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Korollar 4. Im Falle X=R2 erfüllt g:R2xR2-*R genau dann die Bedingungen (i) bis
(iv) von Satz 1, wenn esy,öeR gibt mit

g((ix^2l(nx^2))^y(^xnx + i2n2) + ö(^xn2-i2nx)

für alle (Zx,Z2),(nx,n2)eR2.

Beweis: Genau die Matrizen der Form f (y,öeR) kommutieren mit allen

Taus SU(2,R). Nun folgt die Behauptung aus Lemma 2 und Satz lc.

Bemerkung 3. Nach Korollar 3 gelten für X=C2 die Analoga zu Satz la,d. Nach
Korollar 4 ist dies nicht der Fall für X=R2, und g ist nicht unbedingt symmetrisch
oder schiefsymmetrisch. Verschärft man (i) jedoch zur Invarianz gegenüber allen
Drehungen von R2, so folgt g((ft,ft),(nbn2)) =y(Zxnx + £2n2) für alle (ft,ft),
(rjx,n2)eR2. Jürg Ratz, Bern
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Gitterwege

1. Zahlreiche kombinatorische Aufgaben gestatten eine anschauliche Interpretation
im ebenen Gitter. In der Regel geht es darum, die Anzahl der Gitterwege der
Länge m + n von (0,0) nach (m,n) (m,neN0) unter Einhalten gewisser
Nebenbedingungen zu bestimmen; gelegentlich findet man dabei kombinatorische Identitäten,

deren Nachweis auf anderem Wege komplizierter ist.
Bekannt sind die folgenden Ergebnisse ([1], S. 135-151, [2]):

a) Die Anzahl aller Wege beträgt

(m + n\a(m,n)={ ^ J. (1)

b) Die Anzahl aller Wege, welche die Geradey=(l/k)x (keN) nicht überschreiten,
ist

x (m + n\ /m + n\ m-kn+l (m + n\b(m,n)=[ )-k[ )« TT"" > rn^kn. (2)
\ m \m+ll m+l \ m I
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c) Die Anzahl aller Wege, welche die Geradey=x +p(peNQ) nicht überschreiten,
beträgt

^ (m + n\ m + n \c(m,n)=( - m^n-p. (3)\ m J \m+p+l J r

In dieser Note werden zwei in der obigen Zusammenstellung noch fehlende
Probleme elementar gelöst.
Es bedeuten d(m,n) die Anzahl aller Wege, welche die Gerade y=(l/k)x+p
(keN,peN0) nicht überschreiten, und e(m,n) die Anzahl aller Wege, welche die
Gerade y=kx+p(keN,peN0) nicht überschreiten. Es gelingt, d(m,n) und e(m,n)
nur mit Hilfe von (1) und (2) zu berechnen.
2. Zur Bestimmung der d(m,n) unterteilen wir die Menge V der verbotenen Wege
in disjunkte Teilmengen, V=Vx+V2-\ \-Vn_p; Vx ist die Menge der Wege,
welche die Geradeg:ky—x—p 0 letztmals im Punkt (ki,i+p) überschreiten.
Mit (1) und (2) erhalten wir unmittelbar

/(k+l)i+p-l \ /m + n-p-(k+l)i \ m+l-k(n-p)
1 ''

V ki-l )\ m-ki m+l-ki
und damit

x (m + n\ n~Pm+l-k(n-p) ((k+l)i+p- l\(m + n-p-(k+l)i\
d(m,n)=[ m )-S m+l_ki { i+p ){ H_{t+) J.

n^Pm+l-k(n-p) f(k+l)i+p- l\fm + n-p-(k+l)i^
i+p )\ n-(i+p)

m^k(n-p). (4)

Der Vergleich zwischen (2) und (4) für/? 0 führt auf die Identität

kn (m + n\_ " m+l-kn f(k+ l)i+ 1 \ /m + n-(k+ l)i\
m+l \ n j",t1 m+l-ki \ i )\ n-i )'
m_>/cn, n^l. (5)

3. Auch zur Berechnung der e(m,n) unterteilen wir die Menge V der verbotenen
Wege in disjunkte Teilmengen,

v=vx+v2+-.. + vt, t=[n lk PY

diesmal ist aber Vt die Menge der Wege, welche die Gerade g:y=kx+p erstmals
im Punkt (i,ki+p) überschreiten. Mit den Setzungen e(0,0)= 1 und ex e(i,ki+p)
erhalten wir

r,l-*,( m + n-p~ l-(k+l)i
m — i
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und damit vorerst

\»-x~p]
(m + n\ * /„j + H-p-i-^+l^xe(m,n)=[ )- £ M ; (6)
V m ,to V m-i v '

es bleiben nur noch die ex zu berechnen.
W sei die Menge der zulässigen Wege von (0,0) nach (i,ki+p), also \W\=ex.
Daneben betrachten wir die Menge W' der Gitterwege der Länge (k+l)i+p von
(0,0) nach (ki+p,i), welche die Gerade g':y=(l/k)x nicht überschreiten. Nach (2)
ist

^-i^rryi+p

Zwischen W und W' stellen wir mit der Abbildung f(x,y)=(ki+p—y,i—x) eine
Zuordnung her. Die Abbildung/ist offensichtlich bijektiv und gitterpunktstreu und
fuhrt horizontale (vertikale) Gitterstrecken in vertikale (horizontale) über; wegen
y<kx+p wird i—x<(ki+p—y)/k, und schliesslich gelten f(0,0)=(ki+p,i) und
f(i,ki+p)= (0,0).
Somit ist ex=\W'\, und wir haben das Ziel erceicht:

Tn-X-p 1

e(m n)= (m + n\ V P+x (ik+ \)i+P\(m + n-p-l-(k+ l)i \
V ' ; V m ,tt) ki+p+l V i )\ m-i r

km^:n—p. (7)

Der Vergleich zwischen (7) im Spezialfall k= 1 und (3) führt auf die Identität

/ m + n \_n~^~p p+l (p + 2i \ (m + n-l-p-2i \
\m+p+l) th) p+l + i \ i )\ m-2i )'

n~^-P_p+l (p + 2i\(m + n-l-p-2i
P-

w_>n-/?_>l. (8)

Schhesshch vergleichen wir (8) für/? 0 und (5) für k= 1 und gewinnen die Identität

"y1 1 Iii \ /m +n-l-li \" m-n+l (li-l \ (m + n-2i \
£0 l + i Vi JI m-i £\ m-i+1 V i )\ n-i )'
m^n^l. (9)

J. C. Binz, Mathematisches Institut der Universität Bern
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