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Zur Charakterisierung des Skalarproduktes

Herrn Prof. Dr. E. Trost zum 70. Geburtstag gewidmet

1. J. Aczél ([1], S.310, Satz 1; [2], S.27-28) charakterisierte unter anderem das
Skalarprodukt von R? auf elementargeometrische Weise und durch Losung einer
Funktionalgleichung. In dieser Note wird fiir dieselbe Art von Fragestellung von
einigen elementaren Fakten der Theorie der Skalarproduktriume ausgegangen,
die Loslosung von der Dimension 3 vollzogen, der komplexe Fall mitbehandelt
und eine Ausnahmesituation in R? herausgestellt (Korollar 4). Zentral ist hier die
Tatsache, dass aus der Drehungsinvarianz und drei Vierteln der Forderung der
Sesquilinearitdt auf die volle Sesquilinearitit geschlossen werden kann (Satz 1c¢).

2. Durchwegs bezeichne K den Kérper R der reellen oder den Korper C der kom-
plexen Zahlen, ferner : K— K die identische Abbildung, falls K=R, bzw. die
gewohnliche Konjugation, falls K= C. Ist X ein K-Vektorraum und {-,-): XX X—-K
eine positiv definite hermitesche Sesquilinearform (im Falle K= R ist sie nach der
obigen Konvention iiber =: K— K eine symmetrische Bilinearform), so ist (X, {.-))
ein Skalarproduktraum (inner product space, pre-Hilbert space) iiber K und {-,->
ein Skalarprodukt auf X. Mit SU (X, 2) bezeichnen wir schliesslich die Menge aller
linearen Isometrien 7: X — X mit einem 2-dimensionalen invarianten Unterraum M
der folgenden Art: Die Restriktion (T|M): M- M von T ist eine eigentliche
Drehung von M, d.h. hat Determinante 1 ([4], S.110, 113), in Zeichen T|M e SU
(M,{-,-»), und Tx = x fiir alle x des orthogonalen Komplementes M+ von M.

3. Grundtatsachen iiber Skalarproduktraume:

(A) Sind meN und (M, {-,->) ein m-dimensionaler Skalarproduktraum iiber K, so
ist M skalarprodukttreu abbildbar auf (d.h. isomorph zu) K™ mit dem Standard-
skalarprodukt ((£,...,&,), (1> s ) & Exiln+ =+ + Epdim (3], S.55). Insbesondere
ist M vollstindig.

(B) Ist dimg (M,<-,->)=2, so vermittelt jede orthonormale Basis von M in bekann-
ter Weise eine bijektive Korrespondenz zwischen der Menge SU (M, {-,-)) (vgl. 2)
und der Menge SU (2, K) aller Matrizen der Form

((; .—'ﬁ) mit a,fek, lal?+1812=1,

d.h. der speziellen unitiren 2Xx 2-Matrizen; im Falle K=R sind es die speziellen
orthogonalen 2Xx 2-Matrizen ([4], S.6, 117, 324). Zur Entlastung der Symbolik
werden wir bei vorgegebener orthonormaler Basis Abbildung und Matrix identifi-
zieren. '

(C) Fiir jeden endlichdimensionalen linearen Unterraum M von (X,<:,-)) gilt die
direkte Zerlegung X=M® M+ ([3], S.70).

(D) Sind M ein linearer Unterraum von (X,{-,-)) mit X=M®M~' und V: M- M,
W: M+ — ML lineare Isometrien, so ist T:X— X gemiss T (x;+ x,):=Vx;+ Wx,
(x; € M, x, € M+) eine lineare Isometrie.
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(E) Sind dimg(X,{-,-)>)=2 und e,e’e X, el =l ¢’| =1, so gibt es einen 2-dimen-
sionalen Unterraum M von X mit e,e’e M und ein Te SU (X,2) mit T'(M)= M und
Te=¢e'.

4. Satz 1. Voraussetzungen: 1. (X,<:,-)) sei ein endlich- oder unendlichdimensionaler
Skalarproduktraum iiber K. 2. Die Abbildung g: X X X — K habe die Eigenschaften

(1) g (Tx, Ty)=g(x, ) fiir alle x,y€ X und alle Te SU (X, 2),

(i1) g (x1+x2,y) =g (x1,y) + g (x2,y) fiir alle x1,x,, y € X,

(ii1) g (Ax, y)=4g(x,y) fiir alle x,y € X und alle A€ K,

(iv) g (x, ly)=Ag (x, ) fiir alle x,y € X und alle Ae K.

Behauptungen:

a) Aus dimgX 2, x,ye X und {x,y) =0 folgt g (x,y)=0.

b)Ause,e’e X, |lell =€l =1folgtg(e,e)=g(e’,e’).
c)g(x,y1+y2)=g(x,y1)+ g (x,yy) fiir alle x, y1,y,€ X, d. h. g ist sesquilinear.
d) ist dimgX+2, so gibt es y e K mit g(x,y)=y<{x,y) fiiralle x,ye X.

Beweis: 1. Fir dimgX=0 ist g nach (ii) konstant Null, und die Behauptungen sind
trivialerweise richtig. Fiir dimgX =1 ist X nach (A) isomorph zu K', und mit (iii), (iv)
folgt g (x,¥v)=xy- g(1,1)=g(1,1) - {x,y), woraus sich a bis d sofort ergeben. (i) ist hier
erfiillt, aber inhaltslos, da SU(X,2)=@. - 2. Es sei dimgX>2. a) Es seien x, ye X,
{x,y)=0 und b, b,,b;e X orthonormal mit x in der linearen Hiille lin {b;} von {b,},
yeM:=lin{b,,b;}, also xe M+, ferner V:M—> M, Vx;= —x,(x;e M), W: M+ > ML,
Wx,=x,(x,e ML), Wird T: X— X gemiss (C),(D) aus ¥V und W gebildet, so ist
TeSU(X,2), und mit (i), (iv) ergibt sich g(x,y)=g(Tx,Ty)=g(Wx,Vy)=g(x, —y)
= —g(x,y), also g(x,y)=0. - b) folgt aus (i) und (E). - c) Es seien x,y,y,eX
beliebig. Fall 1: y,,y, linear abhidngig, etwa y,= uy, mit passendem e K, und mit
(iv) folgt g(x,y1+y))=gx,y)+g(x,y,). Fall 2: y,y, linear unabhingig,
M:=lin{y,,y,}. Es seien zl:=(1/l|y1 I )yl,zz:=(l/lly2 1)y,, also zy,z,e M, ||z, || = || 25|
=1. Nach (E) gibt es Te SU(X,2) mit T(M)=M und Tz,=2z,. Fir A:= | n| /||y1 I
gilt also AeR,Ty,=Aiy,. I bezeichne die identische Abbildung von M, und
V:=(T|M):M— M. Beziiglich einer orthonormalen Basis von M gilt im Sinne von

(B)

V= (‘; "i) mit |a|2+|B12=1.
Wire (Rea)?=1, so wire V= +1, also Ay, = Ty,= Vy,= ty,, was im Falle 2 ausge-
schlossen wurde. Somit ist (Rea)?<1 und daher det(J+A1V)=1+2ARea+ 1?>0.
Mit det(I+ AV)=¢? gilt e R,

S:= —81— (I+iV)eSUQ2,K), S '= —81— I+ AV, (1)

Im Sinne von (B) gilt also §,8 'eSUM,{-,-»). Wird R:X— X definiert durch
R(x1+x3)=8x;+x,(x;€ M, x, e M+), so ist nach (C),(D) ReSU(X,2), R bijektiv
und

RIM=S§S, R YYM=5"1. )
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Fall 2a: xe M. Aus (i), (ii), (iii), (iv), (1), (2) ergibt sich g(x,y;)+g(x,2)=g(x,»)
+8(Tx,Ty))=g (x,y1)+8 (Vx,Ap))=g (x,y)+ g AVx,y))=g (U +AV)x, )

=eg (Sx,y)=¢eg (Rx,y))=eg (x,R™'y|)=eg (x,S7'y))=g (x, I+ AV )y)

=g (x, 1+ V1)) =g (x,y1+ T (A1) =g (x,y, +y,), also die Behauptung c. -
Fall 2b: x¢ M. Wegen dimgM =2 ist nun dimgX>3. Nach (C) gibt es x;e M,
x,€ ML mit x=x,+ x,. Wegen y;,y,e M ist {x;,y,>=0,{x5,1,> =0, (x5, 1+ y,> =0,
also nach Behauptung a

g (x2,y1)+ 8 (x2,y2)=0=g (x2,y;+2).

Nach Fall 2a ist g (xy,y;)+ g (x1,)2)=8 (x1,¥1+),), also insgesamt nach (ii) g (x,y;)
+g(x,y)=g(x,y1+y,), womit c vollstindig bewiesen ist. - d) Es seien x,yeX
beliebig. Es existieren by, by X orthonormal mit x = A,by+ A2by, y= p1by+ urb,. Aus
den Behauptungen ¢, a und b folgt fiur y:=g(by,b): g(x,y)=Ajig (b1,b))
+ 4108 (b1, b2) + 21118 (b3, b)) + Aafiag (b, b)) = A1 j18 (b1, by) + Aafag (b2, by) = Ay fuyy

+ Ay =7y {x, ).

5. Bemerkung 1. Man findet fiir dimgX=>2 leicht Beispiele von Abbildungen
g:Xx X— K, welche zeigen, dass Behauptung c nicht aus (ii), (iii), (iv) allein folgt.
Fiir eine Ersatzvoraussetzung fiir (i) im Rahmen der Theorie der Semiskalar-
produkte vgl. [5], S.32, Theorem 3.

Bemerkung 2. Da fiir jedes feste y e K die Abbildung (x,y) y {(x,y) in der Rolle
von g die Eigenschaften (i) bis (iv) besitzt ((i) sogar fiir alle linearen Isometrien
T:X— X), so charakterisieren (i) bis (iv) das Skalarprodukt im Falle dimgX #+2 bis
auf eine multiplikative Konstante (Satz 1d; vgl. auch [1], S.310, Satz 1). Fiir den
bisher noch nicht erledigten Fall dimgX=2 (vgl. Satz 1 a,d) geniigt es nach (A), den
Isomorphieprototypen K? mit dem Standardskalarprodukt zu betrachten. Nach
Satz 1c muss g auch hier sesquilinear, jedoch nach Bemerkung 3 nicht unbedingt
hermitesch sein.

Lemma 2. Die durch g((&1,&,). (11,12)) =(&1 &) - A - (1 712)" gegebene Sesquilinear-
form g:K®*x K*— K erfiillt (i) genau dann, wenn die 2 X 2-Matrix A mit allen T aus

SU (2, K) kommutiert.

Beweis: (i) gilt genau dann, wenn (& &) - T- A - TV - (i) 712)"=(&1 &) - A - (7 712)"
- fur alle &;,&5,7,m€K und alle TeSU(2,K) gilt, und dies ist gleichwertig mit
TAT"=A,d.h.mit TAT '=A, also mit TA =AT fiir alle Te SU (2, K).

Korollar 3. Unter den Voraussetzungen von Satz 1 gibt es im Falle X=C? ein y eC
mit g (x,y)=y {x,y) fiiralle x,y€ X.

0 1 0 i
Beweis: Nach Lemma 2 muss 4 mit den Matrizen (_1 0) und (i (;) aus

0
SU (2, C) kommutieren und hat somit die Gestalt (g ) ), woraus die Behauptung
folgt.
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Korollar 4. Im Falle X=R? erfiillt g: R*> X R?>— R genau dann die Bedingungen (i) bis
(iv) von Satz 1, wenn es 7,0 € R gibt mit

g (1.8, (n,m)) =7 Emy+ &)+ 8 (Emy— Emy)

fir alle (&1, ¢,), (1, 172) € R

Beweis: Genau die Matrizen der Form ( Y

o
T aus SU (2,R). Nun folgt die Behauptung aus Lemma 2 und Satz lc.

0
] ) (y,0 € R) kommutieren mit allen

Bemerkung 3. Nach Korollar 3 gelten fiir X= C? die Analoga zu Satz 1a,d. Nach
Korollar 4 ist dies nicht der Fall fiir X=R?, und g ist nicht unbedingt symmetrisch
oder schiefsymmetrisch. Verschirft man (i) jedoch zur Invarianz gegeniiber allen

Drehungen von R2, so folgt g((&1, &), (11,72)) =y (Eimy+ Eny) fur alle (&,6,),
(m,m) e R2. Jirg Ritz, Bern
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Gitterwege

1. Zahlreiche kombinatorische Aufgaben gestatten eine anschauliche Interpretation
im ebenen Gitter. In der Regel geht es darum, die Anzahl der Gitterwege der
Linge m+n von (0,0) nach (m,n) (m,neN;) unter Einhalten gewisser Neben-
bedingungen zu bestimmen; gelegentlich findet man dabei kombinatorische Identi-
titen, deren Nachweis auf anderem Wege komplizierter ist.
Bekannt sind die folgenden Ergebnisse ([1], S. 135-151, [2]):

a) Die Anzahl aller Wege betrigt
m+n
a(m,n)—-( m ) (1)

b) Die Anzahl aller Wege, welche die Gerade y= (1 /k) x (k e N) nicht iiberschreiten,

ist

+ —kn+1

b(m,n)=(m+n)-—k(m ")=—'31——-—"i——("'+"), m>kn. 2)
m m+1 m+1 m
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