitere reelle, jedoch überschlagene Positionen; nach dem in
Abschnitt 3 dargelegten Verfahren findet man nämlich noch

Xl -0,9834, ^ -0,8403, zx= 1,2701;
jt2=-0,7827, j2=-1,2091, z2=0,3463. (4.5)

Ein Umspringen des schwierig zu bauenden Stabmodells zwischen diesen beiden
Positionen findet trotz der verwirrenden Struktur des Stabwerks bei richtiger
Anordnung der Stäbe tatsächlich statt. Der Übergang zur Wackelform ist allerdings,
abgesehen von der übermassigen Beanspruchung des Materials, schon aus
topologischen Gründen nicht möglich.

W. Wunderlich, Wien
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Die Methode der finiten Elemente zur Lösung von elliptischen
Randwertaufgaben

1. Zur Problemstellung

In einem früheren Beitrag [5] wurde die historische Entwicklung der Methode der
finiten Elemente aus der Sicht der ingenieurmässigen Anwendungen skizziert,
wobei aber schon darauf hingewiesen wurde, dass das Verfahren unter diesem
Namen später auch zur Lösung von partiellen Differentialgleichungen herangezogen

wurde. Im folgenden wollen wir uns nur mit einem konkreten Fall befassen
und daran den Grundgedanken und die wesenthchen Teilschritte bis zur Lösung
der Aufgabe darstellen. Wir betrachten lmeare elliptische Randwertaufgaben mit
Laplaceschem Differentialoperator, welche in einem weitgehend beliebigen Grundgebiet

und unter recht allgemeinen Randbedingungen zu lösen smd. Mit dieser

2) Mit den bei /* und v zugelassenen negativen Vorzeichen werden die Ungleichungen in (11)
ausser Kraft gesetzt
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