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Zur Charakterisierung des Skalarproduktes
Herrn Prof Dr E Trost zum 70 Geburtstag gewidmet

1. J Aczel ([1], S 310, Satz 1, [2], S 27-28) charakterisierte unter anderem das

Skalarprodukt von R3 auf elementargeometrische Weise und durch Losung einer
Funktionalgleichung In dieser Note wird für dieselbe Art von Fragestellung von
einigen elementaren Fakten der Theone der Skalarproduktraume ausgegangen,
die Loslosung von der Dimension 3 vollzogen, der komplexe Fall mitbehandelt
und eme Ausnahmesituation m R2 herausgestellt (Korollar 4) Zentral ist hier die
Tatsache, dass aus der Drehungsmvananz und drei Vierteln der Forderung der
Sesquihneantat auf die volle Sesquilmeantat geschlossen werden kann (Satz lc)

2. Durchwegs bezeichne K den Korper R der reellen oder den Korper C der
komplexen Zahlen, ferner "" ÜT—>iST die identische Abbildung, falls K=R, bzw die
gewohnliche Konjugation, falls K= C Ist X em K-Vektorraum und Xx X-+ K
eine positiv defimte hermitesche Sesquihnearform (im Falle K=R ist sie nach der
obigen Konvention uber ~ K-+K eme symmetrische Bihnearform), so ist (X,( »
ein Skalarproduktraum (inner product space, pre-Hilbert Space) uber K und < >

em Skalarprodukt auf X Mit SU(X, 2) bezeichnen wir schliesslich die Menge aller
lmearen Isometnen T X^> X mit emem 2-dimensionalen invarianten Unterraum M
der folgenden Art Die Restriktion (T\M) M-*M von T ist eine eigentliche
Drehung von M, d h hat Determinante 1 ([4], S 110, 113), in Zeichen T\MeSU
(M, und Tx x für alle x des orthogonalen Komplementes ML von M

3. Grundtatsachen uber Skalarproduktraume
(A) Smd meN und (M,< »ein m-dimensionaler Skalarproduktraum uber K, so

ist M skalarprodukttreu abbildbar auf (d h isomorph zu) K71 mit dem Standard-
skalarprodukt ((£x, Am),(nx, ,nm)) ^£xrjx+ +^mVm (PL S 55) Insbesondere
ist M vollständig

(B) Ist dim^AfX »=2, so vermittelt jede orthonormale Basis von M in bekannter

Weise eme bijektive Konespondenz zwischen der Menge SU(M,( >) (vgl 2)
und der Menge SU(2,K) aller Matrizen der Form

(* ß^j mit a,ßeK, |a|2+|£|2=l,
<ß

d h der speziellen unitären 2x2-Matnzen, im Falle K=R smd es die speziellen
orthogonalen 2x2-Matnzen ([4], S 6, 117, 324) Zur Entlastung der Symbolik
werden wir bei vorgegebener orthonormaler Basis Abbildung und Matrix identifizieren

(C) Fur jeden endhchdimensionalen hnearen Unterraum M von (X,( » gilt die
direkte Zerlegung X=M®ML ([3],S 70)

(D) Smd M em linearer Untercaum von (*,< » mit X=M®M± und V M-+M,
W ML-^ML hneare Isometnen, so ist T X^>X gemäss T(xx + x2) =Vxx+Wx2
(xj e M,%x2 € M1) eme lineare Isometne
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(E) Sind dimjr(Z,<-,»>2 und e,e'eX, \\e\\ ||e'|| 1, so gibt es einen 2-dimen-
sionalen Untenaum M von X mit e,e'eM und ein Te SU(X, 2) mit T(M) M und
Te e'.

4. Satz 1. Voraussetzungen: 1. (X,(- ,•)) sei ein endlich- oder unendlichdimensionaler
Skalarproduktraum über K. 2. Die Abbildung g:XxX^K habe die Eigenschaften
(i) g (Tx, Ty) g (x,y)für alle x,yeX und alle Te SU(X, 2),
(ü) g(xx + x2,y) g(xx,y) + g(x2,y)für alle xx,x2,yeX,
(iii) g (Xx,y)=Xg(x,y)für alle x,yeX und alle XeK,
(iv) g (x, Xy) Xg (x,y)für alle x,yeX und alle XeK.

Behauptungen:
a) Aus dimKX^2,x,yeX und (x,y) 0folgt g(x,y) 0.

b)Ause,e'eX, \\e\\ \\e'\\ lfolgtg(e,e) g(e',e').
c) g (*>yx +J2) g (x,yx) + g (x,yi)für alle x,yx,y2 e X, d. h. g ist sesquilinear.
d) ist dim^^2, so gibt esyeKmit g(x,y) y(x,y) für alle x,yeX.

Beweis: 1. Für dimi^Ar=0 ist g nach (ii) konstant Null, und die Behauptungen sind
trivialerweise richtig. Für dimJ^_\r= 1 ist X nach (A) isomorph zu Kx, und mit (iii), (iv)
folgt g (x,y) xy • g (l,l) g(l,l) • (x,y), woraus sich a bis d sofort ergeben, (i) ist hier
erfüllt, aber inhaltslos, da SU(X,1)= (/>. - 1. Es sei dimKX>l. a) Es seien x,yeX,
(x,y) 0 und bx,b2,b3eX orthonormal mit x in der linearen Hülle lin^} von {bx},

yeM:=lm{b2,b3}, also xeML, ferner V:M^M,Vxx= -xx(xxeM), W:M± -+M1,
Wx2 x2(x2eM-L). Wird T.X^X gemäss (C),(D) aus V und W gebildet, so ist

TeSU(X,2), und mit (i),(iv) ergibt sich g(x,y) g(Tx,Ty)=g(Wx, Vy) g(x, -y)
-g(x,y), also g(x,y) 0. - b) folgt aus (i) und (E). - c) Es seien x,yx,y2eX

beliebig. Fall 1: yx,y2 linear abhängig, etwa yi — pyx mit passendem peK, und mit
(iv) folgt g(x,yx+y2)=g(x,yx)+g(x,y2). Fall 2: yx,y2 hnear unabhängig,
M:=lin{yx,y2}. Es seien zx:=(l/\\yx\\)yx,z2:=(l/\\y2\\)y2, also zx,z2eM, \\zx\\ \\z2\\

1. Nach (E) gibt es TeSU(X,2) mit T(M) M und Tz2 zx. Für X:= \\y2\\ /\\yx«
gilt also XeR,Ty2 Xyx. I bezeichne die identische Abbildung von M, und

V:=(T\M):M^>M. Bezüglich einer orthonormalen Basis von M gilt im Sinne von
(B)

G ~J mit Ia|2+|/?|
<ß

Wäre (Rea)2= 1, so wäre V= ±1, also Xyx Ty2= Vy2= ±y2, was im Falle 2
ausgeschlossen wurde. Somit ist (Rea)2<l und daher dei(I+XV)=l + 2XRea + X2>0.
Mit det(I+XV)=e2 gilt eeR,

S:= — (I+XV)eSU(2,K), S~x= — (I+XV~X). (1)
e e

Im Sinne von (B) gilt also S,S~xeSU(M,(-,-)). Wird R.X-+X definiert durch
R(xx + x2)=Sxx + x2(xxeM,x2eM-L), so ist nach (C),(D) ReSU(X,2), R bijektiv
und

R\M=S, R-X\M=S~X. (2)
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Fall 2a: xeM. Aus (i),(ii),(iü),(iv),(l),(2) ergibt sich g(x,yx)+g(x,y2) g(x,yx)
+g(Tx,Ty2)=g(x,yx)+g(Vx,Xyx) g(x,yx)+g(XVx,yx) g((I+XV)x,yx)

eg(Sx,yx) eg(Rx,yx) eg(x,R-xyx)=eg(x,S-xyx) g(x,(I+XV-x)yx)
=sg{x>yx+Y~l(tyx))=g(x>yx+'r'x(Xyx))=g(x,yx+y2), also die Behauptung c. -
Fall 2b: x$M. Wegen dimirM=2 ist nun dir%*_>3. Nach (C) gibt es xxeM,
x2eML mit x xx + x2. Wegenyx,y2eM ist (x2,yx) 0,(x2,y2) 0,(x2,yx +y2) 0,
also nach Behauptung a

g(x2,yx)^g(x2,y2)==0=g(x2,yx+y2).

Nach Fall 2a ist g(xx,yx)+g(xx,y2) g(xx,yx+y2), also insgesamt nach (ii) g(x,yx)
+ g(x,y2) g(x,yx+y2), womit c vollständig bewiesen ist. - d) Es seien x,yeX
beliebig. Es existieren 6i,^2e_Yorthonormal mit x Xxbx + X2b2,y pxbx + p2b2. Aus
den Behauptungen c, a und b folgt für y:=g(bx,bx): g(x,y) Xxpxg(bx,bx)
+ hm (bx,h) + hfixg (h>bx) + X2p2g (b2,b2) Xxßxg (bx,bx) + X2fi2g(b2,b2) Xxpxy

+hfay=y <^j>-

5. Bemerkung 1. Man findet für diimKX>2 leicht Beispiele von Abbildungen
g:XxX^K, welche zeigen, dass Behauptung c nicht aus (ii),(iii),(iv) allein folgt.
Für eine Ersatzvoraussetzung für (i) im Rahmen der Theorie der Semiskalar-
produkte vgl. [5], S. 32, Theorem 3.

Bemerkung 2. Da für jedes feste yeK die Abbildung (x,y)\-*y (x,y) in der Rolle
von g die Eigenschaften (i) bis (iv) besitzt ((i) sogar für alle hnearen Isometrien
T.X^X), so charakterisieren (i) bis (iv) das Skalarprodukt im Falle dimi^_\r+2 bis
auf eine multiphkative Konstante (Satz ld; vgl. auch [1], S.310, Satz 1). Für den
bisher noch nicht erledigten Fall dimjr_Y= 2 (vgl. Satz 1 a, d) genügt es nach (A), den

Isomorphieprototypen K2 mit dem Standardskalarprodukt zu betrachten. Nach
Satz lc muss g auch hier sesquilinear, jedoch nach Bemerkung 3 nicht unbedingt
hermitesch sein.

Lemma 2. Die durch g((ft,ft),(ni,n2)) ^(ix €2)' A • (fjx Fj2)trgegebene Sesquilinear-
form g:K2xK2^K erfüllt (i) genau dann, wenn die 2x2-Matrix A mit allen T aus

SU(2,K) kommutiert.

Beweis: (i) gut genau dann, wenn (ft ft) • T- A • ftr • (fjx fj2)tT=(Zx ft) • _4 • (fjx fj2)tT

•für alle ix,^2,rjx,n2eK und alle TeSU(2,K) gilt, und dies ist gleichwertig mit
TAPT=A, d.h. mit TA1TX=A, also mit TA =ATTur alle TeSU(2,K).

Korollar 3. Unter den Voraussetzungen von Satz 1 gibt es im Falle X=C2 ein yeC
mit g(x,y)=y (x,y) für alle x,yeX.

/ 0 1 \ J (0 1 \
Beweis: Nach Lemma 2 muss A mit den Matrizen 1 und I 1 aus

(y 0\SU(29C) kommutieren und hat somit die Gestalt woraus die Behauptung
folgt.

V0 y)



Elementarmathematik und Didaktik 97

Korollar 4. Im Falle X=R2 erfüllt g:R2xR2-*R genau dann die Bedingungen (i) bis
(iv) von Satz 1, wenn esy,öeR gibt mit

g((ix^2l(nx^2))^y(^xnx + i2n2) + ö(^xn2-i2nx)

für alle (Zx,Z2),(nx,n2)eR2.

Beweis: Genau die Matrizen der Form f (y,öeR) kommutieren mit allen

Taus SU(2,R). Nun folgt die Behauptung aus Lemma 2 und Satz lc.

Bemerkung 3. Nach Korollar 3 gelten für X=C2 die Analoga zu Satz la,d. Nach
Korollar 4 ist dies nicht der Fall für X=R2, und g ist nicht unbedingt symmetrisch
oder schiefsymmetrisch. Verschärft man (i) jedoch zur Invarianz gegenüber allen
Drehungen von R2, so folgt g((ft,ft),(nbn2)) =y(Zxnx + £2n2) für alle (ft,ft),
(rjx,n2)eR2. Jürg Ratz, Bern
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Gitterwege

1. Zahlreiche kombinatorische Aufgaben gestatten eine anschauliche Interpretation
im ebenen Gitter. In der Regel geht es darum, die Anzahl der Gitterwege der
Länge m + n von (0,0) nach (m,n) (m,neN0) unter Einhalten gewisser
Nebenbedingungen zu bestimmen; gelegentlich findet man dabei kombinatorische Identitäten,

deren Nachweis auf anderem Wege komplizierter ist.
Bekannt sind die folgenden Ergebnisse ([1], S. 135-151, [2]):

a) Die Anzahl aller Wege beträgt

(m + n\a(m,n)={ ^ J. (1)

b) Die Anzahl aller Wege, welche die Geradey=(l/k)x (keN) nicht überschreiten,
ist

x (m + n\ /m + n\ m-kn+l (m + n\b(m,n)=[ )-k[ )« TT"" > rn^kn. (2)
\ m \m+ll m+l \ m I
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