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ELEMENTE DER MATHEMATIK
Revue de mathematiques elementaires - Rivista di matematica elementare

Zeitschrift zur Pflege der Mathematik
und zur Förderung des mathematisch-physikalischen Unterrichts

ELMath. Band 36 Heft4 Seiten 73-104 Basel, 10.Juli 1981

Geometrie und Kombinatorik

Meinem Freund und Redaktionskollegen Prof Dr. E. Trost zum 70. Geburtstag
gewidmet

1. Einleitung

Innerhalb der modernen Kombinatorik - im angelsächsischen Sprachgebiet
Combinatonal Mathematics genannt - hat sich in den letzten Jahrzehnten auch ein

Zweig entwickelt, der sehr stark an der anschauhchen Geometrie motiviert und
verankert ist. Es ist dies die Theorie der endlichen Inzidenzstrukturen, deren
Bogen sich von den endlichen affinen und projektiven Ebenen bis hin zu den

sogenannten Blockplänen spannt. Man begegnet darin einer Fortsetzung geometrischer

Schlussweisen in den finiten Bereich.
Bemerkenswert sind die mannigfachen Beziehungen zwischen endlichen
Inzidenzstrukturen und andern Gebieten der Mathematik. So ist z.B. die Algebra das

Hauptwerkzeug in diesem Teil der Kombinatorik; andererseits findet man interessante

Anwendungen etwa in der Statistik und in der Codierungstheorie.
Endliche Strukturen haben gegenüber transfiniten Strukturen immer den Vorteil,
besser überschaubar zu sein. In endlichen Systemen ist daher stets auch ein

gewisses didaktisches Potential verborgen; solche Systeme können dem Lernenden
in der Mathematik eine effiziente Hilfe sein. So lassen sich unter anderem
bestimmte Grundlagenprobleme oder einzelne schwierigere Begriffe in der Geometrie
an endlichen Systemen oft viel besser darlegen und verständlich machen. Ich denke
hier etwa an die Aufgabe, einem Anfanger in der Geometrie den Begriff der
konformen oder der projektiven Ebene plausibel zu machen.
Die vorliegende Note möchte den Leser - mehr oder weniger exemplarisch - in
das Grenzgebiet zwischen Geometrie und Kombinatorik einführen. Zugleich sollen
damit einige neu erschlossene Zugänge zu bekannten Fakten präsentiert werden,
die den didaktischen Aspekt des Gegenstandes etwas herausheben.

2. Orthogonale lateinische Quadrate

Als Aufhänger für diesen Ausflug an die Nahtstelle zwischen Geometrie und
Kombinatorik diene das Eulersche Offiziersproblem. An der Petersburger Akademie
wurde Euler das folgende Problem zugetragen:
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Die Zarin - Katharina die Grosse - hatte zu einem Dienstrapport 36 Offiziere
versammelt, und zwar aus 6 Regimentern je einen Leutnant, Oberleutnant, Hauptmann,

Major, Oberstleutnant und Obersten. Sie soll dabei den Wunsch geäussert
haben, dass sich die Herren so im Quadrat aufstellen, dass in jeder Reihe und in
jeder Kolonnejedes Regiment undjeder Dienstgrad vertreten sind.

Euler war von dieser Fragestellung so fasziniert, dass er sich in der Folge sehr
eingehend damit befasst hat. Mit seinen Untersuchungen über die damit in Verbindung

stehenden lateinischen Verteilungen hat er eine für die Kombinatorik bedeutsame

Entwicklung eingeleitet. Der Rapport der 36 Offiziere ist zwar ganz sicher
ohne die geforderte Präsentier-Aufstellung zu Ende gegangen, denn inzwischen
hat sich herausgestellt, dass diese kombinatorische Aufgabe keine Lösung hat1).
Das Offiziersproblem war so, wie es erstmals gestellt wurde, mathematisch recht
bösartig. Es ist nämlich nur für 6 Regimenter und 6 Dienstgrade nicht lösbar,
sonst aber für alle andern charakteristischen Anzahlen «_> 3 lösbar. Wir wollen uns
daher auf einen Wert des Parameters n festlegen, der eine Lösung zulasst: Am
Rapport sollen nur 4 Regimenter und 4 Dienstgrade vertreten sein (n 4).
Kennzeichnet man die Regimentszugehörigkeit und die Dienstgrade je mit den
Zeichen 0 12 3, dann gehört zu jedem der 16 vorhandenen Offiziere eine der
nachstehend genannten Figuren:

00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 33.

Jeder Lösung des Offiziersproblems entspricht nun eine Verteilung dieser 16

Figuren auf die Felder eines 4 x 4-Schachbrettes derart, dass in jeder Zeile und in
jeder Kolonne die Zeichen 0 12 3 genau einmal an erster und genau einmal an
zweiter Stelle stehen. Die folgende Anordnung zeigt eine Lösung (Fig. 1):

*- Kolonnen-Index

0 12 3

0

1

2
f

00 11 22 33 0 1 2 3 0 1 2 3

13 02 31 20 1 0 3 2 3 2 1 0

21 30 03 12 2 3 0 1 1 0 3 2

3 32 23 10 01 3 2 1 0 2 3 0 1

Zeilen-Index Verteilung der
Rgt.-Zugehörigkeiten

Verteilung der
Dienstgrade

Figur 1

1) Vgl. G. Tarry: Le probleme des 36 Officiers. Cr. Ass. fr. Avanc. Sei. nat. 1900, 122-123; 1901,
170-203. Tarrys Unmöglichkeitsbeweis beruht im wesentlichen auf systematischem Probieren. Man
kennt heute elegantere Beweise.
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Um die Verteilungen der Regimentszugehörigkeiten und der Dienstgrade noch
deutlicher sichtbar zu machen, sind diese nebenan noch getrennt aufgeführt. Bei
der Separation wird man auf zwei Verteilungen der Zeichen 0 12 3 auf die Felder
des 4 x ^-Schachbrettes geführt, in denen jedes der 4 Zeichen in jeder Zeile und
in jeder Kolonne genau einmal vorkommt. Euler hat bei seinen Untersuchungen
über derartige Verteilungen von n Zeichen auf einem n x «-Schachbrett durchwegs
grosse lateinische Buchstaben verwendet. Seither spricht man von lateinischen
Verteilungen oder etwas präziser von lateinischen Quadraten.
Mit einer Lösung des Offiziersproblems im Falle n 4 sind also zwei lateinische
Quadrate der Ordnung 4 verbunden. Dieses Modell erfasst aber die vorliegende
kombinatorische Struktur noch nicht vollständig. Die beiden lateinischen Quadrate
sind zugleich so miteinander gekoppelt, dass bei der Überlagerung jedes mögliche
2stellige Wort über dem Alphabet 0 12 3 genau einmal auftritt. Zwei lateinische
Quadrate in dieser Relation heissen orthogonal). Zu einer Lösung gehört somit ein
Paar von orthogonalen lateinischen Quadraten der Ordnung 4.

Fortan sollen lateinische Quadrate der Ordnung n mit den Zahlen aus der Menge

N*_x {0,l,2,...,n-l}

beschrieben werden. Charakterisiert man die einzelnen Felder eines n x «-Schachbrettes

durch den jeweiligen Zeilen- und Kolonnen-Index (Zahlen aus NJ_j), dann
ist ein lateinisches Quadrat Q der Ordnung n gleichbedeutend mit einer Funktion
/auf der Menge N*_, x N*_ x mit Werten aus N*_ x

(ij)^f(ij),
für die gilt

KUj)=f(h,j) => ' " nu
f(if)=f(Uk) => j=k.

K ' }

Zwei lateinische Quadrate QXQ2 der Ordnung n sind genau dann orthogonal, wenn
für die zugehörigen Funktionen/]/2 die Implikation

r ,• -x r /, ,xf =* l hAj k (2.2)

besteht. Sie besagt, dass vorgegebene Funktionswerte fürfx und f2 jeweils ein Feld
festlegen.
Zunächst haben sich nach Euler vorwiegend Statistiker mit Systemen von
paarweise orthogonalen Quadraten befasst. Dies erklärt sich damit, dass solche Systeme
bei der Planung von Versuchen Verwendung finden3). Die Zusammenhänge mit der

2) Die Orthogonalität von lateinischen Quadraten hat nichts mit dem geometrischen Senkrechtstehen

zu tun.
3) Vgl. [6] und [8].
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Geometne smd erst m den Jahren nach 1950 aufgedeckt worden Hauptergebnis der
diesbezüglichen Untersuchungen ist die Tatsache, dass in den sog Maximal-
Systemen von paarweise orthogonalen lateinischen Quadraten konkrete Darstellungen

für samthche endhchen affinen Ebenen vorhegen

3. Endliche affine Ebenen

Richtet man das bekannte Hilbertsche Axiomen-System auf die ebene euklidische
Geometne aus, dann kommen darm folgende drei Axiome vor

(Aj) Durch zwei Punkte A B geht genau eme Verbmdungsgerade g
(A2) Zu emer Geraden g gibt es durch einen Punkt P ausserhalb von g genau eine

Gerade p, die g nicht schneidet (Parallele)
(A3) Es gibt drei nichtkollineare Punkte

Wir wollen uns auf denselben Standpunkt stellen wie Hilbert, die Begriffe Punkt,
Gerade und Inzidenz sollen ganz von der herkömmlichen Vorstellung befreit
werden Es werden zwei Mengen P und G von irgendwelchen «Dingen» betrachtet,
die Elemente von P heissen Punkte, die Elemente von G werden Geraden genannt
Ferner sei eme Inzidenzrelation / vorhanden, die gewisse Paare (P,g) mit PeP und
ge Gauszeichnet
Die Theorie, die unter diesem Aspekt aus den Axiomen (A^, (A2), (A3) hervorgeht,

heisst die ebene affine Inzidenzgeometrie Jedes konkrete System [P, G, I],
das den drei Axiomen genügt, ist em Modell zur ebenen affinen Inzidenzgeometrie
und wird eine affine Ebene genannt Ein solches Modell ist naturlich die Geometrie
des 2dimensionalen Anschauungsraumes, denn darauf ist ja das Hilbertsche System
zugeschnitten
Das Axiomen-System (A^, (A2), (A3) ist em bescheidener Ausschnitt aus einem
Axiomen-System für die ebene euklidische Geometne Die ebene affine Inzidenz-
geometne ist daher ein Vorfeld zur ebenen euklidischen Geometrie Das Hilbertsche
System ist bekanntlich kategonsch, d h sämtliche Modelle dazu sind isomorph Mit
der vorhegenden Verkürzung der axiomatischen Basis wird die Theorie naturhch
wesentlich armer, zugleich aber auch reicher an Modellen Der Verzicht auf Stetig-
keitsaussagen lasst msbesondere auch endhche Modelle zu Ein Beispiel soll gleich
die Existenz endlicher affiner Ebenen belegen
Ausgangsfigur ist ein reguläres Tetraeder mit den Eckpunkten PXP2P3P4 und den
Kanten g12 g13 g14 g23 g24 g34 Das System [P, G, F] mit

P ={PX,P2,P3,P4)
G {gl2>£l3>gl4>g23>£24>g34}

und
def

PJSjk o i=jvi~k
erfüllt offensichtlich die Axiome (Ax), (A2), (A3)
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Figur 2

Wir haben hier eine affine Ebene mit 4 Punkten und 6 Geraden vor uns. Die in der
Figur 2 a gleich ausgezogenen Kanten repräsentieren parallele Geraden.
Bereits an diesem einfachen Modell zur ebenen affinen Inzidenzgeometrie lassen
sich verschiedene interessante Überlegungen anstellen. Permutationen auf der
Menge P, welche die kollineare Lage von Punkten erhalten, werden Automorphismen

der Inzidenzstruktur [P, G; /] genannt. Im vorliegenden Modell inzidiert
jede Gerade nur mit zwei Punkten; daher ist jede Permutation auf P ein Automorphismus,

d.h. die Automorphismengruppe ist hier die auf P operierende
symmetrische Gruppe @4. Von den beiden Automorphismen

(PXP2P^PAfPxP2P3P4\ ^(PXP2P3P4\
\P2PXP4P3)> ° \PXP2P4P3)

ist t eine Translation mit den Spurgeraden g12 und g34, o eine Scherung mit der
Fixpunkt-Geraden g12.
Die Automorphismen sind übrigens gerade die durch die Symmetriegruppe des
Tetraeders induzierten Permutationen auf der Menge P.
Mit dem vorliegenden Modell können andererseits auch gewisse Grundlagenprobleme

aufgezeigt werden. Sind etwa PXP2P3 die durch das Axiom (A3)
garantierten drei Punkte, dann erhält man über die Parallele zu g23 durch Px und die
Parallele zu g13 durch P2 einen weitern Punkt in unserer affinen Ebene, nämlich
P4. Die anschauliche affine Ebene verleitet zum Schluss, dass auch die entsprechenden

Konstruktionen über den Punkten PXP2 und PXP3 je einen neuen Punkt
ergeben (Fig. 2b). Dass dem nicht so ist, zeigt nun das Tetraedermodell. Dieses

Beispiel macht einerseits deutlich, dass man sich in der deduktiven Geometrie nicht
zu stark auf die Anschauung berufen darf. Andererseits geht aus dem Tetraedermodell

hervor, dass es offenbar nicht moghch ist, aus den Axiomen (A^, (A2), (A3)
die Existenz von mehr als 4 Punkten nachzuweisen.
In der ersten Hälfte des 19. Jahrhunderts konnte auf dieselbe Weise eine viel
gewichtigere Frage entschieden werden. Mit einem Modell zur absoluten Geometrie
liess sich endlich die Frage nach der Unabhängigkeit des Parallelenpostulates im
eukhdischen System beantworten: In der hyperbolischen Geometrie wurde ein
Modell zur absoluten Geometrie gefunden, in dem das Parallelenpostulat nicht
gilt. Damit stand die Unabhängigkeit fest.



78 M Jeger Geometne und Kombinatorik

Bei unserem Vergleich stehen sich em sehr einfaches und em sehr gewichtiges
Grundlagenproblem gegenüber Er mochte darlegen, dass mit dem Tetraedermodell
zur ebenen affinen Inzidenzgeometrie dem Lernenden der Zugang zu einem
mathematikgeschichthch äusserst bedeutsamen, zugleich aber auch viel komplexeren

Grundlagenproblem erschlossen werden kann, das mit der Entdeckung der
nichteukhdischen Geometrie seine Losung gefunden hat
Mit der Bemerkung uber Automorphismen und mit der Erörterung eines
einfachen Grundlagenproblems am Tetraedermodell soll auf die Tatsache hingewiesen

werden, dass schon die affine Inzidenzgeometne eine recht bemerkenswerte
didaktische Komponente aufweist4)
Eine bedeutende Klasse von endhchen affinen Ebenen kann aus gewissen Systemen
von paarweise orthogonalen lateinischen Quadraten konstruiert werden Es gilt
namhch der folgende

Satz 1. Jedes System von n-
Ordnung n

QX,Q2, ,Qn-\

1 paarweise orthogonalen lateinischen Quadraten der

beinhaltet eine affine Ebene mit n2 Punkten und n(n+l) Geraden, und zwar ist
P die Menge der Felder des n x n-Schachbrettes,
G die Menge der anschliessend aufgezählten n-elementigen Teilmengen von P
— Teilmengen der Felder, die der gleichen Zeile angehören,
— Teilmengen der Felder, die in der gleichen Kolonne enthalten sind,
— Teilmengen der Felder, die durch ein bestimmtes Qj mit demselben Zeichen belegt

sind
Zum Beweis ist zu zeigen, dass die vorliegende Inzidenzstruktur den Axiomen
(Ai), (A2), (A3) genügt Wir gehen dabei exemplansch vor und formulieren die
wesentlichen Überlegungen so, dass ohne weiteres eine Übertragung auf eine
behebige Ordnung n moghch ist Als Beispiel ziehen wir das System von 3

paarweise orthogonalen lateinischen Quadraten der Ordnung 4 m der Figur 3

heran

000 111 222 333

123 032 301 210

231 320 013 102

312 203 130 021

A

333 kkk

B

Figur 3

Axiom (A i) Existenz der Verbindungsgeraden zweier Punkte A B

4) Vgl [10]
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Falls A B Felder in derselben Zeile oder in derselben Kolonne smd, ist die
Verbindungsgerade tnvialerweise gewährleistet Sind A B nicht m dieser Lage, dann
lasst sich der Nachweis mit der folgenden kombmatonschen Überlegung erbringen

Wir betrachten vorerst em Feld A in der ersten Zeile und em Feld B in
einer beliebigen andern Zeile Im Feld A implizieren die drei lateinischen
Quadrate QX,Q2,Q3 eine Figur von der Form jjj, im Feld B möge etwa die
Figur qxq2q3 stehen Liegt nun B in der Kolonne, deren oberstes Feld mit kkk
belegt ist (k^j), dann ist

k + axA2A-h

Dies folgt aus der Tatsache, dass QX,Q2,Q3 lateinische Quadrate sind Weiter ist

qrfqh fur i + h,

denn Qx und Qh sind orthogonal qx q2 q3 sind also drei verschiedene Zahlen aus
der Menge NJ {0,1,2,3}, die von /ceNJ verschieden sind Eine unter ihnen muss
daher mit y übereinstimmen Es gibt also unter QX,Q2,Q3 ein Quadrat, das den
Feldern A und B dasselbe Zeichen aufprägt, und dies ist gleichbedeutend mit der
Verbindbarkeit von A und B
Ist A ein Feld, das nicht der ersten Zeile angehört, dann kann man die Zeichen
m jedem einzelnen Q, so permutieren, dass die Zeile von A wiederum mit den
Figuren

000, 111, 222, 333

belegt ist Eine solche Permutation belasst sowohl die lateinischen Verteilungen wie
auch die Orthogonahtat dieser Verteilungen Man kann jetzt gleich weiterschhessen
wie im vorweggenommenen Spezialfall
Der eben dargelegte Beweis fur die generelle Verbindbarkeit zweier Punkte lasst
sich ohne weiteres auf Systeme von n-l orthogonalen lateinischen Quadraten
der Ordnung n übertragen
Axiom (A2) Existenz einer Parallelen durch einen vorgegebenen Punkt P
Die Parallelenbuschel werden m den vorliegenden Modellen beschrieben durch die
Zeilen und die Kolonnen sowie durch die einzelnen lateinischen Quadrate Durch
jeden Punkt P gibt es in jedem Parallelenbuschel genau eine Gerade
Axiom (A3) Jedes Modell enthalt Punktetnpel in nichtkolhnearer Lage So sind z B
drei Eckfelder sicher nicht kollmear
Aus n-l orthogonalen lateinischen Quadraten der Ordnung n geht tatsachhch
stets eme affine Ebene mit n2 Punkten und n(n+ 1) Geraden hervor, denn es gibt
(n—l)+2 n+l Parallelenfelder, und jedes umfasst n Geraden
Im Anschluss an Satz 1 stellt sich die Frage, wie man Systeme von n-l
paarweise orthogonalen lateinischen Quadraten der Ordnung n erhalten kann Fur
Ordnungen n, die von der Form n=pa (p Pnmzahl) smd, ist die Konstruktion
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eines solchen Systems sehr einfach. Bekanntlich gibt es zu jeder Primzahlpotenz
n=pa einen endlichen Körper (Galois-Feld). Hat nun der Körper GF(n) die
Elemente

0,1,...,n-1,

wobei 0 das Null-Element und 1 das Eins-Element bezeichnen, dann hefert die
sogenannte Rysersche Formel5)

/a \t 1,2,...,n-1a^ ti+j \ '
« J \i,j=0,l,2,...,n-l (2.3)

n—l verschiedene n x n-Matrizen, die ein System von n—l paarweise orthogonalen
lateinischen Quadraten der Ordnung n beinhalten. Aus (2.3) folgt nämlich aufgrund
der Körpergesetze

i=h; af=a® j=k

i=hAj=k.

Beispiel: GF(4)=[NJ; + ,.].
Dieser Körper lässt sich etwa mit den folgenden Verknüpfungstafeln umschreiben.

0 12 3

0 12 3

10 3 2

2 3 0 1

3 2 10

0 12 3

0 0 0 0
0 12 3

0 2 3 1

0 3 12

Mit der Ryserschen Formel erhält man hieraus

af=i+j; af= 2 i+j; af= 3 i+j. (2.4)

Dies fuhrt auf die Matrizen

«>)=

0 12 3

10 3 2

2 3 0 1

3 2 10

5)VgL[9],S.81.

ß.

(<>)

0 12 3

2 3 0 1

3 2 10
10 3 2

ß.

(<#>)

0 12 3

3 2 0

10 3 2

2 3 0 1
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aus denen man die drei orthogonalen lateinischen Quadrate der Ordnung 4 in der
Figur 3 herauslesen kann.
Es sei noch darauf hingewiesen, dass wegen a\x^ i+j das lateinische Quadrat Qx
eine Kopie der Additionstafel ist. Weiter schliesst man aus (2.4), dass die Quadrate
QX,Ü2,Q3 aus denselben Zeilen bestehen.

Aufgrund der Ryserschen Konstruktion sind für alle Ordnungen von der Form
n=pa endliche affine Ebenen garantiert. Es gibt also unendlich viele nichtisomorphe

endliche affine Ebenen. Daneben existieren nun aber auch Systeme von
n—l orthogonalen lateinischen Quadraten der Ordnung n, die nicht aus einem
Galois-Feld hervorgehen. Interessanterweise sind aber bis heute keine Systeme
gefunden worden, deren Ordnung keine Primzahlpotenz ist.
Der Zusammenhang zwischen den endlichen affinen Ebenen und Orthogonal-
Systemen von lateinischen Quadraten wird mit dem Satz 1 nur unvollständig
erfasst. Es gilt auch die folgende Umkehrung, die man nicht ohne weiteres
erwartet:

Satz 2. In einer endlichen affinen Ebene ist jede Gerade mit gleich vielen Punkten
inzident. Hat diese charakteristische Zahl den Wert n, dann gibt es stets ein System
von n—l paarweise orthogonalen lateinischen Quadraten der Ordnung n derart, dass

die daraus abgeleitete affine Ebene zur gegebenen Ebene isomorph ist.

Dies ist der sog. Darstellungssatz für endliche affine Ebenen, n heisst die Ordnung
der betreffenden affinen Ebene.
Der Satz 2 lässt sich ebenfalls ganz elementar beweisen. Man benötigt dazu

einige Hilfssätze aus der affinen Inzidenzgeometrie, was die Beweisführung etwas
aufwendiger macht. Der interessierte Leser kann den Beweis in [8] nachlesen.
Die mit den endlichen affinen Ebenen verbundenen Systeme von paarweise
orthogonalen lateinischen Quadraten sind übrigens durchwegs Maximal-Systeme.
Dies geht aus dem folgenden Satz 3 hervor.

Satz 3. Ist

£_?i,s>£2,...i^^m

ein System von m paarweise orthogonalen lateinischen Quadraten der Ordnung
n^.3, dann ist m<*n— 1.

Der Beweis von Satz 3 beruht wieder auf einfachen kombinatorischen
Überlegungen, die den Rahmen eines Übersichtsartikels nicht sprengen. Er sei daher kurz
dargelegt. Man geht von der Annahme aus, dass ein System von n paarweise
orthogonalen lateinischen Quadraten der Ordnung n

Qx,Q2,...,Qn

vorhanden ist. Zur Beschreibung der Qx verwenden wir wie bis anhin die Zeichen

0,1,..„n-l.
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Durch eine geeignete Permutation der Zeichen innerhalb der einzelnen Qx kann
man stets erreichen, dass die erste Zeile durchwegs gleich lautet; insbesondere kann
man etwa eine Normierung gemäss Figur 4 vornehmen.

0 1 2 n-1

w

Figur 4

Die neuen Quadrate

sind wiederum lateinisch und orthogonal. Wir betrachten nun in sämtlichen
Quadraten das erste Feld in der zweiten Zeile. Darin kann wegen der vorgenommenen

Normierung nur eines der Zeichen

1,2,..„n-1

stehen. Da n Quadrate vorhanden sind, muss in mindestens zwei unter ihnen das
schraffierte Feld mit demselben Zeichen / belegt sein. Die betreffenden Quadrate
Q'x und Q'j sind dann aber nicht orthogonal, denn die Kombination tt kommt ja
bereits in einem Feld der ersten Zeile vor. Damit ist gezeigt, dass stets m<*n— 1

ist.

Aufgrund der vorgestellten Sätze kann man sagen, dass bis auf Isomorphien die
aus Maximal-Systemen orthogonaler lateinischer Quadrate hervorgehenden endlichen

affinen Ebenen die einzig möglichen sind. Die Theorie der endhchen affinen
Ebenen erweist sich als identisch mit der Theorie einer bemerkenswerten Klasse
von kombinatorischen Strukturen. Gewisse Existenzfragen über affine Ebenen
lassen sich damit von der Theorie der lateinischen Verteilungen her klären. So
steht bereits fest, dass keine affine Ebene der Ordnung 6 vorhanden ist. Das
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Eulersche Offiziersproblem hat ja für n 6 keine Lösung; es gibt kein Paar von
orthogonalen lateinischen Quadraten der Ordnung 6 und damit erst recht kein
Maximal-System der Ordnung 6.

4. Affine Ebenen der Ordnung 9

Eine affine Ebene der Ordnung n wird fortan mit %n bezeichnet.
Eingehende Abklärungen haben gezeigt, dass für die Ordnungen n 2,3,4,5,7,8
bis auf Isomorphien nur je eine affine Ebene existiert, nämlich die Ebene, die
vermöge der Formel von Ryser aus dem betreffenden Galois-Feld hervorgeht. Die
kleinste Ordnung bei der nichtisomorphe affine Ebenen vorhanden sind, ist n 9.

Anschliessend sollen drei nichtisomorphe affine Ebenen %, %$ und Wg' vorgestellt
werden, verbunden mit der Absicht, dem Leser die Kombinatorik in geometrischem

Gewände etwas näherzubringen.
Die Nichtisomorphie zweier Ebenen %'n und %'„ aufzuzeigen, die durch Systeme
von n— 1 paarweise orthogonalen lateinischen Quadraten der Ordnung dargestellt
sind, ist keineswegs trivial. Jede Beschreibung einer affinen Ebene der Ordnung n
mit lateinischen Quadraten macht nämlich die Auszeichnung von 2 der n+l
vorhandenen Parallelenfelder erforderlich; es sind dies die beiden Parallelenfelder,
die in die Zeilen und in die Kolonnen des n x n-Schachbrettes eingehen. Um nicht
auch noch einer Willkür in der Zeichenverteilung bei den einzelnen lateinischen
Quadraten Qx ausgesetzt zu sein, kann man diese so normieren, dass die ersten
Zeilen durchgehend gleich lauten, z.B. so wie in der Figur 4. Die Asymmetrie
in bezug auf die Parallelenfelder lässt sich aber nicht aus der Darstellung heraushalten,

d. h. es gibt für eine bestimmte Ebene 3l„ f völlig gleichberechtigte

Beschreibungen mit lateinischen Quadraten. Ebenen mit gleicher Ordnung sind
daher auf dieser Basis nicht ohne weiteres vergleichbar.
Aus der Geometrie des Anschauungsraumes ist eine Reihe von sog. Schliessungsfiguren

bekannt, die mit bestimmten einfachen Transformationen in Verbindung
stehen. Wir greifen zwei dieser Schliessungsfiguren heraus (Fig. 5):

Schliessungsfigur Dt
a, b, c parallel

©ec -
»/ / «/ /fi

//c

Schhessungsfigur Ds
a,b,c Inzident mit Punkt S

Figur 5
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In beiden Fällen kann die Schhessung mit derselben Implikation beschrieben
werden:

/||/ und gllg => h\\h.

Die Schliessungsfigur DT steht den Translationen nahe. Insbesondere zeichnet sich
in DT ab, dass zu zwei Punkten A und Ä eine Translation t existiert, bei der
Ä (A)x ist. Sind nämlich A und Ä zugeordnete Punkte bei einer Translation r,
dann lässt sich das Bild eines Punktes B über die Parallelen // und die
Spurgerade b konstruieren. In gleicher Weise erhält man C=(C)x über g g und die
Spurgerade c. Die Konstruktion von C kann nun aber auch am Punktepaar (B,B)
angehängt werden. Man erhält nur dann denselben Bildpunkt C, wenn die
Schhessungsfigur DT vorhanden ist; DT garantiert die Kompatibilität der beiden
Konstruktionen für den Punkt C.

Die Schliessungsfigur Ds garantiert in gleicher Weise zu drei kollinearen Punkten
SAÄ (S ¥"A,Ä) die Existenz einer Streckung o mit dem Fixpunkt S, bei der AinÄ
übergeht.
DT und Ds sind affine Sonderfälle der sog. Desargues-Schliessungsfigur.
Die Schliessungsfiguren DT und Ds sind auch in allen affinen Ebenen
durchgehend vorhanden, die aufgrund der Formel von Ryser aus einem Galois-Feld
hervorgehen. Zur Illustration dieses Sachverhaltes betrachten wir zunächst eine
Einzelfigur DT in der Ebene 2t4. Wir stützen uns dabei auf die Darstellung von 9t4

mit den drei lateinischen Quadraten QX,Q2,Q3, die durch die Formeln (2.4) definiert
sind:

0123 0123 0123
1032 2301 3210
2301 3210 1032
3210 1032 2301

Qx Q2 Q3

Das Feld (Punkt) in der i-ten Zeile und/-ten Kolonne bezeichnen wir jetzt mit Piy
Ferner sei Q\k) die Gerade, die durch das Zeichen k in Qx gekennzeichnet ist. Mit

bezeichnen wir schliesslich noch die 4 Geraden, die mit den Punkten in einer
bestimmten Zeile, mit

Qf\Q\x\Qf),Qf
die 4 Geraden, die mit den Punkten in einer bestimmten Kolonne inzident sind.
Man kann dies als Adjunktion zweier pseudolateinischer Quadrate

0 0 0 0 0 12 3

1111 0 12 3

2 2 2 2 0 12 3

3 3 3 3 0 12 3

Ü4 ®5

interpretieren.
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X
//p

£or n q: n

Figur 6

Die Figur 6 zeigt das Inzidenzschema einer Dj-Schliessungsfigur. Sie ist aufgebaut
auf den drei Parallelen Qf\Q[l\Q[V und den beiden Punkten Pqo und P22 auf Of».
Zeichnet man zusätzlich die Parallelenfelder Q2 und Q3 aus, dann erhält man durch
Poo ^e Geraden ß§>) und ß£°>, durch P22 die Geraden Q<p und Q$\ Die Geraden
aus dem Feld Q2 sollen nun mit Q\3\ jene aus dem Parallelenfeld Q3 mit ßj1*
geschnitten werden. Der Schnittpunkt von Qf) und Q^ ist das Feld, das von Q2
her mit 0 und von Qx her mit 3 belegt ist.

0 3

0 3

0 3

0 3

?i

^o) O»

Figur 7

Mit der gleichen kombinatorischen Überlegung findet man die weitern erforderlichen

Schnittpunkte:

ß^/op) Punkt P30,
Punkt P32,
Punkt P10.

Die Abschlussgeraden sind die Verbindungsgeraden

Pn/Pyz => Gerade ßp,
Pjo/Pio => Gerade ßf».
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Sie sind tatsächlich parallel. Die affine Ebene %4 umfasst 5 Parallelenbüschel;
jede Dy-Figur beansprucht 4 davon.
Der generelle Nachweis der Schhessungsfiguren DT und Ds in der affinen Ebene %n,

die vermöge der Ryserschen Formel aus dem Galois-Feld GF(n) hervorgeht, ist
durch Übergang zur isomorphen Koordinaten-Ebene S„ möglich. Man gelangt dazu
mit den folgenden Ersetzungen:

Ebene % Ebene 3T„

Punkt PXY I > (x,y)
Gerade ßjf) I > (h,l,c)
Gerade ß<c> I > (1,0, c)
Gerade Q^\l I > (0,1, c)

n=l,2,..„n-l

Qn und Qn+ x sind jetzt die pseudolateinischen Quadrate der Ordnung n.
Der Punkt (x,y) ist genau dann mit der Geraden (a,b,c) inzident, wenn ax + by=c
ist.
In der Koordinaten-Ebene 2tw wird eine Translation beschrieben durch

x~x +p (41)
y= y+q,

und eine Streckung mit dem Fixpunkt (x0,y0) hat die Abbildungsgleichungen

x-x0=a(x-x0) mh
y-yo^aiy-yo)

Aufgrund der Körper-Eigenschaften kann man nun schhessen, dass zu zwei
behebigen Punkten stets eine Translation vorhanden ist, die den einen in den
andern überführt. Ferner kann man zeigen, dass zu drei verschiedenen kollinearen
Punkten stets eine Streckung existiert, die den ersten unter ihnen zum Fixpunkt
hat und einen der beiden andern in den dritten transformiert. Damit sind aber DT
und Ds durchgehend gewährleistet.
Mit den Schhessungsfiguren DT und Ds lassen sich nun kombinatorische
Unterschiede in affinen Ebenen gleicher Ordnung nachweisen. Dieser Gedanke kommt
bei der anschliessenden Vorstellung von drei nichtisomorphen affinen Ebenen der
Ordnung 9 zum Tragen.
Als erstes Beispiel bietet sich die mit der Formel von Ryser aus GF(9)
konstruierbare affine Ebene 314 an- Darin sind - wie eben gezeigt - die Schhessungsfiguren

DT und Ds uneingeschränkt vorhanden. Ein Satz aus der affinen
Inzidenzgeometrie besagt übrigens, dass Ds die Figur DT impliziert: Wenn Ds in einer
affinen Ebene durchgehend vorhegt, dann gilt dies auch für DT6).

6) Vgl. [5], S. 16.
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Stutzt man sich für GF(9)= [NJ, + ] auf die Verknupfungstafeln

+ 012345678
2

0
1

5

3

4 8

8 0
6 1

8 6 7 2 0

[Nf,+]

5 6

3 7

4 8

8 0

6 1

7 2

2 3

0 4
1 5

0 12 3 4 5 6 7

000000000
012345678
0

5

6
1

7

2

30 8

8 7 5 4
4 7

2 3

6 2

8 5

3 1

1 6

[NJ, ]

dann wird man auf das folgende System von 8 paarweise orthogonalen lateinischen
Quadraten der Ordnung 9 geführt

ß.
0 12 3 4

©2 04 5

2 0 15
3 4 5 6

4 5 3 7

5 3 4 8

5 6 7 8

3 7 8 6

3 4 8 6 7
7 8 0 12
8 6 12 0
6 7 2 0 1

2 3 4

0 1

©0
12 0 4

6 7

8 6

7 8

Q2
2 3 4 5 6

15 3 4 8

5

8 0 1

7 2 0 1

7 8

6 7

3 7 8 6

2 3 4 5

3 4
5 3

Q3
0 12 3 4 5 6 7

©4567801

Qa

678012345
786120453
867201534

3 4 5 6

5 3 4 8

6 12 0 4
7 8 0 1 2

7 2 0 1

Q5
3 4 5 6 7 8

8 6 7 2 0 1

12 0 4 5 3

2 0 15 3 4
4 5 3 7 8 6

6 7 8 0 12
7 8 6 12 0

678012345

0 1 2

©3 4
7 8 6

8 6 7

1 2 0
3 4 5

4 5 3

453786120
ß6

012345678
©78012345
345678012
120453786
7 8 6 12 0 4 5 3

453786120
201534867

6 7 8 0 12
2 0 15 3 4
5 3 4 8 6 7

8 6 7 2 0 1

12 0 4 5 3

4 5 3 7

7 8 6 1

ß7

3 4
8 6

2 0
5 3

0 1

®5
8 6

2 3

3 7

6 7

1 2

4
7 8 6

6 12 0

0 4 5 3

0

7 2 0 15 3 4
4 8 6 7 2 0 1

2

3

2 0
3 4 8 6 7

7 8 0 1

2 0 4 5

8 6 1

0 1 5

4 5 6

3 4

7 8

4 5

ß8

012345678
©86120453
534867201
453786120
201534867
678012345
867201534

67201534 345678012

5 3

8 6

4 5

0 1

3 4

8 0 12

012345678
S)6 7 2 0 1 5 3 4

7
1 2

6 7

5 3

6

6 12 0
0 4 5 3

8 0 12
4 8 6 7

7 2 0 1

201534867 534867201
120453786

120453786 678012345

Wegen

reproduzieren sich m den Zeilen der Qh die Zeilen der Additionstafel Das
vorliegende Maximal-System ist also aus 9 verschiedenen Zeilen aufgebaut Da speziell

ist, erscheint m Qx eine Kopie der Additionstafel Ferner entnimmt man aus
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dass die vorderste Kolonne von Qh mit der n-ten Zeile der Multiplikationstafel
übereinstimmt. Für die beiden in GF(9) steckenden Gruppen besagt die Theorie der
endhchen Körper, dass

[N8*;+]^33x33 und [N8;]^387).

Das letztere lässt sich leicht bestätigen anhand der Tatsache, dass 4 in der
multiphkativen Gruppe ein Element der Ordnung 8 ist.
Dem zweiten Beispiel wird das folgende Maximal-System von orthogonalen lateinischen

Quadraten zugrunde gelegt, das von Statistikern aufgestellt worden ist8).

Qx Q2 ß3 Q4

012345678 012345678 012345678 012345678
©2 0453786 ©0 1534867 ©4 5678012 ©5 3786120
201534867 120453786 678012345 867201534
345678012 678012345 201534867 786120453
453786120 867201534 534867201 201534867
534867201 786120453 867201534 345678012
678012345 345678012 120453786 534867201
786120453 534867201 453786120 678012345
867201534 453786120 786120453 120453786

Q5 Q6 Qn Qs

012345678 012345678 012345678 012345678
©3 4867201 ©7 8012345 ©8 6120453 ©6 7201534
786120453 345678012 534867201 453786120
453786120 120453786 867201534 534867201
678012345 786120453 345678012 120453786
201534867 453786120 120453786 678012345
867201534 201534867 453786120 786120453
120453786 867201534 201534867 345678012
345678012 534867201 678012345 201534867

Die lateinischen Quadrate QX,Q2,Q3 und ß6 stimmen mit den entsprechenden
Quadraten in der Darstellung der affinen Ebene ?lg überein. Der Zusammenhang
mit dem früheren Maximal-System geht aber noch tiefer; auch das neue Maximal-
System besteht wieder aus denselben 9 Zeilen. Dies legt nun nahe, dasselbe
Konstruktionsgesetz zu unterlegen, mit dem aus GF(9) die Ebene % gewonnen wurde
und von diesem jetzt rückwärts auf ein Verknüpfungsgebilde [Ng, 0,0] zu schhessen.

Mit dem Ansatz

a$=hOj®k n= 1,2,. .„n-1 (4.3)

kann man zunächst aus Qx die Additionstafel erhalten. Ferner hest man aus den

7) 3n bezeichnet die abstrakte zyklische Gruppe der Ordnung n.
8) Vgl. R.A. Fisher und F. Yates: Statistical Tables, S.63. London 1948. Für unsere Belange wurde
bloss die Reihenfolge der Quadrate umgestellt, und zwar so, dass in Qh das mit einem Kreislein
markierte Feld mit dem Zeichen h belegt ist.
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vordem Kolonnen von QX,Q2, ,ß8 die 8 wesentlichen Zeilen der Multiphkationstafel
heraus Postuliert man noch

0Oa 0 fur alle aeNf,

dann steht auch die erste Zeile der Multiphkationstafel fest

012345678 0012345678
2 3

0 8

1 6

8 0
5 2

4 7

7 4
6 1

3 5

7

6

5

2

8 1

2 3

0 8

4 0
1 4

000000000

0 8

Wegen der Übereinstimmung von ß! mit dem entsprechenden Quadrat in der
Darstellung von % ist

[N8*,©]^[N8*,+]^33X33

Auch das Verknupfungsgebilde [N8, O] ist immer noch eine Gruppe, die jetzt
allerdings nicht mehr abelsch ist Die vorliegende Multiphkationstafel lasst auf 6

Elemente der Ordnung 4 und ein Element der Ordnung 2 schhessen Unter den
5 existierenden abstrakten Gruppen der Ordnung 8 weist nur die Quaternionen-
gruppe D diese Ordnungen auf9), es ist daher

[NgtO]aD

Die Verknupfungstafel für [N8,0] hat folgende, nicht sofort erkennbare Eigenschaft

Bildet man die Summe zweier Kolonnen, dann erhalt man stets wieder
eme Tafelkolonne So ist etwa

000=0
3©5=8
6©7=4
2©8=7
7©3=1
402=3
1©4=5
8©1 6

5©6=2

Diese Eigenschaft ist gleichbedeutend mit

9) Vgl etwa W Ledermann Einführung in die Gruppentheone, S 39 Braunschweig 1977
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(aOb)®(aOc)=aO(b®c) für alle a,b,ceN$,

d.h. das Verknüpfungsgebilde [Nf; 0,0] ist links-distributiv. Rechts-Distributivität
besteht nicht, wie das folgende Beispiel belegt:

(8® 3)05 205 7; (8O5)©(3O5)=608=5.

Das vorhegende Verknüpfungsgebilde ist ein sog. links-distributiver Fast-Körper10).
Zur affinen Ebene 2I9, die durch das einem statistischen Tabellenwerk entnommene
Maximal-System definiert ist, lässt sich jetzt eine isomorphe Koordinaten-Ebene S9

über dem Fast-Körper [Nf;0,O] konstruieren. Punkte von $9 sind die Paare

(x,y) mit x,yeN$, Geraden die Tripel (n, l,c), (1,0,c), (0,1,c) mit neN8 und
ceN8. Der Punkt (x,y) ist genau dann mit der Geraden (a,b,c) inzident, wenn

(aOx)®(bOy)=c

ist. Die Gleichungen

x= x®p
y y@q

(4.4)

beschreiben eine Transformation auf der Menge der Punkte von %', bei der die
kollineare Lage von Punkten erhalten bleibt. So besteht etwa die Implikation

(hOx)@y=c^(hOx)®y=hO(x@p)®(y®q)=(hOx)®y®(hOp)®q c.
c

Bei der Umformung wurde von der Links-Distributivität Gebrauch gemacht.
Die Implikation besagt, dass eine Gerade und ihr Bild stets parallel sind. Zugleich
kann man daraus entnehmen, dass das Spurbüschel ein Parallelenbüschel ist; die

Gleichungen (4.4) beschreiben somit eine Translation.

/p.

10 A3) 54 -Q

10)Vgl.[5],S.201.

Figur 8
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Zu jedem Punktepaar (px,p2), (px,p2) gibt es offensichtlich eine Translation, womit
die Schliessungsfigur DT durchgehend garantiert ist. Wegen der Kommutativität
der Addition sind übrigens zwei Translationen tx und t2 stets vertauschbar.
Die Schhessungsfigur Ds ist hingegen in der Ebene %' nicht durchgehend vorhanden.

Dies geht aus dem Beispiel in der Figur 8 hervor, das mit den gleichen
kombinatorischen Überlegungen gewonnen wurde, mit denen wir in der Ebene
%4 eine einzelne Dj-Figur nachgewiesen haben. Die beiden abschliessenden
Geraden ß^ und ß£8> sind nicht parallel. Damit steht fest, dass die affinen Ebenen
91$ und 2.9 nicht isomorph sind.
Eine dritte affine Ebene %" geht aus dem folgenden Maximal-System hervor, das

vermutlich ebenfalls Statistikern zu verdanken ist11). Die Anordnung der 8 lateinischen

Quadrate wurde wiederum so gewählt, dass in Qh an der mit einem Kreislein
bezeichneten Stelle das Zeichen n steht.

Qx Q2 ß3 ß4

012345678 012345678 012345678 012345678
©2 0453786 ©0 1534867 ©4 5678012 ©5 3786120
201534867 120453786 678012345 867201534
345678012 678012345 201786453 786453201
453786120 867201534 534120786 201867345
534867201 786120453 867453120 345012786
678012345 345678012 120867534 534120867
786120453 534867201 453201867 678534012
867201534 453786120 786534201 120678453

Q5 Q6 Qn ß8

012345678 012345678 012345678 012345678
©3 4867201 ©7 8012345 ©8 6120453 ©6 7201534
786120453 345678012 534867201 4 5 Ql 7 8 6Q]2 0

453201786 120867534 867534120 534120867
678453012 786534201 345012867 120678453
201678534 453201867 120786345 678534012
867534120 201786453 453201786 786453201
120786345 867453120 201678534 345012786
345012867 534120786 678453012 2 0|I]8 6 7|T|4 5

Qx und ß2 stimmen überein mit den entsprechenden lateinischen Quadraten in den
Darstellungen von 2I9 und 219. Die 8 Quadrate sind jetzt aber nicht mehr aus nur
9 Zeilen aufgebaut. Es ist daher nicht mehr möglich, der affinen Ebene die
Rysersche Formel zu unterlegen und auf diesem Wege zu einer algebraischen
Struktur mit zwei 2stelligen Verknüpfungen zu gelangen.
In der neuen affinen Ebene 2I9" ist die Schhessungsfigur DT auf sämtlichen
Parallelenfeldern nur noch isoliert vorhanden, was sich leicht an geeigneten
Beispielen zeigen lässt. Die Figur 9 illustriert diesen Sachverhalt für das Parallelenfeld,

das zum Quadrat Qx gehört.
Mit ff aus dem Parallelenfeld in ß9 und g g aus dem Parallelenfeld in ß4 erhält
man die beiden abschliessenden Geraden ß^6) und Qf\ die offensichtlich nicht

11) Vgl. R.C. Böse und K.R. Nair: On complete sets of latin Squares. Ind. J. Statist. 5 (1940/41).
Auf dieses Maximal-System wird auch in [7] hingewiesen (S.293).
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Figur 9

parallel sind. Die Ergänzung mit dem Ausgangspunkt P31 zeigt aber zugleich, dass

isoherte DrFiguren vorhanden sind; die Geraden ß<p und ß<8) sind nämlich
parallel.
Machen wir jetzt kurz eine Bestandesaufnahme: In der Ebene % sind Ds und DT
generell vorhanden, in der Ebene 3I9 gilt dies nur noch für die Dj-Figur, und in
2I9" ist keine der beiden Schhessungsfiguren durchgehend. Die drei affinen Ebenen
2I9,3I9 und 219' sind daher nicht isomorph. 2l£ ist ein Beispiel für eine sogenannte
Desargues-Ebene, 2I9 ist ein Beispiel für eine sogenannte Translations-Ebene (es

gibt darin zu jedem Punktepaar eine Translation), und StJ" ist eine affine Ebene,
die in bezug auf die Schhessungsfiguren Ds und DT auf der untersten Stufe steht.
Es gibt übrigens auch noch eine affine Ebene der Ordnung 9, in der die
Schhessungsfigur DT auf genau einem Parallelenfeld durchgehend vorhanden ist [4],
die also zwischen 2t9 und 2I9" einzuordnen wäre.
Dass in %$' eine isolierte Dj-Figur nachgewiesen werden konnte, ist kein Zufall.
Es gilt nämlich der

Satz 4. In jeder endlichen affinen Ebene 2t„ gibt es auf drei beliebigen Parallelen

pqr immer eine DTFigur.

Dies ist ein Satz von T.G. Ostrom12). Der Beweis ist sehr einfach; er stützt
sich auf eine typisch kombinatorische Überlegung. Man kann sogar die beiden
Parallelenbüschel B^ und Bg vorgeben, dem die /-Geraden und die g-Geraden
angehören sollen (Fig. 9). Denkt man sich in allen Punkten P der Geraden p die

Figur ff,g,h} mit/eBy und geBg konstruiert, dann stehen für die Schlussgerade n

noch (n-!-l)-3 n-2 Parallelenbüschel offen. Es muss daher zwei Punkte PXP2

auf/? geben, die parallele Schlussgeraden hxh2 aufweisen. Dies ist aber
gleichbedeutend mit der Existenz einer D^-Figur im Parallelenbüschel der drei Geraden

p q und r.
Mit einer ähnlichen Überlegung kann in jeder endlichen affinen Ebene auf drei
behebigen kopunktalen Geraden/? q r eine D^-Figur nachgewiesen werden.
Die drei vorgestellten affinen Ebenen der Ordnung 9 lassen erkennen, dass die
Schhessungsfiguren Ds und DT nicht Folgerungen aus den Axiomen (Ax), (A2) und
(A3) sein können. Damit ist ein weiteres Unabhängigkeitsproblem im Rahmen der

12) T.G. Ostrom: Transitivities in Projective Plans. Can. J. Math. 9 (1951).
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affinen Inzidenzgeometrie angesprochen, das ebenfalls anhand eines geeigneten
Modells vollständig geklärt werden kann. Transfinite affine Ebenen, in denen der
Satz von Desargues nicht gilt, sind zwar schon seit der Jahrhundertwende bekannt
(Moulton-Ebenen). Bemerkenswert ist nun aber, dass grundlagentheoretische
Fragen aus der Geometrie gelegentlich mit kombinatorischen Überlegungen beantwortet

werden können. Dazu sei noch ein weiteres Beispiel angeführt. Von der
Geometrie des Anschauungsraumes her ist man sich gewöhnt, dass sich die
Diagonalen eines Parallelogrammes in einem Punkt schneiden. Auch dieser Sachverhalt
gehört nicht zur ebenen affinen Inzidenzgeometrie, was das Modell 219" belegt.
In der affinen Ebene 2(9' gibt es nämlich vereinzelt Parallelogramme mit parallelen
Diagonalen. Ein solches Beispiel ist das Parallelogramm mit den vier in ß8
ausgezeichneten Feldern als Eckpunkten. Aus ß8 entnimmt man die beiden Diagonalen
ß^ und ß^; dies smd offensichtlich parallele Geraden. Der Leser wird m der
Darstellung der affinen Ebene %'9" leicht weitere derartige Ausnahmeparallelogramme
erkennen. Daneben gibt es aber in der Ebene 319' auch ganz normale Parallelogramme.

Es gibt nun affine Ebenen, in denen nur normale Parallelogramme auftreten. Man
nennt sie Fano-Ebenen13). Dazu gehören alle endlichen Ebenen, die aus einem
Galois-Feld mit einer von 2 verschiedenen Charakteristik hervorgehen.
Der Beweis kann mit Methoden der analytischen Geometrie erbracht werden. Hat
der zugrundeliegende Körper hingegen die Charakteristik 2, dann haben sämtliche
Parallelogramme parallele Diagonalen. Man spricht dann von einer Anti-Fano-
Ebene. Beispiele hierfür sind die affinen Ebenen 3t2 (Tetraedermodell) und 2l4,

denen wir früher begegnet sind.
M. Jeger, Mathematisches Seminar, ETH Zürich

Die Reinzeichnungen der Figuren hat mem Assistent A. Frei ausgeführt, wofür
ihm an dieser Stelle herzlich gedankt sei.
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