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Korollar 4. Im Falle X=R? erfiillt g: R*> X R?>— R genau dann die Bedingungen (i) bis
(iv) von Satz 1, wenn es 7,0 € R gibt mit

g (1.8, (n,m)) =7 Emy+ &)+ 8 (Emy— Emy)

fir alle (&1, ¢,), (1, 172) € R

Beweis: Genau die Matrizen der Form ( Y

o
T aus SU (2,R). Nun folgt die Behauptung aus Lemma 2 und Satz lc.

0
] ) (y,0 € R) kommutieren mit allen

Bemerkung 3. Nach Korollar 3 gelten fiir X= C? die Analoga zu Satz 1a,d. Nach
Korollar 4 ist dies nicht der Fall fiir X=R?, und g ist nicht unbedingt symmetrisch
oder schiefsymmetrisch. Verschirft man (i) jedoch zur Invarianz gegeniiber allen

Drehungen von R2, so folgt g((&1, &), (11,72)) =y (Eimy+ Eny) fur alle (&,6,),
(m,m) e R2. Jirg Ritz, Bern
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Gitterwege

1. Zahlreiche kombinatorische Aufgaben gestatten eine anschauliche Interpretation
im ebenen Gitter. In der Regel geht es darum, die Anzahl der Gitterwege der
Linge m+n von (0,0) nach (m,n) (m,neN;) unter Einhalten gewisser Neben-
bedingungen zu bestimmen; gelegentlich findet man dabei kombinatorische Identi-
titen, deren Nachweis auf anderem Wege komplizierter ist.
Bekannt sind die folgenden Ergebnisse ([1], S. 135-151, [2]):

a) Die Anzahl aller Wege betrigt
m+n
a(m,n)—-( m ) (1)

b) Die Anzahl aller Wege, welche die Gerade y= (1 /k) x (k e N) nicht iiberschreiten,

ist

+ —kn+1

b(m,n)=(m+n)-—k(m ")=—'31——-—"i——("'+"), m>kn. 2)
m m+1 m+1 m
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¢) Die Anzahl aller Wege, welche die Gerade y=x+ p (p € Ny) nicht iiberschreiten,
betragt

cnm= () e

In dieser Note werden zwei in der obigen Zusammenstellung noch fehlende
Probleme elementar gelost.

Es bedeuten d(m,n) die Anzahl aller Wege, welche die Gerade y=(1/k)x+p
(keN,peNy) nicht iiberschreiten, und e(m,n) die Anzahl aller Wege, welche die
Gerade y=kx+ p(keN,peNp) nicht iiberschreiten. Es gelingt, d(m,n) und e (m,n)
nur mit Hilfe von (1) und (2) zu berechnen.

2. Zur Bestimmung der d(m,n) unterteilen wir die Menge V der verbotenen Wege
in disjunkte Teilmengen, V="V +V,+---+V,_,; V; ist die Menge der Wege,
welche die Gerade g:ky— x — p=0 letztmals im Punkt (ki,i + p) iiberschreiten.

Mit (1) und (2) erhalten wir unmittelbar

k+1Di+p—1 m+n—p—(k+1)i \ m+1—-k(n-p)
= (" ) ( O .
ki—1 m— ki m+1—ki

und damit

wnm=(" ) e W e )

m=k(n—p). “4)

Der Vergleich zwischen (2) und (4) fiir p=0 fithrt auf die Identitét

kn (m+n) n m+1—kn ((k+1?i+1)(m+n—(k+l)i>’

m+1 n _,-=.1 m+1—-ki i n—i

m>kn, n>1. %)

3. Auch zur Berechnung der e(m,n) unterteilen wir die Menge ¥V der verbotenen
Wege in disjunkte Teilmengen,

s

—-1-
V=V1+V2+...+V“ t=[£———-—~—£—]

k

diesmal ist aber V; die Menge der Wege, welche die Gerade g:y=kx+ p erstmals
im Punkt (i,ki+ p) uberschreiten. Mit den Setzungen e(0,0)=1 und e;=e(i,ki+ p)
erhalten wir

m+n—p—1—(k+1)i )
m-—i

|Vi|=ex'(
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und damit vorerst

e (m.m)= (m;n)__[ﬁ%l]ei<m+n—p—1—.-(k+1)i); ©6)

i=0 m-—i

es bleiben nur noch die ¢; zu berechnen.

W sei die Menge der zulidssigen Wege von (0,0) nach (i,ki+p), also | W|=e,.
Daneben betrachten wir die Menge W’ der Gitterwege der Lange (k+ 1)i+p von
(0,0) nach (ki+p,i), welche die Gerade g":y=(1/k)x nicht iiberschreiten. Nach (2)
1st

W = _pt+l ((k+ 1)i+p>.

ki+p+1 i

Zwischen W und W’ stellen wir mit der Abbildung f(x,y)=(ki+p—y,i—x) eine
Zuordnung her. Die Abbildung fist offensichtlich bijektiv und gitterpunktstreu und
fihrt horizontale (vertikale) Gitterstrecken in vertikale (horizontale) iiber; wegen
y<kx+p wird i—x<(ki+p—y)/k, und schliesslich gelten f(0,0)= (ki+ p,i) und

f@,ki+ p)=(0,0).
Somit ist e;= | W’|, und wir haben das Ziel erreicht:

e(m’n):(m;-n)_[n—iiilﬁ__{((k+1i)i+p>(m+n——p’-n——l;(k+l)i),

kmz=zn—p. ©)

Der Vergleich zwischen (7) im Spezialfall k=1 und (3) fithrt auf die Identitat

( m+n )__”‘1‘1’ p+1 (p+2i)<m+n-—l—p—-2i)
m+p+1 S0 p+1+i i m—2i ’

m=n—p2=1. ®)

Schliesslich vergleichen wir (8) fiir p=0 und (5) fiir k=1 und gewinnen die Identitit

"—1_1__(2i)(m+n——1—2l) 2"1 m-—n+1 (2i—l)(m+n—2i)
sol+i \ i m =t m—i+1 i n—i ’
m>=n>1. )

J.C. Binz, Mathematisches Institut der Universitit Bern
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