Zeitschrift: Elemente der Mathematik

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 36 (1981)

Heft: 3

Rubrik: Aufgaben

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 29.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

64 Aufgaben

REFERENCES

1 E.F. Beckenbach and R. Bellman: Inequalities, 2nd ed. Springer Verlag, Berlin, Heidelberg, New York 1965.

- 2 G.H. Hardy, J.E. Littlewood and G. Pólya: Some simple inequalities satisfied by convex functions. Mess. Math. 58, 145-152 (1929).
- 3 G.H. Hardy, J.E. Littlewood and G. Pólya: Inequalities, 2nd ed. Cambridge University Press, 1964.
- 4 J. Karamata: Sur une inégalité relative aux fonctions convexes. Publ. math. Univ. Belgr. 1, 145-148 (1932).
- 5 G. Klambauer: Problems and Propositions in Analysis. Marcel Dekker, New York 1979.
- 6 H. Kenyon: Note on convex functions. Am. Math. Monthly 63, 107 (1956).
- 7 V.L. Klee: Solution of a problem of E.M. Wright on convex functions. Am. Math. Monthly 63, 106-107 (1956).
- 8 D.S. Mitrinović: Analytic Inequalities. Springer Verlag, Berlin, Heidelberg, New York 1970.
- 9 E.J. Nanson: An inequality. Mess. Math. 33, 89-90 (1904).
- 10 I. Schur: Über eine Klasse von Mittelbildungen mit Anwendungen auf die Determinantentheorie. Sber. Berl. Math. Ges. 22, 9-20 (1923) (also in: Gesammelte Abhandlungen, Vol.II, p.416-427, Springer Verlag, 1973).
- 11 G. Szegő: Über eine Verallgemeinerung des Dirichletschen Integrals. Math. Z. 52, 676-685 (1950).
- 12 J.M. Wilson: Problem 1521. Math. Quest. Educ. Times 8, 14-15 (1868).
- 13 E.M. Wright: An inequality for convex functions. Am. Math. Monthly 61, 620-622 (1954).

Aufgaben

Aufgabe 841. Sechs in einer Ebene liegende Kreise, die einen gegebenen Grundkreis k rechtwinklig schneiden, seien so angeordnet, dass im Inneren von k ein rechtwinkliges Kreisbogensechseck s entsteht. Zu je zwei Gegenseiten von s existiert dann genau ein Mittellot, d.i. ein Kreis, der diese Seiten und den Grundkreis rechtwinklig schneidet. Man zeige, dass sich die drei Mittellote innerhalb s in einem Punkt schneiden. Der Beweis ist ohne Hilfsmittel der hyperbolischen Geometrie zu führen.

P. Buser, Bonn, BRD

Lösung: Im folgenden wird bezeichnet: Der Mittelpunkt von k mit M; die Kreise, auf denen die Seiten des Kreisbogensechsecks liegen, mit $k_1, ..., k_6$, ihre Mittelpunkte mit $M_1, ..., M_6$; die Lotkreise der Seitenpaare (k_i, k_{i+3}) mit l_i und ihre Mittelpunkte mit L_i , i = 1, 2, 3.

Aus den Voraussetzungen folgt zunächst, dass die l_i paarweise reelle Schnittpunkte haben. Zum Nachweis, dass sie genau zwei Punkte S_1, S_2 gemeinsam haben, also demselben elliptischen Kreisbüschel angehören, genügt es zu zeigen, dass ihre Mittelpunkte L_i kollinear sind.

Das Dreieck $M_1M_3M_5$ liegt polar zum Dreieck $M_2M_4M_6$ in bezug auf den Grundkreis, denn die Schnittpunktsehne von k_1 und dem Grundkreis ist einerseits die Polare von M_1 bezüglich k, da k_1 den Grundkreis rechtwinkelig schneidet, und andererseits müssen die Punkte M_2 und M_6 in ihrer Eigenschaft als Potenzpunkte von k_1, k_3 und k bzw. von k_5, k_1 und k auf dieser Schnittpunktsehne in ihrer Eigenschaft als Potenzlinie von k_1 und k liegen; k_2 und k_6 schneiden ja k_1 und k

Aufgaben 65

unter 90°. Dasselbe gilt zyklisch vertauscht für alle 6 Mittelpunkte der Seiten des Kreissechsecks. Bei 2 polar zueinander liegenden Dreiecken befinden sich aber die 3 Schnittpunkte entsprechender Seiten auf einer Geraden. Da nun die Lotkreise je 2 gegenüberliegende Kreissechseckseiten und den Grundkreis rechtwinkelig schneiden, ist jeder ihrer Mittelpunkte der Potenzpunkt eines solchen Kreistripels. So ist zum Beispiel L_1 der Potenzpunkt der Kreise k_1, k_4 und k. D. h. aber, dass L_1 der Schnittpunkt der beiden Potenzlinien der Kreispaare k_1, k und k_4, k und somit der Schnittpunkt der Geraden M_2M_6 und M_3M_5 ist. M_2M_6 und M_3M_5 sind aber entsprechende Seiten der beiden polar liegenden Dreiecke. Genauso lässt sich zeigen, dass L_2 der Schnittpunkt der Geraden M_1M_3 und M_4M_6 und L_3 der Schnittpunkt von M_2M_4 und M_5M_1 ist. L_1 , L_2 und L_3 liegen daher auf einer Geraden und sind die Mittelpunkte dreier Kreise, die einen Kreis, nämlich den Grundkreis, unter 90° schneiden, d. h. diese 3 Kreise gehören demselben Kreisbüschel an und haben daher nur 2 Schnittpunkte S_1 und S_2 gemeinsam.

Nun ist noch zu beweisen, dass einer dieser beiden Punkte innerhalb des Kreissechsecks liegen muss. Dazu vergegenwärtige man sich, dass eine Inversion mit k als Inversionsgrundkreis das gesamte Bild unverändert lässt, da alle Kreise k rechtwinkelig schneiden. Die beiden Schnittpunkte der 3 Lotkreise tauschen demnach ihre Plätze, d.h. einer von ihnen muss innerhalb k liegen. Der weitere Beweis wird unter der Annahme geführt, dass alle Sechseckseiten nach aussen konkav sind. Die Verbindungsgerade M_1M_5 als Potenzlinie von k und k_6 enthält auch den Punkt L_3 - wie oben dargelegt - und steht senkrecht auf der Geraden MM_6 . Da k_1, l_3 und k_5 den Grundkreis k rechtwinkelig schneiden und ihre Mittelpunkte auf einer Geraden liegen, so gehören die drei Kreise demselben Büschel an. k und k_6 bestimmen das dazu konjugierte Büschel mit der Achse MM_6 . Da von 2 konjugierten Kreisbüscheln entweder der eine hyperbolisch und der andere elliptisch oder beide parabolisch sein müssen (siehe z.B. M. Zacharias: Elementargeometrie der Ebene und des Raumes, S. 108) und sich k_6 und k in 2 Punkten schneiden, so enthält das Kreisbüschel zu dem k_1, l_3 und k_5 gehören keine Grundpunkte; d.h. l_3 schneidet wohl k_6 , aber nicht k_1 und k_5 . In der gleichen Weise beweist man, dass l_3 den Kreis k_3 , aber nicht k_2 und k_4 schneidet. Durch zyklische Vertauschung kommt man zu dem Satz, dass jeder Lotkreis keinen der Seitenkreise schneidet ausser jenen beiden, bei denen dies rechtwinkelig geschieht. Die Schnittpunkte aller 3 Lotkreise müssen daher ausserhalb der die Seiten des Kreissechsecks bildenden Kreise liegen. Da aber ein Schnittpunkt innerhalb k liegen muss (siehe oben), so muss dieser Schnittpunkt auch innerhalb des Kreissechsecks liegen.

Ist eine der Kreissechseckseiten nach aussen konvex, so umschliesst diese alle nicht benachbarten Seitenkreise und die beiden Lotkreise der benachbarten Kreise vollkommen. Der Beweis ist für diesen Fall in gleicher Weise zu führen, nur liegt der bewusste Schnittpunkt dann innerhalb k und des nach aussen konvexen Seitenkreises und ausserhalb aller anderen Seitenkreise, also wieder innerhalb des Kreissechsecks.

E. Ungethüm, Wien, A

Weitere Lösungen sandten L. Kuipers (Mollens VS) und E. Ungethüm (Wien, A, zweite Lösung).

66 Aufgaben

Aufgabe 842. Man bestimme alle $a, b \in \mathbb{R}$ derart, dass

$$ax + b[x \log x + (1-x)\log(1-x)] \ge 0$$
 für alle $x \in]0,1[$.

J. Aczél, Waterloo, Ontario, CDN

Lösung: Für beliebiges $(a,b) \in \mathbb{R}^2$ definieren wir $f_{a,b}$: $[0,1] \to \mathbb{R}$ durch

$$f_{a,b}(x) := \begin{cases} 0 & \text{für } x = 0, \\ ax + b \left[x \log x + (1-x) \log(1-x) \right] & \text{für } 0 < x < 1, \\ a & \text{für } x = 1. \end{cases}$$

 $f_{a,b}$ ist in [0,1] stetig und in]0,1[differenzierbar. Sobald $b \neq 0$ ist, setzen wir $x_0 := e^{-a/b}/(1+e^{-a/b})$ und haben offenbar $x_0 \in$]0,1[sowie nach kurzer Rechnung $f_{a,b}(x_0) = -b \log(1+e^{-a/b})$. Daher kann geschlossen werden: Ist $f_{a,b}$ in]0,1[nichtnegativ, so ist $a \ge 0 \ge b$. Hiervon zeigen wir noch die Umkehrung und haben damit die Aufgabe gelöst: Sei also $a \ge 0 \ge b$ und o. B. d. A. sogar $a \ge 0 > b$. Wäre $f_{a,b}(x_1) < 0$ für ein $x_1 \in$]0,1[, so hätte $f_{a,b}$ in]0,1[wegen seiner Werte in 0 bzw. 1 ein negatives Minimum, etwa in x_0^* ; es müsste dann $0 = f'_{a,b}(x_0^*) = a + b \log(x_0^*/(1-x_0^*))$ gelten, was mit $x_0^* = x_0$ äquivalent ist; jedoch wäre dann $f_{a,b}(x_0^*) > 0$ entgegen der Minimaleigenschaft von x_0^* . Also ist $f_{a,b}$ nichtnegativ in]0,1[, wie behauptet.

P. Bundschuh, Köln, BRD

Weitere Lösungen sandten A. Bager (Hjørring, DK), W. Gorm (Marburg, BRD), W. Janous (Innsbruck, A), H.J. Kleck (Bern), L. Kuipers (Mollens VS), O.P. Lossers (Eindhoven, NL).

Aufgabe 843. Es seien $t_1, ..., t_n (n \ge 2)$ nicht notwendig verschiedene Punkte des reellen Einheitsintervalls [0, 1] und $g_1, ..., g_n$ nichtnegative Gewichte mit $g_1 + \cdots + g_n = 1$. Man interpretiere die beiden Momente

$$x = g_1 t_1 + \dots + g_n t_n$$
 und $y = g_1 t_1^2 + \dots + g_n t_n^2$

als kartesische Koordinaten eines Punktes in der Ebene.

- 1. Welche Punktmenge M beschreibt (x, y) bei variablen (t_i) , (g_i) ?
- 2. Man bestimme max $\{y-x^2 \mid (x,y) \in M\}$.

A. Pfluger, Zürich

Lösung: 1. Für n=1 erhält man die Grundlösungen $(x,y)=(t,t^2)$, $0 \le t \le 1$, d. h. alle Punkte auf einem Parabelbogen. Für n>1 besteht die Menge M genau aus allen konvexen Linearkombinationen der Grundlösungen. M ist daher die konvexe Hülle des Parabelbogens, d. h. das Parabelsegment

$$M = \{(x, y) | x^2 \le y \le x, \quad 0 \le x \le 1\}.$$

2. $\max\{y-x^2 \mid (x,y) \in M\} = \max\{x-x^2 \mid 0 \le x \le 1\} = 1/4$. J. Schaer, Calgary, CDN

Neue Aufgaben 67

Weitere Lösungen sandten P. Bundschuh (Köln, BRD), P. Hajnal (Szeged, YU), W. Janous (Innsbruck, A), L. Kuipers (Mollens VS), O. P. Lossers (Eindhoven, NL).

Neue Aufgaben

Die Lösungen sind getrennt nach den einzelnen Aufgaben in Maschinenschrift erbeten bis 10. Dezember 1981 an Dr. H. Kappus. Dagegen ist die Einsendung von Lösungen zu den mit Problem ... A, B bezeichneten Aufgaben an keinen Termin gebunden.

Bei Redaktionsschluss dieses Heftes sind noch ungelöst: Problem 601A (Band 25, S. 67), Problem 625B (Band 25, S. 68), Problem 645A (Band 26, S. 46), Problem 672A (Band 27, S. 68), Aufgabe 680 (Band 27, S. 116), Problem 724A (Band 30, S. 91), Problem 764A (Band 31, S. 44).

Aufgabe 860. P(n) bzw. p(n) bezeichne den grössten bzw. den kleinsten Primteiler von n. Man zeige:

$$\sum_{n=1}^{x} \frac{P(n)}{n} = \frac{\pi^2}{6} \left(1 + o(1) \right) \frac{x}{\log x},\tag{1}$$

$$\sum_{n=1}^{x} \frac{p(n)}{n} = \pi(x) + O\left(\frac{x^{1/2}}{\log x}\right). \tag{2}$$

P. Erdös

Aufgabe 861. Für alle $\alpha, \beta \in \mathbb{R}$ mit $\alpha + n\beta \neq (2k+1)\pi/2$, $n = 0, 1, 2, 3, k \in \mathbb{Z}$, zeige man die Gültigkeit der Identität

$$[\tan(\alpha+3\beta)-\tan\alpha] [\tan(\alpha+2\beta)-\tan(\alpha+\beta)]$$

$$= (4\cos^2\beta-1) [\tan(\alpha+3\beta)-\tan(\alpha+2\beta)] [\tan(\alpha+\beta)-\tan\alpha].$$

H. Schilt, Biel

Aufgabe 862. Let P be a point in the interior of a triangle with vertices A_i and vertex angles a_i , and set $\beta_i = \angle PA_iA_{i+1}$ (i=1,2,3), with $A_4 \equiv A_1$. Abi-Khuzam [1] asked recently in this Journal whether it is necessarily the case that

$$\prod \beta_i \le \prod (a_i/2),\tag{1}$$

concerning which it is well-known that

$$\prod \sin \beta_i = \prod \sin(\alpha_i - \beta_i) \le \prod \sin(\alpha_i/2), \tag{2}$$

68 Literaturüberschau

and for which Abi-Khuzam showed that the Brocard angle ω , determined by P being such that $\beta_i = \omega$ (i = 1, 2, 3) and given by

$$\cot \omega = \sum \cot a_i, \tag{3}$$

satisfies the inequality

$$\omega^3 \le \prod (a_i - \omega). \tag{4}$$

Show that (1) does not always hold.

Aufgabe 862A. With the notation of Aufgabe 862, prove or disprove the inequality

$$\prod (a_i - \omega) \le \prod (a_i/2)$$
. D. J. Daley, Canberra, Australia

REFERENCES

1 F.F. Abi-Khuzam: Inequalities of Yff type in the triangle. El Math. 35, 80-81 (1980).

Literaturüberschau

K. Hässig: Graphentheoretische Methoden des Operations Research. 160 Seiten, 137 Abbildungen, DM 26.80. Teubner, Stuttgart 1979.

Aus der Sicht des Operations Research werden die wichtigsten für dieses Gebiet relevanten graphentheoretischen Methoden behandelt. Dabei geht es vor allem um Probleme der kürzesten und längsten Wege – mit Anwendung auf die Netzplantechnik – sowie um Fluss- und Potentialdifferenzenprobleme. Entsprechend dem anvisierten Leserkreis wird auf die Beziehungen zur Theorie der linearen Programmierung grosser Wert gelegt.

P. Läuchli

U. Dudley: Elementary Number Theory. 2. Auflage, IX und 249 Seiten, US-\$16.50. Freeman, San Francisco 1978.

This is an introduction to elementary number theory that advances at a leisurly pace through the classical topics of the subject. Sections 1 through 5 are devoted to the fundamental properties of integers, and congruences; section 6 is concerned with the theorems of Wilson and Fermat. Arithmetical functions are studied in sections 7 to 9; sections 10 to 12 lead to a proof of the quadratic reciprocity theorem. There follow sections on the representation of numbers, diophantine equations, and the prime-counting function. Each result is preceded by a number of numerical examples, and these give the student a good introduction to the experimental side of number theory. There is a large collection of exercises, almost a thousand in all. This should be a good book for a beginning student.

J. Steinig

K. Hrbacek und Th. Jech: Introduction to Set Theory. Pure and Applied Mathematics, Band 45, VI und 190 Seiten, Fr. 35.—. Dekker, New York, Basel 1978.

Ein Buch wie dieses sollte jeder Student der Mathematik lesen. Es verbindet in glücklicher Weise den axiomatischen Standpunkt, der ohne formale Pedanterie vertreten wird, mit einer auf die lebende Mathematik bezogenen Exposition. Neben der obligatorischen Begründung der reellen Zahlen kommen der Strukturbegriff und die Arithmetik der Kardinal- und Ordinalzahlen nicht zu kurz. Besonders erfreulich ist auch das Eingehen auf die Rolle und den wissenschaftstheoretischen Status der starken mengentheoretischen Hilfsmittel wie Auswahlprinzip, Kontinuumhypothese und grosse Kardinalzahlen.

E. Engeler