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ELEMENTE DER MATHEMATIK

Revue de mathématiques élémentaires - Rivista di matematica elementare

Zeitschrift zur Pflege der Mathematik
und zur Féorderung des mathematisch-physikalischen Unterrichts

El. Math. Band 36 Heft 4 Seiten 73-104 Basel, 10.Juli 1981

Geometrie und Kombinatorik

Meinem Freund und Redaktionskollegen Prof. Dr. E. Trost zum 70. Geburtstag
gewidmet

1. Einleitung

Innerhalb der modernen Kombinatorik - im angelséchsischen Sprachgebiet Com-
binatorial Mathematics genannt - hat sich in den letzten Jahrzehnten auch ein
Zweig entwickelt, der sehr stark an der anschaulichen Geometrie motiviert und
verankert ist. Es ist dies die Theorie der endlichen Inzidenzstrukturen, deren
Bogen sich von den endlichen affinen und projektiven Ebenen bis hin zu den
sogenannten Blockpldnen spannt. Man begegnet darin einer Fortsetzung geome-
trischer Schlussweisen in den finiten Bereich.

Bemerkenswert sind die mannigfachen Beziehungen zwischen endlichen Inzidenz-
strukturen und andern Gebieten der Mathematik. So ist z.B. die Algebra das
Hauptwerkzeug in diesem Teil der Kombinatorik; andererseits findet man interes-
sante Anwendungen etwa in der Statistik und in der Codierungstheorie.

Endliche Strukturen haben gegeniiber transfiniten Strukturen immer den Vorteil,
besser iiberschaubar zu sein. In endlichen Systemen ist daher stets auch ein
gewisses didaktisches Potential verborgen; solche Systeme konnen dem Lernenden
in der Mathematik eine effiziente Hilfe sein. So lassen sich unter anderem be-
stimmte Grundlagenprobleme oder einzelne schwierigere Begriffe in der Geometrie
an endlichen Systemen oft viel besser darlegen und verstindlich machen. Ich denke
hier etwa an die Aufgabe, einem Anfinger in der Geometrie den Begriff der
konformen oder der projektiven Ebene plausibel zu machen.

Die vorliegende Note mochte den Leser - mehr oder weniger exemplarisch - in
das Grenzgebiet zwischen Geometrie und Kombinatorik einfithren. Zugleich sollen
damit einige neu erschlossene Zuginge zu bekannten Fakten prisentiert werden,
die den didaktischen Aspekt des Gegenstandes etwas herausheben.

2. Orthogonale lateinische Quadrate
Als Aufhinger fiir diesen Ausflug an die Nahtstelle zwischen Geometrie und

Kombinatorik diene das Eulersche Offiziersproblem. An der Petersburger Akademie
wurde Euler das folgende Problem zugetragen:
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Die Zarin - Katharina die Grosse - hatte zu einem Dienstrapport 36 Offiziere
versammelt, und zwar aus 6 Regimentern je einen Leutnant, Oberleutnant, Haupt-
mann, Major, Oberstleutnant und Obersten. Sie soll dabei den Wunsch gedussert
haben, dass sich die Herren so im Quadrat aufstellen, dass in jeder Reihe und in
jeder Kolonne jedes Regiment und jeder Dienstgrad vertreten sind.

Euler war von dieser Fragestellung so fasziniert, dass er sich in der Folge sehr
eingehend damit befasst hat. Mit seinen Untersuchungen iiber die damit in Verbin-
dung stehenden lateinischen Verteilungen hat er eine fiir die Kombinatorik bedeut-
same Entwicklung eingeleitet. Der Rapport der 36 Offiziere ist zwar ganz sicher
ohne die geforderte Prisentier-Aufstellung zu Ende gegangen, denn inzwischen
hat sich herausgestellt, dass diese kombinatorische Aufgabe keine Lésung hat!).

Das Offiziersproblem war so, wie es erstmals gestellt wurde, mathematisch recht
bosartig. Es ist ndmlich nur fiir 6 Regimenter und 6 Dienstgrade nicht losbar,
sonst aber fiir alle andern charakteristischen Anzahlen n»> 3 16sbar. Wir wollen uns
daher auf einen Wert des Parameters n festlegen, der eine Loésung zuldsst: Am
Rapport sollen nur 4 Regimenter und 4 Dienstgrade vertreten sein (n=4).
Kennzeichnet man die Regimentszugehorigkeit und die Dienstgrade je mit den
Zeichen 0 1 2 3, dann gehort zu jedem der 16 vorhandenen Offiziere eine der
nachstehend genannten Figuren:

00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 33.

Jeder Losung des Offiziersproblems entspricht nun eine Verteilung dieser /6 Fi-
guren auf die Felder eines 4 X 4-Schachbrettes derart, dass in jeder Zeile und in
jeder Kolonne die Zeichen 0 1 2 3 genau einmal an erster und genau einmal an
zweiter Stelle stehen. Die folgende Anordnung zeigt eine Losung (Fig. 1):

» Kolonnen-Index

0] 1 2 3

0 00 11 22 33 0 1 2 3 0 1 2 3
1 13 02 31 20 1 0 3 2 3 2 1 0
2 21 30 03 12 2 3 0 1 1 0 3 2
3 32 23 10 0l 3 2 1 0 2 3 0 1
Zeilen-Index Verteilung der Verteilung der
Rgt.-Zugehorigkeiten Dienstgrade
Figur 1

1) Vgl. G. Tarry: Le probléme des 36 Officiers. C.r. Ass. fr. Avanc. Sci. nat. 1900, 122-123; 1901,
170-203. Tarrys Unméglichkeitsbeweis beruht im wesentlichen auf systematischem Probieren. Man
kennt heute elegantere Beweise.
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Um die Verteilungen der Regimentszugehorigkeiten und der Dienstgrade noch
deutlicher sichtbar zu machen, sind diese nebenan noch getrennt aufgefiihrt. Bei
der Separation wird man auf zwei Verteilungen der Zeichen 0 / 2 3 auf die Felder
des 4x 4-Schachbrettes gefiihrt, in denen jedes der 4 Zeichen in jeder Zeile und
in jeder Kolonne genau einmal vorkommt. Euler hat bei seinen Untersuchungen
iiber derartige Verteilungen von n Zeichen auf einem n x n-Schachbrett durchwegs
grosse lateinische Buchstaben verwendet. Seither spricht man von lateinischen
Verteilungen oder etwas priziser von lateinischen Quadraten.

Mit einer Losung des Offiziersproblems im Falle n=4 sind also zwei lateinische
Quadrate der Ordnung 4 verbunden. Dieses Modell erfasst aber die vorliegende
kombinatorische Struktur noch nicht vollstindig. Die beiden lateinischen Quadrate
sind zugleich so miteinander gekoppelt, dass bei der Uberlagerung jedes mogliche
2stellige Wort iiber dem Alphabet 0 I 2 3 genau einmal auftritt. Zwei lateinische
Quadrate in dieser Relation heissen orthogonal?). Zu einer Losung gehort somit ein
Paar von orthogonalen lateinischen Quadraten der Ordnung 4.

Fortan sollen lateinische Quadrate der Ordnung »n mit den Zahlen aus der Menge

* =10,1,2,....n— 1)

beschrieben werden. Charakterisiert man die einzelnen Felder eines n X n-Schach-
brettes durch den jeweiligen Zeilen- und Kolonnen-Index (Zahlen aus N*_,), dann
ist ein lateinisches Quadrat 2 der Ordnung n gleichbedeutend mit einer Funktion
fauf der Menge NJ_ | x N*_| mit Werten aus N¥_,

@D fG.)),
fiir die gilt

Jep=fy = 1 h 2.1)
f@p=rG.k) = j=k.

Zwei lateinische Quadrate Q; 22, der Ordnung 7 sind genau dann orthogonal, wenn
fur die zugehorigen Funktionen f; f; die Implikation

HaN=h (h,k)} i=hAj=k | (2.2)

LG)=1 (k)

besteht. Sie besagt, dass vorgegebene Funktionswerte fiir f; und f, jeweils ein Feld
festlegen.

Zunichst haben sich nach Euler vorwiegend Statistiker mit Systemen von paar-
weise orthogonalen Quadraten befasst. Dies erklirt sich damit, dass solche Systeme
bei der Planung von Versuchen Verwendung finden3). Die Zusammenhinge mit der

2) Die Orthogonalitit von lateinischen Quadraten hat nichts mit dem geometrischen Senkrechtstehen
Zu tun.
3) Vgl. [6] und 8].
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Geometrie sind erst in den Jahren nach 1950 aufgedeckt worden. Hauptergebnis der

diesbeziiglichen Untersuchungen ist die Tatsache, dass in den sog. Maximal-
Systemen von paarweise orthogonalen lateinischen Quadraten konkrete Darstellun-
gen fiir simtliche endlichen affinen Ebenen vorliegen.

3. Endliche affine Ebenen

Richtet man das bekannte Hilbertsche Axiomen-System auf die ebene euklidische
Geometrie aus, dann kommen darin folgende drei Axiome vor:

(A) Durch zwei Punkte 4 B geht genau eine Verbindungsgerade g.

(Ay) Zu einer Geraden g gibt es durch einen Punkt P ausserhalb von g genau eine
Gerade p, die g nicht schneidet (Parallele).

(A;) Es gibt drei nichtkollineare Punkte.

Wir wollen uns auf denselben Standpunkt stellen wie Hilbert; die Begriffe Punkt,
Gerade und Inzidenz sollen ganz von der herkommlichen Vorstellung befreit
werden. Es werden zwei Mengen P und G von irgendwelchen «Dingen» betrachtet;
die Elemente von P heissen Punkte, die Elemente von G werden Geraden genannt.
Ferner sei eine Inzidenzrelation I vorhanden, die gewisse Paare (P,g) mit PeP und
g € G auszeichnet.

Die Theorie, die unter diesem Aspekt aus den Axiomen (A)), (A;), (A3) hervor-
geht, heisst die ebene affine Inzidenzgeometrie. Jedes konkrete System [P, G; I],
das den drei Axiomen geniigt, ist ein Modell zur ebenen affinen Inzidenzgeometrie
und wird eine affine Ebene genannt. Ein solches Modell ist natiirlich die Geometrie
des 2dimensionalen Anschauungsraumes, denn darauf ist ja das Hilbertsche System
zugeschnitten.

Das Axiomen-System (A,), (A;), (A;) ist ein bescheidener Ausschnitt aus einem
Axiomen-System fiir die ebene euklidische Geometrie. Die ebene affine Inzidenz-
geometrie ist daher ein Vorfeld zur ebenen euklidischen Geometrie. Das Hilbertsche
System ist bekanntlich kategorisch, d.h. simtliche Modelle dazu sind isomorph. Mit
der vorliegenden Verkiirzung der axiomatischen Basis wird die Theorie natiirlich
wesentlich drmer, zugleich aber auch reicher an Modellen. Der Verzicht auf Stetig-
keitsaussagen ldsst insbesondere auch endliche Modelle zu. Ein Beispiel soll gleich
die Existenz endlicher affiner Ebenen belegen.

Ausgangsfigur ist ein reguldres Tetraeder mit den Eckpunkten P, P, P; P4 und den
Kanten gy, 813 814 823 824 834. Das System [P, G; I] mit

P ={P,, P, P;, Py}
G=1{g12.813-814-823:824- 834}

und
def
Plgy < i=jvi=k

erfiillt offensichtlich die Axiome (A)), (A,), (A3).



M. Jeger: Geometrie und Kombinatorik 77

Figur 2

Wir haben hier eine affine Ebene mit 4 Punkten und 6 Geraden vor uns. Die in der
Figur 2a gleich ausgezogenen Kanten reprisentieren parallele Geraden.

Bereits an diesem einfachen Modell zur ebenen affinen Inzidenzgeometrie lassen
sich verschiedene interessante Uberlegungen anstellen. Permutationen auf der
Menge P, welche die kollineare Lage von Punkten erhalten, werden Automor-
phismen der Inzidenzstruktur [P, G; I] genannt. Im vorliegenden Modell inzidiert
jede Gerade nur mit zwei Punkten; daher ist jede Permutation auf P ein Automor-
phismus, d.h. die Automorphismengruppe ist hier die auf P operierende sym-
metrische Gruppe &,. Von den beiden Automorphismen

= P1P2P3P4> _ P1P2P3P4)
2 P1PyP3)’ 1Py Py Py

ist t eine Translation mit den Spurgeraden g, und gj4, o eine Scherung mit der
Fixpunkt-Geraden g,.

Die Automorphismen sind iibrigens gerade die durch die Symmetriegruppe des
Tetraeders induzierten Permutationen auf der Menge P.

Mit dem vorliegenden Modell konnen andererseits auch gewisse Grundlagen-
probleme aufgezeigt werden. Sind etwa P, P, P; die durch das Axiom (A,) garan-
tierten drei Punkte, dann erhilt man iiber die Parallele zu g,; durch P, und die
Parallele zu g;;3 durch P, einen weitern Punkt in unserer affinen Ebene, ndmlich
P,. Die anschauliche affine Ebene verleitet zum Schluss, dass auch die entsprechen-
den Konstruktionen iiber den Punkten P, P, und P, P; je einen neuen Punkt
ergeben (Fig.2b). Dass dem nicht so ist, zeigt nun das Tetraedermodell. Dieses
Beispiel macht einerseits deutlich, dass man sich in der deduktiven Geometrie nicht
zu stark auf die Anschauung berufen darf. Andererseits geht aus dem Tetraeder-
modell hervor, dass es offenbar nicht moglich ist, aus den Axiomen (A;), (A;), (A3)
die Existenz von mehr als 4 Punkten nachzuweisen.

In der ersten Hilfte des 19.Jahrhunderts konnte auf dieselbe Weise eine viel
gewichtigere Frage entschieden werden. Mit einem Modell zur absoluten Geometrie
liess sich endlich die Frage nach der Unabhingigkeit des Parallelenpostulates im
euklidischen System beantworten: In der hyperbolischen Geometrie wurde ein
Modell zur absoluten Geometrie gefunden, in dem das Parallelenpostulat nicht
gilt. Damit stand die Unabhéngigkeit fest.
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Bei unserem Vergleich stehen sich ein sehr einfaches und ein sehr gewichtiges
Grundlagenproblem gegeniiber. Er mochte darlegen, dass mit dem Tetraedermodell
zur ebenen affinen Inzidenzgeometrie dem Lernenden der Zugang zu einem
mathematikgeschichtlich dusserst bedeutsamen, zugleich aber auch viel komplexe-
ren Grundlagenproblem erschlossen werden kann, das mit der Entdeckung der
nichteuklidischen Geometrie seine Losung gefunden hat.

Mit der Bemerkung iiber Automorphismen und mit der Erorterung eines ein-
fachen Grundlagenproblems am Tetraedermodell soll auf die Tatsache hingewie-
sen werden, dass schon die affine Inzidenzgeometrie eine recht bemerkenswerte
didaktische Komponente aufweist?).

Eine bedeutende Klasse von endlichen affinen Ebenen kann aus gewissen Systemen
von paarweise orthogonalen lateinischen Quadraten konstruiert werden. Es gilt
niamlich der folgende

Satz 1. Jedes System von n—1 paarweise orthogonalen lateinischen Quadraten der
Ordnung n

Q1,9 2,

beinhaltet eine affine Ebene mit n* Punkten und n(n+ 1) Geraden, und zwar ist

P die Menge der Felder des n X n-Schachbrettes,

G die Menge der anschliessend aufgezdhlten n-elementigen Teilmengen von P:

—  Teilmengen der Felder, die der gleichen Zeile angehdren,

—  Teilmengen der Felder, die in der gleichen Kolonne enthalten sind,

—  Teilmengen der Felder, die durch ein bestimmtes 2; mit demselben Zeichen belegt
sind.

Zum Beweis ist zu zeigen, dass die vorliegende Inzidenzstruktur den Axiomen

(A)), (Az), (As3) geniigt. Wir gehen dabei exemplarisch vor und formulieren die

wesentlichen Uberlegungen so, dass ohne weiteres eine Ubertragung auf eine

beliebige Ordnung n moglich ist. Als Beispiel ziehen wir das System von 3

paarweise orthogonalen lateinischen Quadraten der Ordnung 4 in der Figur 3

heran.

000 | 111 | 222 | 333 J3J | kkk

123} 032} 301 | 210

231 320} 013 | 102 Q,9.9

312 | 203 | 130 | 021

Figur 3

Axiom (A ;): Existenz der Verbindungsgeraden zweier Punkte A B.

4) Vgl [10].
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Falls A B Felder in derselben Zeile oder in derselben Kolonne sind, ist die Ver-
bindungsgerade trivialerweise gewihrleistet. Sind 4 B nicht in dieser Lage, dann
liasst sich der Nachweis mit der folgenden kombinatorischen Uberlegung erbrin-
gen.

Wir betrachten vorerst ein Feld 4 in der ersten Zeile und ein Feld B in
einer beliebigen andern Zeile. Im Feld 4 implizieren die drei lateinischen Qua-
drate 2,,92,,Q; eine Figur von der Form jjj; im Feld B moge etwa die
Figur q;g,q; stehen. Liegt nun B in der Kolonne, deren oberstes Feld mit kkk
belegt ist (k #j), dann ist

k#ql9q29q3 .

Dies folgt aus der Tatsache, dass Q,,Q,,, lateinische Quadrate sind. Weiter ist

q;#q, fur i#h,

denn Q; und €, sind orthogonal. ¢, ¢, q; sind also drei verschiedene Zahlen aus
der Menge N¥ =10,1,2,3}, die von ke N¥ verschieden sind. Eine unter ihnen muss
daher mit j iibereinstimmen. Es gibt also unter 2,Q2,,2; ein Quadrat, das den
Feldern A und B dasselbe Zeichen aufprigt, und dies ist gleichbedeutend mit der
Verbindbarkeit von 4 und B.

Ist A ein Feld, das nicht der ersten Zeile angehort, dann kann man die Zeichen
in jedem einzelnen Q; so permutieren, dass die Zeile von A wiederum mit den
Figuren

000, 111, 222, 333

belegt ist. Eine solche Permutation belédsst sowohl die lateinischen Verteilungen wie
auch die Orthogonalitit dieser Verteilungen. Man kann jetzt gleich weiterschliessen
wie im vorweggenommenen Spezialfall.

Der eben dargelegte Beweis fiir die generelle Verbindbarkeit zweier Punkte lasst
sich ohne weiteres auf Systeme von n—1 orthogonalen lateinischen Quadraten
der Ordnung n iibertragen.

Axiom (A,): Existenz einer Parallelen durch einen vorgegebenen Punkt P.

Die Parallelenbiischel werden in den vorliegenden Modellen beschrieben durch die
Zeilen und die Kolonnen sowie durch die einzelnen lateinischen Quadrate. Durch
jeden Punkt P gibt es in jedem Parallelenbiischel genau eine Gerade.

Axiom (A;): Jedes Modell enthilt Punktetripel in nichtkollinearer Lage. So sind z. B.
drei Eckfelder sicher nicht kollinear.

Aus n—1 orthogonalen lateinischen Quadraten der Ordnung n geht tatsichlich
stets eine affine Ebene mit n?> Punkten und n(n+ 1) Geraden hervor, denn es gibt
(n—1)+2=n+ 1 Parallelenfelder, und jedes umfasst » Geraden.

Im Anschluss an Satz 1 stellt sich die Frage, wie man Systeme von n—1 paar-
weise orthogonalen lateinischen Quadraten der Ordnung n erhalten kann. Fiir
Ordnungen n, die von der Form n=p® (p Primzahl) sind, ist die Konstruktion
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eines solchen Systems sehr einfach. Bekanntlich gibt es zu jeder Primzahlpotenz
n=p® einen endlichen Korper (Galois-Feld). Hat nun der Kérper GF(n) die Ele-
mente

wobei 0 das Null-Element und 1 das Eins-Element bezeichnen, dann liefert die
sogenannte Rysersche Formel®)

{t = 1,2,....,n—1

i,j=0,1,2,...,n—1 (2.3)

a=ti+j

n— 1 verschiedene n X n-Matrizen, die ein System von n— 1 paarweise orthogonalen
lateinischen Quadraten der Ordnung n beinhalten. Aus (2.3) folgt nimlich aufgrund
der Korpergesetze

a=af) = i=h; a=af) = j=k
und fur s#¢
al¥)=qls

o =af]

Beispiel: GF (4)=[N¥; +,.].
Dieser Korper ldsst sich etwa mit den folgenden Verkniipfungstafeln umschreiben.

+|0123 -|0123
0({0123 0j0000
1{1032 110123
212301 210231
313210 310312

Mit der Ryserschen Formel erhilt man hieraus

aP=i+j;  aP=2i+j; aP=3i+j. 2.4

Dies fithrt auf die Matrizen

0123 0123 0123
1032 2301 3210
(D) = ) = 3)) =
@) =V2301 ) @W={3210) @W={1032)
3210 1032 2301
Q, Q, 2,

5) Vgl [9], S.81.
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aus denen man die drei orthogonalen lateinischen Quadrate der Ordnung 4 in der
Figur 3 herauslesen kann.

Es sei noch darauf hingewiesen, dass wegen a{D=i+; das lateinische Quadrat Q,
eine Kopie der Additionstafel ist. Weiter schliesst man aus (2.4), dass die Quadrate
Q,,9,,0, aus denselben Zeilen bestehen.

Aufgrund der Ryserschen Konstruktion sind fiir alle Ordnungen von der Form
n=p* endliche affine Ebenen garantiert. Es gibt also unendlich viele nichtiso-
morphe endliche affine Ebenen. Daneben existieren nun aber auch Systeme von
n—1 orthogonalen lateinischen Quadraten der Ordnung n, die nicht aus einem
Galois-Feld hervorgehen. Interessanterweise sind aber bis heute keine Systeme
gefunden worden, deren Ordnung keine Primzahlpotenz ist.

Der Zusammenhang zwischen den endlichen affinen Ebenen und Orthogonal-
Systemen von lateinischen Quadraten wird mit dem Satz 1 nur unvollstindig
erfasst. Es gilt auch die folgende Umkehrung, die man nicht ohne weiteres
erwartet:

Satz 2. In einer endlichen affinen Ebene ist jede Gerade mit gleich vielen Punkten
inzident. Hat diese charakteristische Zahl den Wert n, dann gibt es stets ein System
von n—1 paarweise orthogonalen lateinischen Quadraten der Ordnung n derart, dass
die daraus abgeleitete affine Ebene zur gegebenen Ebene isomorph ist.

Dies ist der sog. Darstellungssatz fiir endliche affine Ebenen. n heisst die Ordnung
der betreffenden affinen Ebene.

Der Satz 2 ldsst sich ebenfalls ganz elementar beweisen. Man benétigt dazu
einige Hilfssitze aus der affinen Inzidenzgeometrie, was die Beweisfithrung etwas
aufwendiger macht. Der interessierte Leser kann den Beweis in [8] nachlesen.

Die mit den endlichen affinen Ebenen verbundenen Systeme von paarweise
orthogonalen lateinischen Quadraten sind iibrigens durchwegs Maximal-Systeme.
Dies geht aus dem folgenden Satz 3 hervor.

Satz 3. Ist
Q,.925,....2,,

ein System von m paarweise orthogonalen lateinischen Quadraten der Ordnung
n=3,dannist m<n-—1.

Der Beweis von Satz 3 beruht wieder auf einfachen kombinatorischen Uberle-
gungen, die den Rahmen eines Ubersichtsartikels nicht sprengen. Er sei daher kurz
dargelegt. Man geht von der Annahme aus, dass ein System von n paarweise
orthogonalen lateinischen Quadraten der Ordnung n

Q,9Q,,...,.2,
vorhanden ist. Zur Beschreibung der Q; verwenden wir wie bis anhin die Zeichen

0,1,...,n—1.
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Durch eine geeignete Permutation der Zeichen innerhalb der einzelnen ; kann
man stets erreichen, dass die erste Zeile durchwegs gleich lautet; insbesondere kann
man etwa eine Normierung gemaiss Figur 4 vornehmen.

(0] 1 2 n-1

///

/

Figur 4

Die neuen Quadrate
1,25,...,82;

sind wiederum lateinisch und orthogonal. Wir betrachten nun in simtlichen Qua-
draten das erste Feld in der zweiten Zeile. Darin kann wegen der vorgenomme-
nen Normierung nur eines der Zeichen

L2,...,n—1

stehen. Da n Quadrate vorhanden sind, muss in mindestens zwei unter ihnen das
schraffierte Feld mit demselben Zeichen ¢ belegt sein. Die betreffenden Quadrate
Q; und ©; sind dann aber nicht orthogonal, denn die Kombination ## kommt ja
bereits in einem Feld der ersten Zeile vor. Damit ist gezeigt, dass stets m<n—1
ist.

Aufgrund der vorgestellten Sitze kann man sagen, dass bis auf Isomorphien die
aus Maximal-Systemen orthogonaler lateinischer Quadrate hervorgehenden endli-
chen affinen Ebenen die einzig moglichen sind. Die Theorie der endlichen affinen
Ebenen erweist sich als identisch mit der Theorie einer bemerkenswerten Klasse
von kombinatorischen Strukturen. Gewisse Existenzfragen iiber affine Ebenen
lassen sich damit von der Theorie der lateinischen Verteilungen her kliren. So
steht bereits fest, dass keine affine Ebene der Ordnung 6 vorhanden ist. Das
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Eulersche Offiziersproblem hat ja fir n=6 keine Losung; es gibt kein Paar von
orthogonalen lateinischen Quadraten der Ordnung 6 und damit erst recht kein
Maximal-System der Ordnung 6.

4. Affine Ebenen der Ordnung 9

Eine affine Ebene der Ordnung » wird fortan mit 9, bezeichnet.

Eingehende Abklidrungen haben gezeigt, dass fir die Ordnungen n=2,3,4,5,7,8
bis auf Isomorphien nur je eine affine Ebene existiert, nimlich die Ebene, die
vermOge der Formel von Ryser aus dem betreffenden Galois-Feld hervorgeht. Die
kleinste Ordnung bei der nichtisomorphe affine Ebenen vorhanden sind, ist n=9.
Anschliessend sollen drei nichtisomorphe affine Ebenen %3, %g und A’ vorgestellt
werden, verbunden mit der Absicht, dem Leser die Kombinatorik in geometri-
schem Gewande etwas niherzubringen.

Die Nichtisomorphie zweier Ebenen ¥, und A aufzuzeigen, die durch Systeme
von n— 1 paarweise orthogonalen lateinischen Quadraten der Ordnung dargestellt
sind, ist keineswegs trivial. Jede Beschreibung einer affinen Ebene der Ordnung n
mit lateinischen Quadraten macht nimlich die Auszeichnung von 2 der n+1
vorhandenen Parallelenfelder erforderlich; es sind dies die beiden Parallelenfelder,
die in die Zeilen und in die Kolonnen des n x n-Schachbrettes eingehen. Um nicht
auch noch einer Willkiir in der Zeichenverteilung bei den einzelnen lateinischen
Quadraten Q; ausgesetzt zu sein, kann man diese so normieren, dass die ersten
Zeilen durchgehend gleich lauten, z.B. so wie in der Figur 4. Die Asymmetrie
in bezug auf die Parallelenfelder ldsst sich aber nicht aus der Darstellung heraus-

halten, d.h. es gibt fir eine bestimmte Ebene %, (Z) vollig gleichberechtigte

Beschreibungen mit lateinischen Quadraten. Ebenen mit gleicher Ordnung sind
daher auf dieser Basis nicht ohne weiteres vergleichbar.

Aus der Geometrie des Anschauungsraumes ist eine Reihe von sog. Schliessungs-
figuren bekannt, die mit bestimmten einfachen Transformationen in Verbindung
stehen. Wir greifen zwei dieser Schliessungsfiguren heraus (Fig. 5):

Schliessungsfigur Dy Schliessungsfigur Dg
a, b, c parallel a,b,c inzident mit Punkt S

Figur 5
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In beiden Féllen kann die Schliessung mit derselben Implikation beschrieben
werden:

fif und glg = #A)h.

Die Schliessungsfigur Dy steht den Translationen nahe. Insbesondere zeichnet sich
in Dy ab, dass zu zwei Punkten 4 und 4 eine Translation 7 existiert, bei der
A=(A)7 ist. Sind nimlich 4 und 4 zugeordnete Punkte bei einer Translation 7,
dann lidsst sich das Bild eines Punktes B iiber die Parallelen f f und die Spur-
gerade b konstruieren. In gleicher Weise erhilt man C=(C)r iiber g g und die
Spurgerade c. Die Konstruktion von C kann nun aber auch am Punktepaar (B, B)
angehidngt werden. Man erhilt nur dann denselben Bildpunkt C, wenn die Schlies-
sungsfigur Dy vorhanden ist; Dy garantiert die Kompatibilitat der beiden Kon-
struktionen fiir den Punkt C.

Die Schliessungsfigur D¢ garantiert in gleicher Weise zu drei kollinearen Punkten
SAA (S #A,A) die Existenz einer Streckung ¢ mit dem Fixpunkt S, bei der 4 in 4
iibergeht.

Dy und Dy sind affine Sonderfille der sog. Desargues-Schliessungsfigur.

Die Schliessungsfiguren D, und Dg sind auch in allen affinen Ebenen durch-
gehend vorhanden, die aufgrund der Formel von Ryser aus einem Galois-Feld
hervorgehen. Zur Illustration dieses Sachverhaltes betrachten wir zunichst eine
Einzelfigur Dy in der Ebene ,. Wir stiitzen uns dabei auf die Darstellung von %,
mit den drei lateinischen Quadraten 2,,Q,,€2;, die durch die Formeln (2.4) definiert
sind:

—_—O W N
O - N W
-0 N O
bCNWt—-
W - 0O N
N O - W
[SS B VS I )
-t O W

2
1
3
0

W -0

1 1
0 2
3 0
2 3
Q Q

1 2 3

Das Feld (Punkt) in der i-ten Zeile und j-ten Kolonne bezeichnen wir jetzt mit P;.
Ferner sei 2®) die Gerade, die durch das Zeichen k in Q, gekennzeichnet ist. Mit

Q&O), Q&l), 932), Q?)

bezeichnen wir schliesslich noch die 4 Geraden, die mit den Punkten in einer
bestimmten Zeile, mit

QgO)’le),Qg)"Q?)

die 4 Geraden, die mit den Punktenin einer bestimmten Kolonne inzident sind.
Man kann dies als Adjunktion zweier pseudolateinischer Quadrate

0000 0123
1111 0123
2222 0123
3333 0123
Q4 Qs

interpretieren.
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P,
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Die Figur 6 zeigt das Inzidenzschema einer D,-Schliessungsfigur. Sie ist aufgebaut
auf den drei Parallelen 2", Q{D, 2 und den beiden Punkten Py, und P,, auf Q{.
Zeichnet man zusétzlich die Parallelenfelder €2, und Q; aus, dann erhélt man durch
Py, die Geraden Q) und Qf), durch P,, die Geraden Q{ und Q. Die Geraden
aus dem Feld Q, sollen nun mit Q{, jene aus dem Parallelenfeld Q; mit QD
geschnitten werden. Der Schnittpunkt von Q{¥ und Q) ist das Feld, das von @,
her mit 0 und von Q, her mit 3 belegt ist.

Q(O) 0(13)

Figur 7

Mit der gleichen kombinatorischen Uberlegung findet man die weitern erforderli-
chen Schnittpunkte:

QP/QP = Punkt Py,
QY /Q() = Punkt P;,,
QP /Q) = Punkt P,q.

Die Abschlussgeraden sind die Verbindungsgeraden

P30/P]0 => Gerade.ng).
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Sie sind tatsidchlich parallel. Die affine Ebene %, umfasst 5 Parallelenbiischel;
jede D-Figur beansprucht 4 davon.

Der generelle Nachweis der Schliessungsfiguren D, und Dy in der affinen Ebene ¥,
die vermoge der Ryserschen Formel aus dem Galois-Feld GF(n) hervorgeht, ist
durch Ubergang zur isomorphen Koordinaten-Ebene %, moglich. Man gelangt dazu
mit den folgenden Ersetzungen:

Ebene 9, Ebene 9,
Punkt P, —  (x,y)
Gerade Qgcv) —>> (h,1,0) h=12 1
Gerade Q© F———> (1,0,¢) e

Gerade Q?c)

“©, F——>> (0,1,¢)

Q,und Q, . ; sind jetzt die pseudolateinischen Quadrate der Ordnung n.

Der Punkt (x,y) ist genau dann mit der Geraden (a,b,c) inzident, wenn ax+by=c¢
ist.

In der Koordinaten-Ebene 9, wird eine Translation beschrieben durch

=X +p
+ 4.1)

und eine Streckung mit dem Fixpunkt (x,, y,) hat die Abbildungsgleichungen

X —xg=a(x—Xxp) .
F= o =a (y—yy) mit a#0. 4.2)
Aufgrund der Korper-Eigenschaften kann man nun schliessen, dass zu zwei be-
liebigen Punkten stets eine Translation vorhanden ist, die den einen in den
andern iiberfiihrt. Ferner kann man zeigen, dass zu drei verschiedenen kollinearen
Punkten stets eine Streckung existiert, die den ersten unter ihnen zum Fixpunkt
hat und einen der beiden andern in den dritten transformiert. Damit sind aber Dy
und Dg durchgehend gewihrleistet.

Mit den Schliessungsfiguren Dy und Dy lassen sich nun kombinatorische Unter-
schiede in affinen Ebenen gleicher Ordnung nachweisen. Dieser Gedanke kommt
bei der anschliessenden Vorstellung von drei nichtisomorphen affinen Ebenen der
Ordnung 9 zum Tragen.

Als erstes Beispiel bietet sich die mit der Formel von Ryser aus GF(9) kon-
struierbare affine Ebene %3 an. Darin sind - wie eben gezeigt - die Schliessungs-
figuren Dy und Dy uneingeschrinkt vorhanden. Ein Satz aus der affinen Inzi-
denzgeometrie besagt iibrigens, dass D¢ die Figur D, impliziert: Wenn Dg in einer
affinen Ebene durchgehend vorliegt, dann gilt dies auch fiir D).

6) Vgl. [5), S. 16.
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Stiitzt man sich fir GF(9)=[N§; + ,.] auf die Verkniipfungstafeln

WO I~NANWV — O
SO~V T AN O 0N —
(i iOoOVveOn —~~ < oW
Niowvimow —~o O AN
t|loton O —~r~em
Nn|loMmOANWn oo —~ T~
N|ON—~\OVOoO~MWn
—_ | O =Nt O~ 00
Clococoocococooco

O = NN O~ 00
00 OO =y N <t
N~ O~ N TN O
O | OM~0O —~ NN
Nt OO ~
|t A~ 0—~NO
Nl O~00 =
N NO —~wneen <t o0~
—|l—NO WV~ O
OO —~N < VO~
tlo—NnontnnoOor~ o

[Ng; -1

[N§; +]

dann wird man auf das folgende System von 8 paarweise orthogonalen lateinischen

Quadraten der Ordnung 9 gefihrt:

2

012345678

®45678012

2,

012345678
®01534867

2

012345678
20453786

120453786 678012345 67201534
534867201
678012345

678012345

201534867

201534867
534867201

345678012

867201534
786120453

453786120
534867201
678012345

120453786
786120453
201534867
345678012

867201534

120453786
453786120

345678012
534867201

786120453

453786120 786120453

867201534

Qg

012345678

®67201534

£2,

012345678

MD86120453

Qs

012345678
®©®78012345

Qs

0123456738

®34867201

345678012 534867201 453786120
786120453

786120453
867201534

453786120
201534867

120453786
786120453
453786120

345678012
201534867
534867201

120453786

678012345
867201534

345678012

201534867

453786120

867201534 345678012 120453786
678012345

534867201

678012345

120453786

201534867

Wegen

aP=h-j+k

reproduzieren sich in den Zeilen der 2, die Zeilen der Additionstafel. Das vor-

liegende Maximal-System ist also aus 9 verschiedenen Zeilen aufgebaut. Da speziell

1 —_

ist, erscheint in Q, eine Kopie der Additionstafel. Ferner entnimmt man aus

=h-j,

()

ajo
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dass die vorderste Kolonne von 2, mit der A-ten Zeile der Multiplikationstafel
iibereinstimmt. Fiir die beiden in GF (9) steckenden Gruppen besagt die Theorie der
endlichen Kérper, dass

[N$; +]~38;x8; und [Ng;-]~38g").

Das letztere ldsst sich leicht bestitigen anhand der Tatsache, dass 4 in der multi-
plikativen Gruppe ein Element der Ordnung & ist.

Dem zweiten Beispiel wird das folgende Maximal-System von orthogonalen lateini-
schen Quadraten zugrunde gelegt, das von Statistikern aufgestellt worden ist®).

Q, 2, 2, Q,
012345678 012345678 012345678 012345678
@20453786 @01534867 ®45678012 @D53786120
201534867 120453786 678012345 867201534
345678012 678012345 201534867 786120453
453786120 867201534 534867201 2015348617
534867201 786120453 867201534 345678012
678012345 345678012 120453786 534867201
786120453 534867201 453786120 678012345
867201534 453786120 786120453 120453786

Qs Q¢ o2t Qg
012345678 012345678 012345678 012345678
®34867201 ®78012345 (D86120453 @®67201534
786120453 345678012 534867201 453786120
453786120 120453786 867201534 534867201
678012345 786120453 345678012 120453786
201534867 453786120 120453786 678012345
867201534 201534867 453786120 786120453
120453786 867201534 201534867 345678012
345678012 534867201 678012345 201534867

Die lateinischen Quadrate €2,,€0,,2; und ¢ stimmen mit den entsprechenden
Quadraten in der Darstellung der affinen Ebene 9§ iiberein. Der Zusammenhang
mit dem fritheren Maximal-System geht aber noch tiefer; auch das neue Maximal-
System besteht wieder aus denselben 9 Zeilen. Dies legt nun nahe, dasselbe Kon-
struktionsgesetz zu unterlegen, mit dem aus GF(9) die Ebene 9§ gewonnen wurde
und von diesem jetzt riickwirts auf ein Verkniipfungsgebilde [N, ©, ©] zu schlies-
sen. Mit dem Ansatz

a}ﬁ)=h®j€Bk h=12,...,n—1 . 4.3)
kann man zunichst aus 2, die Additionstafel erhalten. Ferner liest man aus den

7T) 3, bezeichnet die abstrakte zyklische Gruppe der Ordnung n.

8) Vgl. R.A. Fisher und F. Yates: Statistical Tables, S.63. London 1948. Fiir unsere Belange wurde
bloss die Reihenfolge der Quadrate umgestellt, und zwar so, dass in £, das mit einem Kreislein
markierte Feld mit dem Zeichen h belegt ist.
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vordern Kolonnen von Q,,9Q,,...,2; die 8 wesentlichen Zeilen der Multiplikations-
tafel heraus. Postuliert man noch

00a=0 firalle aeNf,

dann steht auch die erste Zeile der Multiplikationstafel fest.

®|012345678 ©|0123456738
0({0123456738 0({000000000O0
1120854763 110123456738
21201687354 21021687354
31348016527 3(036258147
41475203816 41048723561
5(584760231 5(]/057462813
6657431082 6/063174285
71736128405 71075831426
81863572140 81084516732

Wegen der Ubereinstimmung von 2, mit dem entsprechenden Quadrat in der
Darstellung von g ist

[Ng; @]~ [N§; +]1~33% 33.

Auch das Verkniipfungsgebilde [Ng; ©] ist immer noch eine Gruppe, die jetzt aller-
dings nicht mehr abelsch ist. Die vorliegende Multiplikationstafel ldsst auf 6
Elemente der Ordnung 4 und ein Element der Ordnung 2 schliessen. Unter den
5 existierenden abstrakten Gruppen der Ordnung & weist nur die Quaternionen-
gruppe { diese Ordnungen auf®); es ist daher

[Ng; ©]=2.

Die Verkniipfungstafel fiir [Ng; ©] hat folgende, nicht sofort erkennbare Eigen-
schaft: Bildet man die Summe zweier Kolonnen, dann erhidlt man stets wieder
eine Tafelkolonne. So ist etwa

0©0=0
3@5=8
607=4
208=7
71©3=1
402=3
1®4=5
3B1=6
506=2

Diese Eigenschaft ist gleichbedeutend mit

9) Vgl. etwa W. Ledermann: Einfithrung in die Gruppentheorie, S.39. Braunschweig 1977.
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@Ob)®@Oc)=a0OBd®c) furalle a,b,ceN§,

d.h. das Verkniipfungsgebilde [N§; ©, O] ist links-distributiv. Rechts-Distributivitit
besteht nicht, wie das folgende Beispiel belegt:

RBD3)O5=205=17; BO5P(BOS5)=6D8=S5.

Das vorliegende Verkniipfungsgebilde ist ein sog. links-distributiver Fast-Kérper!©).
Zur affinen Ebene U¢, die durch das einem statistischen Tabellenwerk entnommene
Maximal-System definiert ist, lasst sich jetzt eine isomorphe Koordinaten-Ebene (¢
iiber dem Fast-Korper [N§; ®, ©] konstruieren. Punkte von 94 sind die Paare
(x,y) mit x,yeNg, Geraden die Tripel (4,1,¢), (1,0,c), (0,1,c) mit heNg und
ceN§. Der Punkt (x,y) ist genau dann mit der Geraden (a, b, c) inzident, wenn

@ox)®®oOy)=c
ist. Die Gleichungen

xX=x@p
_ 44
y=y®q 44

beschreiben eine Transformation auf der Menge der Punkte von A{, bei der die
kollineare Lage von Punkten erhalten bleibt. So besteht etwa die Implikation

(hOX)By=c=(hOX)Dj=hOxPp)®(yDq)=(hOx)Dy®(hOp)dg=C¢C.

Bei der Umformung wurde von der Links-Distributivitit Gebrauch gemacht.

Die Implikation besagt, dass eine Gerade und ihr Bild stets parallel sind. Zugleich
kann man daraus entnehmen, dass das Spurbiischel ein Parallelenbiischel ist; die
Gleichungen (4.4) beschreiben somit eine Translation.

10}
2

. /
Vd L /
Pk <
Q0 (‘3, // Pia ﬂ‘:’
\8)
L4 Q:n
Figur 8

10) Vgl. [5], S.201.
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Zu jedem Punktepaar (py,p,), (p;,p;) gibt es offensichtlich eine Translation, womit
die Schliessungsfigur D, durchgehend garantiert ist. Wegen der Kommutativitit
der Addition sind iibrigens zwei Translationen 7, und 7, stets vertauschbar.

Die Schliessungsfigur Dy ist hingegen in der Ebene %§ nicht durchgehend vorhan-
den. Dies geht aus dem Beispiel in der Figur 8 hervor, das mit den gleichen
kombinatorischen Uberlegungen gewonnen wurde, mit denen wir in der Ebene
9, eine einzelne D -Figur nachgewiesen haben. Die beiden abschliessenden
Geraden Q) und Q® sind nicht parallel. Damit steht fest, dass die affinen Ebenen
%4 und A§ nicht isomorph sind.

Eine dritte affine Ebene %Ag” geht aus dem folgenden Maximal-System hervor, das
vermutlich ebenfalls Statistikern zu verdanken ist!!). Die Anordnung der 8 lateini-
schen Quadrate wurde wiederum so gewihlt, dass in £, an der mit einem Kreislein
bezeichneten Stelle das Zeichen 4 steht.

2, 2 Q3 Q4 ‘
012345678 012345678 012345678 012345678
20453786 (@01534867 @45678012 @D53786120
201534867 120453786 678012345 867201534
345678012 678012345 201786453 786453201
453786120 867201534 534120786 201867345
534867201 786120453 867453120 345012786
678012345 345678012 120867534 534120867
786120453 534867201 453201867 678534012
867201534 453786120 786534201 120678453

Qs Q 2, Qg
012345678 012345678 012345678 0123456738
®34867201 ®78012345 @D86120453 @67201534
786120453 345678012 534867201 45[3]786[1J20
453201786 120867534 867534120 5341208617
678453012 786534201 345012867 120678453
201678534 453201867 120786345 678534012
867534120 201786453 453201786 786453201
120786345 867453120 201678534 345012786
345012867 534120786 678453012 20[1]867[3]45

2, und Q, stimmen iiberein mit den entsprechenden lateinischen Quadraten in den
Darstellungen von 9§ und %Ag. Die 8 Quadrate sind jetzt aber nicht mehr aus nur
9 Zeilen aufgebaut. Es ist daher nicht mehr mdoglich, der affinen Ebene die
Rysersche Formel zu unterlegen und auf diesem Wege zu einer algebraischen
Struktur mit zwei 2stelligen Verkniipfungen zu gelangen.

In der neuen affinen Ebene A§” ist die Schliessungsfigur D, auf sdmtlichen
Parallelenfeldern nur noch isoliert vorhanden, was sich leicht an geeigneten
Beispielen zeigen lidsst. Die Figur 9 illustriert diesen Sachverhalt fiir das Parallelen-
feld, das zum Quadrat 2, gehort.

Mit f f aus dem Parallelenfeld in Q4 und g g aus dem Parallelenfeld in Q4 erhilt
man die beiden abschliessenden Geraden QY und Q{, die offensichtlich nicht

11) Vgl. R.C. Bose und K.R. Nair: On complete sets of latin squares. Ind. J. Statist. 5 (1940/41).
Auf dieses Maximal-System wird auch in [7] hingewiesen (S.293).
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y / / \_\
al¥! 3
/En /;N l ./p A
o /. - 2 N o
/ 9=0] / g=n i 7/ Q)
/ / /
/ / |/
nlo) X
! /] Foe /] Fes /)'p“
/ / j
a¥® 1= g al® 7=ql® o ol
Figur 9

parallel sind. Die Erginzung mit dem Ausgangspunkt P;; zeigt aber zugleich, dass
isolierte D-Figuren vorhanden sind; die Geraden Q) und Q® sind namlich
parallel. )

Machen wir jetzt kurz eine Bestandesaufnahme: In der Ebene % sind Dg und D,
generell vorhanden, in der Ebene g gilt dies nur noch fir die D~Figur, und in
Ag” ist keine der beiden Schliessungsfiguren durchgehend. Die drei affinen Ebenen
A, AY und AY” sind daher nicht isomorph. A{ ist ein Beispiel fir eine sogenannte
Desargues-Ebene, Ug ist ein Beispiel fur eine sogenannte Translations-Ebene (es
gibt darin zu jedem Punktepaar eine Translation), und A¢” ist eine affine Ebene,
die in bezug auf die Schliessungsfiguren Dy und D auf der untersten Stufe steht.
Es gibt iibrigens auch noch eine affine Ebene der Ordnung 9, in der die
Schliessungsfigur Dy auf genau einem Parallelenfeld durchgehend vorhanden ist [4],
die also zwischen ¢ und Ag” einzuordnen wire.

Dass in A’ eine isolierte D-Figur nachgewiesen werden konnte, ist kein Zufall.
Es gilt ndmlich der

Satz 4. In jeder endlichen affinen Ebene U, gibt es auf drei beliebigen Parallelen
p q rimmer eine D -Figur.

Dies ist ein Satz von T.G. Ostrom!?). Der Beweis ist sehr einfach; er stiitzt
sich auf eine typisch kombinatorische Uberlegung. Man kann sogar die beiden
Parallelenbiischel B, und B, vorgeben, dem die f~Geraden und die g-Geraden
angehoren sollen (Fig.9). Denkt man sich in allen Punkten P der Geraden p die
Figur {f,g,h} mit fe B, und geB, konstruiert, dann stehen fur die Schlussgerade A
noch (n+ 1)—3=n—2 Parallelenbiischel offen. Es muss daher zwei Punkte P, P,
auf p geben, die parallele Schlussgeraden A, h, aufweisen. Dies ist aber gleich-
bedeutend mit der Existenz einer D-Figur im Parallelenbiischel der drei Geraden
pqundr.

Mit einer #hnlichen Uberlegung kann' in jeder endlichen affinen Ebene auf drei
beliebigen kopunktalen Geraden p q r eine D ¢-Figur nachgewiesen werden.

Die drei vorgestellten affinen Ebenen der Ordnung 9 lassen erkennen, dass die
Schliessungsfiguren D¢ und Dy nicht Folgerungen aus den Axiomen (A;), (A;) und
(A,) sein kénnen. Damit ist ein weiteres Unabhéngigkeitsproblem im Rahmen der

12) T.G. Ostrom: Transitivities in Projective Plans. Can. J. Math. 9 (1951).
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affinen Inzidenzgeometrie angesprochen, das ebenfalls anhand eines geeigneten
Modells vollstandig gekldrt werden kann. Transfinite affine Ebenen, in denen der
Satz von Desargues nicht gilt, sind zwar schon seit der Jahrhundertwende bekannt
(Moulton-Ebenen). Bemerkenswert ist nun aber, dass grundlagentheoretische
Fragen aus der Geometrie gelegentlich mit kombinatorischen Uberlegungen beant-
wortet werden konnen. Dazu sei noch ein weiteres Beispiel angefithrt. Von der
Geometrie des Anschauungsraumes her ist man sich gewohnt, dass sich die Dia-
gonalen eines Parallelogrammes in einem Punkt schneiden. Auch dieser Sachverhalt
gehort nicht zur ebenen affinen Inzidenzgeometrie, was das Modell %A§” belegt.
In der affinen Ebene Ag” gibt es ndmlich vereinzelt Parallelogramme mit parallelen
Diagonalen. Ein solches Beispiel ist das Parallelogramm mit den vier in Qg ausge-
zeichneten Feldern als Eckpunkten. Aus 24 entnimmt man die beiden Diagonalen
2§ und Q@); dies sind offensichtlich parallele Geraden. Der Leser wird in der Dar-
stellung der affinen Ebene %§” leicht weitere derartige Ausnahmeparallelogramme
erkennen. Daneben gibt es aber in der Ebene %y’ auch ganz normale Parallelo-
gramme.
Es gibt nun affine Ebenen, in denen nur normale Parallelogramme auftreten. Man
nennt sie Fano-Ebenen'®). Dazu gehoren alle endlichen Ebenen, die aus einem
Galois-Feld mit einer von 2 verschiedenen Charakteristik hervorgehen.
Der Beweis kann mit Methoden der analytischen Geometrie erbracht werden. Hat
der zugrundeliegende Korper hingegen die Charakteristik 2, dann haben sdmtliche
Parallelogramme parallele Diagonalen. Man spricht dann von einer Anti-Fano-
Ebene. Beispiele hierfur sind die affinen Ebenen %, (Tetraedermodell) und 34,
denen wir frither begegnet sind.

M. Jeger, Mathematisches Seminar, ETH Ziirich

Die Reinzeichnungen der Figuren hat mein Assistent A. Frei ausgefithrt, wofiir
ihm an dieser Stelle herzlich gedankt sei.
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