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Über Kurven konstanter Breite*

Im folgenden sollen einige Figuren und Sätze der Geometrie besprochen werden,
die sich vielleicht im Gymnasialunterricht verwenden lassen. Wir richten also unser
Augenmerk in erster Linie auf geometrisch einleuchtende Argumente und weniger
auf möghchst allgemeine Voraussetzungen oder ausgepichte Beweise, und neue
Resultate werden nicht geliefert.

Es sei _9c E2 ein kompakter konvexer Bereich in der euklidischen Ebene und dB der
Rand von B (Fig. 1). Für jeden Richtungsvektor u(cp):= (coscp, sin#?) besitzt B zwei
zu u senkrechte Stützgeraden im Abstand b(cp). B heisst ein Bereich konstanter
Breite b, dB eine Kurve konstanter Breite oder Orbiforme, wenn b(cp) b ist.

böp)

u(vp) dB

Figur 1

Die Orbiformen wurden von Euler entdeckt, und zwar beschreibt er sie zum ersten
Mal in der 1778 datierten Arbeit «De curvis triangularibus» [3]. Er schreibt da:
«... quocirca curva, ex evolutione curvae triangularis ABC nata, hac eximia
gaudet proprietate: ut, si ad eius punctum quodcunque X ducatur normalis, donec

curvae iterum occureat in x, ea etiam in hoc puncto ad curvam sit normalis, ac

praeterea tota haec recta Xx ubique eandem habeat longitudinem

2f+c-a + b,

quae proprietas vulgo circulo tarn propria esse videtur, ut vix in alias lineas curvas
competere posse videatur.» (Diese Kurve, die als Evolvente der dreispitzigen Kurve
ABC entstanden ist, erfreut sich der folgenden ausserordentlichen Eigenschaft:
* Überarbeitete Fassung eines Vortrags, gehalten im Rahmen des Mathematischen Seminars für
aktive Lehrer (ETH Zürich, Wintersemester 1979/80).
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Wird in irgendeinem Punkt X die Normale errichtet und mit der Kurve ein zweites
Mal in einem Punkt x zum Schnitt gebracht, so ist sie auch in diesem zweiten Punkt
Normale, und ausserdem hat die Strecke Xx überall dieselbe Länge - eine Eigenschaft,

die für jedermann so sehr dem Kreise eigentümlich zu sein scheint, dass ihr
Bestehen bei anderen Kurven kaum für möglich gehalten würde.)
Zusammenfassende Darstellungen des Themas findet man in [1, 2, 5]; dort gibt es

auch noch weiteres Material, andere Beweisideen und vor allem in [1] ausführliche
historische und bibliographische Angaben.
Nach dem Kreis ist das sogenannte Reuleaux-Dreieck (Fig. 2) die bekannteste
Orbiforme. Es besteht aus drei Kreisbögen vom Radius b über den Seiten eines gleich-

Figur 2

seitigen Dreiecks der Seitenlänge b. Etwas allgemeiner sind die Reuleaux-Polygone,
die aus einer ungeraden Anzahl Kreisbögen vom Radius b zusammengesetzt sind
und folgendermassen erhalten werden (Fig. 3): An die Enden A0,AX einer «Grundlinie»

der Länge b werden provisorisch zwei Grenzbögen yo,yx gesetzt. Hierauf
werden nacheinander Bögen ßx,ß2, ...,/?„ frei wählbarer Länge gezeichnet, und
zwar hat ßx sein Zentrum im Punkt Al9 beginnt im Punkt Ax-X und endet im neuen

A.

Figur 3
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Punkt Ax+X. Sobald einer der Grenzbögen yo>yx erreicht wird, ist die Figur
sinngemäss abzuschliessen: ßn_2 endet auf y\(yo),ßn-X im Punkt A0(AX), und ßn liegt
auf yx (bildet die rückwärtige Verlängerung von ßx cz yQ).

Es gibt auch Orbiformen, die rundherum glatt sind. Eine explizite Darstellung
cpy-*z(cp) der allgemeinsten Orbiforme co erhält man durch folgenden Ansatz
(für den Beweis sei auf [4] verwiesen, wo allerdings etwas andere Bezeichnungen
verwendet werden):

co: z(cp) h' (cp)u' (cp) + h(cp)u(cp) (cpeK/2n),

und zwar muss die (Stütz-)Funktion n folgenden Bedingungen genügen:

heCx, h' Lipschitz-stetig (=> h" (cp) existiert f.ü.),
h(cp) + h"(cp)>0 f.ü,
h(cp) + h(cp + n) b.

(1)

(a)
(b)
(c)

Diese Bedingungen werden z. B. von trigonometrischen Polynomen der Form

h(cp)-
b Ä
V + Z [aJcos(2j+l)cp + bJsin(2j+l)cp],
1 y=l

wo die 1^1,1^1 hinreichend klein sind, erfüllt. Dass (1) tatsächlich eine Orbiforme
darstellt, macht man sich folgendermassen klar (Fig. 4): Aus (1) folgt

Z'(cp)=(h(cp) + h"(cp))u'(cp)

und wegen (b) somit

argz' (cp) argu' (cp) cp +

u*(vp) uty)

i'(\p)

ifcp)

to)

z(vp+it)

Figur 4

Hiernach dreht sich die Tangente längs co monoton, d.h. co ist konvex, und die

Tangenten in den beiden Punkten z(cp),z(cp + n) sind parallel. Überdies folgt aus (c):
h' (cp) + h' (cp + n) 0 und somit
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z(<p)-z(<p + n)=bu((p) (±u'(<p)),

d. h. die beiden Tangenten haben auch den richtigen Abstand b.

Wir wenden uns nun den allgemeinen Eigenschaften der Bereiche B konstanter
Breite b zu. Der Figur 5 entnimmt man einerseits

\PQ\^b VP,QeB;

anderseits ist | RS\ _> b. Hieraus folgt: B besitzt den Durchmesser

d(B):= max \PQ\=b.
P,QeB

Figur 5

Insbesondere ist \RS\ =b, d.h. RS steht senkrecht auf den beiden Stützgeraden
lR, ls, und damit ist auch gezeigt: Jede Stützgerade trifft dB in genau einem Punkt.
B lässt sich in einem behebigen Rhombus der Höhe b, insbesondere in einem
Quadrat, kontinuierlich um 360° drehen, so dass dB in jedem Moment alle vier
Seiten des Rhombus berührt. Wird diese Rotation in einem 120°-Rhombus
durchgeführt, in den noch das dritte Seitenpaar eines regulären Sechsecks (Fig. 6)
eingezeichnet ist, so ergibt sich durch rechtzeitiges Anhalten bzw. nach dem Zwischenwertsatz:

B lässt sich in ein reguläres Sechseck einbeschreiben, so dass dB alle sechs

Seiten berührt (Satz von Pal, 1920).
Schon etwas schwieriger ist der folgende Satz: B besitzt einen wohlbestimmten
maximalen Inkreis K, der von dB mindestens dreipunktig gefasst wird, und einen dazu
konzentrischen Umkreis K. Für das Radienverhältnis gilt

VJ-l^-^l.r

Beweis: Der Abstand r(x) eines Punktes xeB vom Rand dB ist eine stetige
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Figur 6

Funktion von x. Es gibt daher wenigstens einen Punkt meB, in dem r(x) seinen
wohlbestimmten Maximalwert r(<>b/2) annimmt. Es sei KaB die Kreisscheibe
vom Radius r mit Mittelpunkt m. Die Menge M:=dKndB der Berührungspunkte
ist nicht leer, und in jedem Punkt AeM besitzen K und B eine gemeinsame
Stützgerade. Ist r=b/l, so können ausserhalb von K keine Punkte von B mehr liegen,
und es ist B K=K.
Im weiteren sei also r<b/2. Die Menge M ist kompakt, infolgedessen besteht die
Restmenge dK\M aus offenen Bögen yx vom Zentriwinkel ax, und zwar sind alle
ax< ti. Wäre namhch ein ax= n, so besässe B zwei parallele Stützgeraden im Abstand
<b (Fig.7), und wäre ein ax>n, so liesse sich K vergrössern (Fig. 8). Hiernach gibt

dB
äB

Figur 7

Figur 8

es mindestens drei Berührungspunkte Ax,A2,A3eM, so dass die drei dazwischenliegenden

Zentriwinkel < n sind. Es sei A => B das von den Stützgeraden in AX,A2,A3
gebildete Dreieck (Fig. 9). A umfasst jede in B liegende Kreisscheibe K', aber nur
eine Kreisscheibe vom Radius r. Der maximale Kreis K ist somit eindeutig
bestimmt.
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Figur 9

Es sei K die Kreisscheibe vom Radius f:=b—r mit Zentrum m. Wie man der Figur 9

entnimmt, ist K^>B, und zwar sind alle anderen Kreisscheiben, die B umfassen,
grösser, denn Kist der Umkreis des Dreiecks AaB.
Ein Zentriwinkel a ist _> 120°. Damit ergibt sich für r:

s/1
' sin(a/2)^ VT/2 VT

und somit weiter

zusammen also

wie behauptet. (Das Gleichheitszeichen wird beim Reuleaux-Dreieck tatsächlich
angenommen.) D

Wir untersuchen nun die Länge L(dB) der Randkurve und beweisen anhand der
Figur 10 den Satz von Barbier (1860):

L(dB)=nb. (1)

Beweis: Zu jedem Argument cp gehören ein bestimmter Punkt z(cp)edB und sein

Gegenpunkt z (cp + it). Aus

b sinAcp <> sf+s"<.b tgAcp (3)
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z(vp+4if)

I(IP)
OB

Zty

Figur 10

folgt insbesondere

\z(cp + Acp)~z(cp)\ -^btgAcp,

somit ist

dB: cp\-*z(cp) (O^cp^ln)

eine stetige (und rektifizierbare) Kurve. Um ihre Länge zu bestimmen, betrachten
wir der Einfachheit halber die Einteilung

kn
(pk''=~N (°^k^N>>

des Intervalls [0,n] in Teilstücke gleicher Länge Acp n/N. Aus (3) ergibt sich für
den Umfang UN des zugehörigen einbeschriebenen 2 _V-Ecks:

Nb sin^-<UN^Nbtg^-
N N

und somit

in (n/N)sin tgQr/jV)
nb r—<>UN<>nb-

n/N " n/N

Hieraus folgt mit _V-> oo die Behauptung. (Für einen Bereich variabler Breite b(cp)
erhält man auf ähnhche Weise die Formel

_,(__*)={-(?)_>, (4)

die (2) als Spezialfall enthält.) D
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Was den Flächeninhalt von B betrifft, so gilt der folgende Satz von Lebesgue (1914)
und Blaschke (1915): Von allen Bereichen B der konstanten Breite b hat der Kreis den

grossten, das Reuleaux-Dreieck den kleinsten Flächeninhalt.
Von diesem Satz gibt es unzählige Beweise. Wir argumentieren mit Lebesgue
folgendermassen (Fig. 11): B sei einem regulären Sechseck einbeschrieben. Wir
verwandeln nun das Sechseck schrittweise in den Bereich B, indem wir immer
wieder mit je zwei parallelen Stützgeraden zwei Ecken abschneiden. Parallel

Figur 11

dazu denken wir uns dasselbe für den Kreis K und das Reuleaux-Dreieck R
durchgeführt. Betrachten wir die Strecken a',a",h',h" und die analogen Strecken in den
beiden gedachten Situationen in dem Moment, wo ein Eckenpaar abgeschnitten
werden soll! Unabhängig von der Vorgeschichte ist der Abstand Ecke-Gegenecke
in allen drei Fällen gleich; er hängt nur von b und dem Winkel in diesen Ecken ab.
Hieraus ergibt sich weiter

a'+a»=a'K+a»K=a'R + a"R (=:a).
h'+h"=h'K+hl=h'K+hl (=:h).

Schreiben wir a'=xa, a"=(l — x)a, wobei 0_^t<l, so ist von selbst h'=xh,
h"=(l — x)h; ferner gilt in den beiden Spezialfällen: xK= l/2, xR 0 oder 1. Für die
bei diesem Schritt insgesamt abgeschnittene Fläche AF erhalten wir

AF= — (a'h'+a"h")= ~[x2 + (l-x)2]ah,

und hieraus folgt als Lösung einer einfachen Extremalaufgabe:

AFK<,AFB<AFR.

Da dies bei jedem Schritt zutrifft, ergibt sich im Limes die Behauptung des
Satzes. D

Zum Schluss wollen wir uns kurz mit den dreidimensionalen Bereichen konstanter
Breite befassen. Hier gibt es noch ungelöste Probleme; so ist z.B. nicht bekannt,
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welcher derartige Bereich bei gegebener Breite das kleinste Volumen, welcher die
grosste Oberfläche besitzt.
Es sei also BczE3 eine kompakte konvexe Menge. Folgendes ist ziemlich klar: Ist B
von konstanter Breite, so sind alle Normalrisse nu(B), ueS2, von konstanter Breite,
und umgekehrt. Hieraus folgt mit dem Satz von Barbier (2): Ist B von konstanter
Breite b, so besitzt B auch konstanten Umfang, d.h. alle Normalrisse haben den

Umfang nb. Von dieser Aussage gilt nun wunderbarerweise auch die Umkehrung
(Minkowski 1904): Ist BczE3 von konstantem Umfang, so ist B von konstanter Breite.
Zum Beweis haben wir die Funktion

b: S2-*R, b (x):=Breite in Richtung x

zu betrachten (Fig. 12); es ist natürlich b - x) b (x). Zu b (•) gehört die sogenannte
Kreisintegralfunktion

b(u):=$ b(x)d<p,

wobei längs des Grosskreises yulu integriert wird und dcp das Bogenelement auf
yu bezeichnet. Nach (4) ist b (u) nichts anderes als der doppelte Umfang des Normalrisses

nu(B). Somit ist nach Voraussetzung b (u) 2 nb.

B

b

Figur 12

Betrachten wir daher die (ebenfalls gerade) Hilfsfunktion

/(x):=_(x)-.,

so ist/(u) 0, und wir behaupten: Dann ist notwendigerweise/^) 0.
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Wir zeigen dies indirekt und nehmen an, es sei etwa/(e3)>0. Zunächst werde/
durch Mittelung rotationssymmetrisch bezüglich der x3-Achse gemacht, d.h. wir
bilden die Funktion

g(x):=~^f(D[e3,ip]x)d¥,

wobei D [e3, y/] die Drehung um die x3-Achse um den Winkel y/ bezeichnet. Mit

/ haben auch die Funktionen xv+f(D[e3,y/]x) verschwindende Kreisintegralfunktion,

und damit ist auch

g(u) 0.

Ferner gilt nun aus Symmetriegründen

(5)

g(x)=h(S) (--5-sa*!), ä(t)>0'

wobei 9 die geographische Breite bezughch der Jjc3-Achse bezeichnet. Wir nehmen
der Einfachheit halber an, die (gerade) Funktion h(&) besitze nur endlich viele
Vorzeichenwechsel. Dann gibt es ein Intervall [—S0,S0], in dem n nur einerlei
Vorzeichen annimmt, aber nicht identisch verschwindet. Betrachten wir nun einen
Grosskreis y^, der den Äquator unter dem Winkel 90 schneidet (Fig. 13), so ist das

ax,

Figur 13

Integral g (un) als gewichtetes Mittel der (z. B. positiven) Funktion n ($) über das

Intervall [ — «90,9o] von null verschieden, im Widerspruch zu (5). D
Christian Blatter, ETH Zürich
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Franciscus Vieta und die Eulersche Identität (Quaternionen)

1. F. Vieta (1540-1603) hat in seiner «Genesis triangulorum» [Ad logisticen
speciosam notae priores (um 1591?), Paris 1631, Opera mathematica Leiden 1646,
S. 62-71], Propositio XLVI, die Aufgabe gestellt:
Gegeben sind zwei rechtwinklige Dreiecke: a, b, z; p, q, w mit den Winkeln a,ß:

tga tg/? bp>aq, ap>bq, a>ß, a + ß<90°

In der Figur ist a 1,5, b 2, z 2,5; p 4,8, q 2, w 5,2.

a+

aa

Gesucht sind rechtwinklige Dreiecke, deren Hypotenuse gleich dem Produkt z • w
ist.
Als Lösung gibt er die Dreiecke mit den Katheten x, y:

x ap + bq, y=bp±aq (1)

und mit den Winkeln a ± ß an.
Da Vieta sich erfolgreich mit den goniometrischen Formeln beschäftigt hat, darf
man wohl annehmen, dass er aus den Additionsformeln für cos und sin (1)

gewonnen hat.
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