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Kann man ohne Rechner entscheiden, ob ¢* oder n¢ grosser ist?

In [1] findet sich dazu die folgende elegante Lésung: In der Ungleichung ¢?> g+ 1
fiir g% 0 setzt man g=(n /e)— 1 und erhilt

Daraus folgt e"/e> r und daraus
e">nc. (1)

Geht man diese Herleitung nochmals durch, so erkennt man, dass dabei die Zahl
n insofern keine wesentliche Rolle spielt, als alle Ungleichungen giiltig bleiben,
wenn man an Stelle von 7 irgendeine positive Zahl+ e einsetzt.

Man schliesst daraus:
Genau die Zahl a= e hat die Eigenschaft

x/>\0 a*=x?, )

Dass nur die Zahl e diese FEigenschaft hat, folgt aus der Tatsache, dass die
Gerade y=x+1 nur fir a=e Tangente an die Kurve y=a* ist; fiir jede Basis
a+e gibt es demnach ein ¢ mit |g| <1, so dass a?<g+1. Fir x=a(g+1) gilt
dann

a%"'<<—x———l)+l=i

a a

und daraus wie in (1): @* < x°.

Damit ist (2) bewiesen.

Einen anderen Zugang zum Satz (2) erhilt man, wenn man die Ungleichung
a*>x% logarithmiert. Man erhidlt dann die #quivalente Ungleichung
x -Ina=a - Inx und daraus
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Ina Inx

a X

Die gesuchte Zahl a ist also gleich dem Argument x der Funktion f(x)=Inx/x,
das den maximalen Funktionswert liefert. Durch Ableiten von f(x) findet man

sofort a=xp,,,=e.
Auf die gleiche Art lidsst sich auch die Gleichung y*=x” diskutieren: Diese
Gleichung ist 4quivalent zur Gleichung

fx =y,

X y

Da die Losungen x=y trivial sind und die Gleichung in x und y symmetrisch
ist, kann man ohne Verlust an Allgemeinheit annehmen (siehe Fig. 1):

l<x<y.

In x
X

Figur 1

Ist (x,y), 1<x<y, eine Losung der Gleichung x’=y*, so setzen wir y=x+9
und erhalten

X

X o
X o=(x+6y=xd= (1+ i—) <x= (l+ é—) :
X

Aus der Figur 1 entnimmt man, dass §/x jeden reellen Wert r>0 annehmen
kann. Man erhilt somit eine Parameterdarstellung der Losungspaare:

1
x-——-(1+r)T

6 - J_ L'-f-l

y=x+od=x (l+~x~>=(1+r)’ A+rn=>QAQ+r" .

Die Losungen der Gleichung y*= x» mit x <y lassen sich darstellen in der Form

T
(x,y)=((1+r) (A+n7 ) r>0. 3)
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Es ergeben sich rationale Liésungen, wenn man fir r Stammbriiche 1/n, neN,
einsetzt!). Man erhilt dann

(1Y (1))

So liefertz.B. n=2:
27 9

GV-(5)

Wir beweisen nun noch, dass die in (4) aufgefithrten Losungen die einzigen
rationalen Paare sind:
Zunichst: Wire r irrational und (1+ r)!/" rational, dann wire

1 [
A+n"  =(1+97 1+7)

irrational, denn das Produkt aus einer rationalen und einer irrationalen Zahl ist
stets irrational.

Wir setzen also r=m /n und zeigen:
n

Q+ﬁY 5)

n
m, n natiirlich, teilerfremd, m> 1, ist irrational.

Beweis: Wir zeigen zuerst die Implikation
n 1

m\™ m\™
<1+—n—> rational = (H— —n—> rational .

Da die zu m teilerfremden Zahlen<m beziiglich der Multiplikation modulo m
eine Gruppe bilden, ist dic Kongruenz z-n=1 (modm) bei unseren Voraus-
setzungen losbar. Ist zn= Am+ 1, so gilt:

n

m m
Ist (1 + —) rational, so ist auch
n

n nz Am+1

[0+2 T= o2 2) <oy o’

1) Die Losungen in algebraischen Zahlen finden sich in [2].
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1

) m\™ .
rational und damit (1 + —n—) rational.

Der Beweis der Aussage (5) ist also erbracht, wenn gezeigt ist, dass

1
( m)’” m+n
1+—) =mf
n n

irrational ist.

Die m-te Wurzel aus dem Quotienten der beiden teilerfremden Zahlen m+n und
n kann aber nur dann rational sein, wenn sowohl m+n als auch n eine m-te
Potenz ist. Ist n=w", so gilt fiir die nichsthohere m-te Potenz nach der Unglei-
chung von Bernoulli

w+1)">w"+mw=n+m.

m+n kann also nicht gleichzeitig mit n eine m-te Potenz sein, womit (5) bewiesen
ist.
Die in (4) aufgefithrten Losungspaare sind also die einzigen rationalen.
Da n+1 und n teilerfremd sind, erhdlt man schliesslich fir n=1 die einzige
ganzzahlige Losung (2/4).
Peter Hohler, Olten
Peter Gebauer, Ziirich
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Eine Bemerkung zur Wohlordnungseigenschaft der natiirlichen Zahlen

In der didaktischen Literatur findet man viele Axiomatisierungen der natiirlichen
Zahlen, die von den Peano-Axiomen abgeleitet sind oder die die Wohlordnungs-
eigenschaft benutzen. Wir wollen hier ein Axiomensystem vorstellen, das im ent-
scheidenden - zur Wohlordnung dquivalenten - Axiom von Michtigkeitsbetrach-
tungen ausgeht und das dabei ein besonders einfaches Prinzip benutzt:

Das Dirichletsche Schubfachprinzip.

Wenn m Gegenstinde auf n Schubficher verteilt werden und dabei m>n ist,
dann enthilt ein Schubfach mehr als einen Gegenstand.

Bauhoff zeigt in [1], dass das Schubfachprinzip als Beweisprinzip sinnvoll verwendet
werden kann. Engel und Sewerin stellen in [3] eine Fiille von Aufgaben und Pro-
blemen vor, die mittels des Schubfachprinzips zu lésen sind. Pinker schliesslich
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