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und zur Forderung des mathematisch-physikalischen Unterrichts

El. Math. Band 36 Heft 5 Seiten 105-144 Basel, 10. September 1981

Uber Kurven konstanter Breite*

Im folgenden sollen einige Figuren und Sédtze der Geometrie besprochen werden,
die sich vielleicht im Gymnasialunterricht verwenden lassen. Wir richten also unser
Augenmerk in erster Linie auf geometrisch einleuchtende Argumente und weniger
auf moglichst allgemeine Voraussetzungen oder ausgepichte Beweise, und neue
Resultate werden nicht geliefert.

Es sei B < E? ein kompakter konvexer Bereich in der euklidischen Ebene und 0B der
Rand von B (Fig.1). Fiir jeden Richtungsvektor u(p):= (cosg, sing) besitzt B zwei
zu u senkrechte Stiitzgeraden im Abstand b(p). B heisst ein Bereich konstanter
Breite b, 0 B eine Kurve konstanter Breite oder Orbiforme, wenn b (p)= b ist.

Figur 1

Die Orbiformen wurden von Euler entdeckt, und zwar beschreibt er sie zum ersten
Mal in der 1778 datierten Arbeit «De curvis triangularibus» [3]. Er schreibt da:
«.. quocirca curva, ex evolutione curvae triangularis 4 BC nata, hac eximia
gaudet proprietate: ut, si ad eius punctum quodcunque X ducatur normalis, donec
curvae iterum occurrat in x, ea etiam in hoc puncto ad curvam sit normalis, ac
praeterea tota haec recta X x ubique eandem habeat longitudinem

=2f+c—a+b,

quae proprietas vulgo circulo tam propria esse videtur, ut vix in alias lineas curvas
competere posse videatur.» (Diese Kurve, die als Evolvente der dreispitzigen Kurve
A B C entstanden ist, erfreut sich der folgenden ausserordentlichen Eigenschaft:

* Uberarbeitete Fassung eines Vortrags, gehalten im Rahmen des Mathematischen Seminars fir
aktive Lehrer (ETH Ziirich, Wintersemester 1979/80).
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Wird in irgendeinem Punkt X die Normale errichtet und mit der Kurve ein zweites
Mal in einem Punkt x zum Schnitt gebracht, so ist sie auch in diesem zweiten Punkt
Normale, und ausserdem hat die Strecke X x tiberall dieselbe Lénge ... - eine Eigen-
schaft, die fiir jedermann so sehr dem Kreise eigentiimlich zu sein scheint, dass ihr
Bestehen bei anderen Kurven kaum fiir moglich gehalten wiirde.)
Zusammenfassende Darstellungen des Themas findet man in [1, 2, 5]; dort gibt es
auch noch weiteres Material, andere Beweisideen und vor allem in [1] ausfithrliche
historische und bibliographische Angaben.

Nach dem Kreis ist das sogenannte Reuleaux-Dreieck (Fig.2) die bekannteste Orbi-
forme. Es besteht aus drei Kreisbégen vom Radius b iiber den Seiten eines gleich-

—

S——

Figur 2

seitigen Dreiecks der Seitenldinge b. Etwas allgemeiner sind die Reuleaux-Polygone,
die aus einer ungeraden Anzahl Kreisbogen vom Radius b zusammengesetzt sind
und folgendermassen erhalten werden (Fig.3): An die Enden 4y, 4, einer «Grund-
linie» der Linge b werden provisorisch zwei Grenzbogen y,,y, gesetzt. Hierauf
werden nacheinander Bogen f,,8,, ..., 8, frei wihlbarer Linge gezeichnet, und
zwar hat g, sein Zentrum im Punkt 4, beginnt im Punkt 4;_; und endet im neuen
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Punkt 4;,,. Sobald einer der Grenzbogen y,,y, erreicht wird, ist die Figur sinn-
gemiss abzuschliessen: £, _, endet auf y, (y), 8,—1 im Punkt 4y(4,), und B, liegt
auf y, (bildet die riickwirtige Verlingerung von £, < yg).

Es gibt auch Orbiformen, die rundherum glatt sind. Eine explizite Darstellung
¢ z2(p) der allgemeinsten Orbiforme « erhdlt man durch folgenden Ansatz
(fir den Beweis sei auf [4] verwiesen, wo allerdings etwas andere Bezeichnungen
verwendet werden):

w: 2(p)=h (@)W (p)+h(@ulp) (@eR/27), (1)

und zwar muss die (Stiitz-)Funktion 4 folgenden Bedingungen geniigen:

heC', k" Lipschitz-stetig (= h”(p) existiert f.i1.), (@)
h(p)+h”(p)=0 fi., (b)
h(p)+h(p+n)=b. (©)

Diese Bedingungen werden z. B. von trigonometrischen Polynomen der Form

h(p)= 7 év: la; cos(2J+l)¢+b sin(2j+ 1) ¢],

wo die |ag;l, | bl hinreichend klein sind, erfiillt. Dass (1) tatsdchlich eine Orbiforme
darstellt, macht man sich folgendermassen klar (Fig.4): Aus (1) folgt

z' (p)=(h(p)+h"(p)) v (p)

und wegen (b) somit

/4
argz’ (p)=argw’ (p) =9+ -

u'(y) u(yp)
z(yp+1)

Figur 4

Hiernach dreht sich die Tangente lings w monoton, d.h. w ist konvex, und die
Tangenten in den beiden Punkten z(¢), z(¢ + ) sind parallel. Uberdies folgt aus (c):
h’ (p)+h’ (p+n)=0 und somit
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z(p)—z(p+m)=bu(p) (Lw(p),

d.h. die beiden Tangenten haben auch den richtigen Abstand b.

Wir wenden uns nun den allgemeinen Eigenschaften der Bereiche B konstanter
Breite b zu. Der Figur 5 entnimmt man einerseits

|PQI<b VP, Q€ B,

anderseits ist | RS'| > b. Hieraus folgt: B besitzt den Durchmesser

d(B):=max |PQ|=b.
P,QeB

Figur 5

Insbesondere ist |RS| =5, d.h. RS steht senkrecht auf den beiden Stiitzgeraden
Ig, 15, und damit ist auch gezeigt: Jede Stiitzgerade trifft 0 B in genau einem Punkt.

B lasst sich in einem beliebigen Rhombus der Hohe b, insbesondere in einem
Quadrat, kontinuierlich um 360° drehen, so dass 0B in jedem Moment alle vier
Seiten des Rhombus beriihrt. Wird diese Rotation in einem 120°-Rhombus durch-
gefiihrt, in den noch das dritte Seitenpaar eines reguliren Sechsecks (Fig.6) ein-
gezeichnet ist, so ergibt sich durch rechtzeitiges Anhalten bzw. nach dem Zwischen-
wertsatz: B ldsst sich in ein reguldres Sechseck einbeschreiben, so dass 0B alle sechs
Seiten beriihrt (Satz von Pal, 1920).

Schon etwas schwieriger ist der folgende Satz: B besitzt einen wohlbestimmten
maximalen Inkreis K, der von 0 B mindestens dreipunktig gefasst wird, und einen dazu
konzentrischen Umkreis K. Fiir das Radienverhdltnis gilt

ﬁ—ls%sl.

Beweis: Der Abstand r(x) eines Punktes xe B vom Rand 9B ist eine stetige
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Figur 6

Funktion von x. Es gibt daher wenigstens einen Punkt me B, in dem r(x) seinen
wohlbestimmten Maximalwert »(<b/2) annimmt. Es sei K< B die Kreisscheibe
vom Radius r mit Mittelpunkt m. Die Menge M:=0Kn dB der Berithrungspunkte
ist nicht leer, und in jedem Punkt 4 € M besitzen K und B eine gemeinsame Stiitz-
gerade. Ist r=b/2, so konnen ausserhalb von K keine Punkte von B mehr liegen,
und es ist B=K=XK.

Im weiteren sei also r<b/2. Die Menge M ist kompakt, infolgedessen besteht die
Restmenge 0 K\M aus offenen Bogen y; vom Zentriwinkel a;, und zwar sind alle
a;<n. Wire ndmlich ein a;= 7, so besésse B zwei parallele Stiitzgeraden im Abstand
<b (Fig.7), und wire ein a;> 7, so liesse sich K vergréssern (Fig.8). Hiernach gibt

oB

Figur 7

Figur 8

es mindestens drei Berithrungspunkte 4,4,,4;e M, so dass die drei dazwischen-
liegenden Zentriwinkel < 7 sind. Es sei 4 > B das von den Stiitzgeraden in A, 4,, 4,
gebildete Dreieck (Fig.9). 4 umfasst jede in B liegende Kreisscheibe K’, aber nur
eine Kreisscheibe vom Radius r. Der maximale Kreis K ist somit eindeutig
bestimmt.
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A
A,
S —~
K
A
[+ 4 A,

A
Figur 9

Es sei K die Kreisscheibe vom Radius #=b~— r mit Zentrum m. Wie man der Figur 9
entnimmt, ist K> B, und zwar sind alle anderen Kreisscheiben, diec B umfassen,
grosser, denn K ist der Umkreis des Dreiecks 4 B.

Ein Zentriwinkel a ist > 120°. Damit ergibt sich fiir #:

5/2 b/2 b

"en@) ViR V3
und somit weiter

. 1
r=b—r2b(1—— 7-3—),

zusammen also
r
-2Vv3-1,
F

wie behauptet. (Das Gleichheitszeichen wird beim Reuleaux-Dreieck tatsichlich
angenommen.) [J

Wir untersuchen nun die Linge L (0B) der Randkurve und beweisen anhand der
Figur 10 den Satz von Barbier (1860):

L(0B)=nb. : | Q)

Beweis: Zu jedem Argument ¢ gehoren ein bestimmter Punkt z(p)edB und sein
Gegenpunkt z(p + ). Aus

bsindp<s'+ s”sbtgAw 3)
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Figur 10

folgt insbesondere
|z(p+d9)—2z(p)| <btgdy;
somit ist
0B: ¢ z(p) @O<p<2n)

eine stetige (und rektifizierbare) Kurve. Um ihre Linge zu bestimmen, betrachten
wir der Einfachheit halber die Einteilung

kn
=— 0<k<N
V=" ( )

des Intervalls [0,z] in Teilstiicke gleicher Linge dp=n/N. Aus (3) ergibt sich fiir
den Umfang Uy des zugehorigen einbeschriebenen 2 N-Ecks:

n n
Nb sin— < Uy< Nbtg—
sin — N L3y

und somit

op S0 (@/N) sin (n/N) < Uy<nb BEN) tg(n/N)

2N 2N

Hieraus folgt mit N— co die Behauptung. (Fiir einen Bereich variabler Breite b (¢)
erhilt man auf dhnliche Weise die Formel

L(aB)=:§ b(p)dp., @

die (2) als Spezialfall enthilt.) [
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Was den Flicheninhalt von B betrifft, so gilt der folgende Satz von Lebesgue (1914)
und Blaschke (1915): Von allen Bereichen B der konstanten Breite b hat der Kreis den
grossten, das Reuleaux-Dreieck den kleinsten Flicheninhalt.

Von diesem Satz gibt es unzdhlige Beweise. Wir argumentieren mit Lebesgue
folgendermassen (Fig.11): B sei einem reguliren Sechseck einbeschrieben. Wir
verwandeln nun das Sechseck schrittweise in den Bereich B, indem wir immer
wieder mit je zwei parallelen Stiitzgeraden zwei Ecken abschneiden. Parallel

Figur 11

dazu denken wir uns dasselbe fiir den Kreis X und das Reuleaux-Dreieck R durch-
gefiihrt. Betrachten wir die Strecken a’,a”,h’, h” und die analogen Strecken in den
beiden gedachten Situationen in dem Moment, wo ein Eckenpaar abgeschnitten
werden soll! Unabhingig von der Vorgeschichte ist der Abstand Ecke-Gegenecke
in allen drei Fillen gleich; er hingt nur von » und dem Winkel in diesen Ecken ab.
Hieraus ergibt sich weiter

a’'+a”=ax+ag=ar+a}f (=:a).
h'+ h"”=hkx+h¥%=hi+ h} (=:h).

Schreiben wir a’=7ta, a”=(1—1)a, wobei 0<t<1, so ist von selbst h’=1h,

h”=(1—1)h; ferner gilt in den beiden Spezialfillen: 5 =1/2, 7x=0 oder 1. Fiir die
bei diesem Schritt insgesamt abgeschnittene Fliche A4F erhalten wir

1 1
AF= —(@h+a"h")= — [ +(1 - lah,

und hieraus folgt als Losung einer einfachen Extremalaufgabe:
AFg< AFp< AFp.

Da dies bei jedem Schritt zutrifft, ergibt sich im Limes die Behauptung des
Satzes. O

Zum Schluss wollen wir uns kurz mit den dreidimensionalen Bereichen konstanter
Breite befassen. Hier gibt es noch ungeldste Probleme; so ist z.B. nicht bekannt,
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welcher derartige Bereich bei gegebener Breite das kleinste Volumen, welcher die
grosste Oberflache besitzt.

Es sei also Bc E* eine kompakte konvexe Menge. Folgendes ist ziemlich klar: Ist B
von konstanter Breite, so sind alle Normalrisse 7, (B), ue S2, von konstanter Breite,
und umgekehrt. Hieraus folgt mit dem Satz von Barbier (2): Ist B von konstanter
Breite b, so besitzt B auch konstanten Umfang, d.h. alle Normalrisse haben den
Umfang nb. Von dieser Aussage gilt nun wunderbarerweise auch die Umkehrung
(Minkowski 1904): Ist B < E3 von konstantem Umfang, so ist B von konstanter Breite.

Zum Beweis haben wir die Funktion

b: S2-R, b(x):=Breite in Richtung x

zu betrachten (Fig. 12); es ist natiirlich b (—x)="5b(x). Zu b (-) gehort die sogenannte
Kreisintegralfunktion

b'(u):=yj' b(x)dy,

wobei langs des Grosskreises y, L u integriert wird und dp das Bogenelement auf
74 bezeichnet. Nach (4) ist b (u) nichts anderes als der doppelte Umfang des Normal-
risses 7, (B). Somit ist nach Voraussetzung b (u)=2 nb.

?
[
|
|
|
|

b(x) = b(-x)

Figur 12

Betrachten wir daher die (ebenfalls gerade) Hilfsfunktion

Jx):=b(x)—b,

50 ist f(u)=0, und wir behaupten: Dann ist notwendigerweise f(x)=0.
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Wir zeigen dies indirekt und nehmen an, es sei etwa f(e;)>0. Zunichst werde f

durch Mittelung rotationssymmetrisch beziiglich der x;-Achse gemacht, d.h. wir
bilden die Funktion

1 2=n

gx):=>— t{f(D [es, v1x)dy,

wobei D [es, y] die Drehung um die x;-Achse um den Winkel y bezeichnet. Mit
f haben auch die Funktionen x> f(D[es;,w]x) verschwindende Kreisintegral-
funktion, und damit ist auch

g=0. ®)

Ferner gilt nun aus Symmetriegriinden

2(X)=h(9) (— 2 <9< 1;-) h(%>>0,

wobei § die geographische Breite beziiglich der x3;-Achse bezeichnet. Wir nehmen
der Einfachheit halber an, die (gerade) Funktion A(3) besitze nur endlich viele
Vorzeichenwechsel. Dann gibt es ein Intervall [— §y, 3], in dem A nur einerlei
Vorzeichen annimmt, aber nicht identisch verschwindet. Betrachten wir nun einen
Grosskreis 7, der den Aquator unter dem Winkel 8, schneidet (Fig. 13), so ist das

A x,

Figur 13

Integral g (uy) als gewichtetes Mittel der (z.B. positiven) Funktion A(§) iiber das
Intervall [— 3¢, 3¢] von null verschieden, im Widerspruch zu (5). O
Christian Blatter, ETH Ziirich
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Franciscus Vieta und die Eulersche Identitit (Quaternionen)

1. F. Vieta (1540-1603) hat in seiner «Genesis triangulorum» [Ad logisticen
speciosam notae priores (um 15917), Paris 1631, Opera mathematica Leiden 1646,
S.62-71], Propositio XLVI, die Aufgabe gestelit:

Gegeben sind zwei rechtwinklige Dreiecke: a, b, z; p, g, w mit den Winkeln a, f:

b
tga="—-, tgb’z“Z‘, bp>aq, ap>bq, a>B, a+f<90°

In der Figurista=1,5,b=2,2=25; p=48,9q=2,w=5,2,

‘
B l

Gesucht sind rechtwinklige Dreiecke, deren Hypotenuse gleich dem Produkt z - w
ist.
Als Losung gibt er die Dreiecke mit den Katheten x, y:

N

x=ap+bgq, y=bptagq (1)

und mit den Winkeln a + § an.
Da Vieta sich erfolgreich mit den goniometrischen Formeln beschiftigt hat, darf

man wohl annehmen, dass er aus den Additionsformeln fir cos und sin (1)
gewonnen hat.
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