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Kann man ohne Rechner entscheiden, ob en oder ne grösser ist?

In [1] findet sich dazu die folgende elegante Lösung: In der Ungleichung eq>q+ 1

für q + 0 setzt man q=(n/e)—l und erhält

ee > —
e

Daraus folgt eK'e > n und daraus

en>ne. (1)

Geht man diese Herleitung nochmals durch, so erkennt man, dass dabei die Zahl
n insofern keine wesentliche Rolle spielt, als alle Ungleichungen gültig bleiben,
wenn man an Stelle von n irgendeine positive Zahl+e einsetzt.

Man schliesst daraus:
Genau die Zahl a e hat die Eigenschaft

Aax>xa. (2)
x>0 v }

Dass nur die Zahl e diese Eigenschaft hat, folgt aus der Tatsache, dass die
Gerade y=x+l nur für a e Tangente an die Kurve y=ax ist; für jede Basis

ö + e gibt es demnach ein q mit \q\ <1, so dass aq<q+l. Für x a(q+l) gilt
dann

:(.-)¦«t-'<(T-')+'-f
und daraus wie in (1): ax<xa.
Damit ist (2) bewiesen.
Einen anderen Zugang zum Satz (2) erhält man, wenn man die Ungleichung
ax^.xa logarithmiert. Man erhält dann die äquivalente Ungleichung
x • lna_>a • lnx und daraus
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Ina lnjc
£_

Die gesuchte Zahl a ist also gleich dem Argument x der Funktion f(x)=lnx/x,
das den maximalen Funktionswert hefert. Durch Ableiten von f(x) findet man
sofort a xmax=e.
Auf die gleiche Art lässt sich auch die Gleichung yx xy diskutieren: Diese
Gleichung ist äquivalent zur Gleichung

lnx Iny

Da die Lösungen x=y trivial sind und die Gleichung in x und y symmetrisch
ist, kann man ohne Verlust an Allgemeinheit annehmen (siehe Fig. 1):

l<x<>>.

Inx

-1

e 3

Figur 1

Ist (x,y), l<x<y, eine Lösung der Gleichung xy=yx, so setzen wir y=x + S

und erhalten

xx+ö=(x+öy^>xs=(i + — Y<=>x=(i + —].
Aus der Figur 1 entnimmt man, dass ö/x jeden reellen Wert r>0 annehmen
kann. Man erhält somit eine Parameterdarstellung der Lösungspaare:

x (l + r)r

y x + 8 x(l + —) (i + r)T(l + r)=(l + ryJhl.

Die Lösungen der Gleichungyx xy mit x<y lassen sich darstellen in der Form
x x

(x,y)~((l + r)',(l+ry+^, r>0. (3)
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Es ergeben sich rationale Losungen, wenn man fur r Stammbruche l/n, neN,
einsetzt1) Man erhalt dann

/ x /(n+l \n (n+l \n+x\

So liefert z B n 2

Wir beweisen nun noch, dass die m (4) aufgeführten Losungen die einzigen
rationalen Paare sind
Zunächst Ware r irrational und (1 + r)x/r rational, dann wäre

(l + r)r+ =(l + r)r(l + r)

irrational, denn das Produkt aus einer rationalen und einer irrationalen Zahl ist
stets irrational
Wir setzen also r=m/n und zeigen

/ m\nK) (5)

m, n natürlich, teilerfremd, m>l,ist irrational

Beweis Wir zeigen zuerst die Implikation
n 2_

/ m\m [ m\m
(1 + —) rational => U + — rational

Da die zu m teilerfremden Zahlen<m bezüglich der Multiplikation modulo m
eine Gruppe bilden, ist die Kongruenz z n 1 (mod m) bei unseren
Voraussetzungen losbar Ist zn Xm + 1, so gilt

KJIst (1H rational, so ist auch

Xm+X

[Kn=K)"=K)»=KyK)"

1) Die Losungen in algebraischen Zahlen finden sich in [2]
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rational und damit K) rational

Der Beweis der Aussage (5) ist also erbracht, wenn gezeigt ist, dass

Kr m + n

irrational ist
Die m-te Wurzel aus dem Quotienten der beiden teilerfremden Zahlen m + n und
n kann aber nur dann rational sein, wenn sowohl m + n als auch n eine m-te
Potenz ist Ist n wm, so gilt für die nächsthöhere m-te Potenz nach der Ungleichung

von Bernoulli

(w+iy>wm + mw^n + m

m + n kann also nicht gleichzeitig mit n eine m-te Potenz sein, womit (5) bewiesen
ist
Die m (4) aufgeführten Losungspaare sind also die einzigen rationalen
Da n+l und n teilerfremd sind, erhalt man schliesslich für n=l die einzige
ganzzahlige Losung (2/4)

Peter Hohler, Ölten
Peter Gebauer, Zürich
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Eine Bemerkung zur Wohlordnungseigenschaft der naturlichen Zahlen

In der didaktischen Literatur findet man viele Axiomatisierungen der natürlichen
Zahlen, die von den Peano-Axiomen abgeleitet sind oder die die Wohlordnungseigenschaft

benutzen Wir wollen hier ein Axiomensystem vorstellen, das im
entscheidenden - zur Wohlordnung äquivalenten - Axiom von Machtigkeitsbetrach-
tungen ausgeht und das dabei em besonders einfaches Prinzip benutzt

Das Dmchletsche Schubfachprinzip
Wenn m Gegenstande auf n Schubfacher verteilt werden und dabei m>n ist,
dann enthalt em Schubfach mehr als emen Gegenstand
Bauhoff zeigt m [1], dass das Schubfachprinzip als Beweisprinzip sinnvoll verwendet
werden kann Engel und Sewenn stellen m [3] eine Fülle von Aufgaben und
Problemen vor, die mittels des Schubfachprinzips zu losen smd Pmker schliesslich
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