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77 ist von 24 kongruenten Fünfecken begrenzt; jedes besitzt eine Symmetrieachse.
Eines ist in Figur 2 mit III III IVV bezeichnet. Man findet

ylri7^=(Vy+v?rT)/3, ii,in=m^=rvvv=2\/7/3,
II,V 2\A^V3 (30)

5.2. Inzidenzen im Kantensystem von FI. Die Polarität an x führt die Verbindungsebene

[pv] komplanarer Kanten von 77 in den Schnittpunkt der entsprechenden
Kanten kß,kv von 77 über; dieser sei mit (pv) bezeichnet. In Figur 2 tragen kß und
kv einen gegen (p v) gerichteten Pfeil. Aus der Ebene eines ebenen Vierkantenzuges
von 77 und aus der Ebene [34f, gegeben durch (21) und (22), erhält man (beim
gewählten Radius von x)

Aus den Ebenen [23]11 und [34]11, gegeben durch (23) und (24), folgt

(31)

(32)

In Figur 2 sind jene Punkte (pv) bezeichnet, die zu den in Figur 1 mit (pv)
bezeichneten Punkten gehören.
Die Punkte <25)I==... bilden den abgestumpften Würfel, der aus 77 durch die
Streckung aus M mit dem Faktor p~2/3 hervorgeht. Wie in 3.3 findet man: Die
Punkte (23)11 bilden ein symmetrisches Polyeder, hingegen (34)1 und (34)11 je ein
unsymmetrisches Polyeder von F. Die Koordinaten der Ecken verhalten sich,
abgesehen von Reihenfolge und Vorzeichen, bei 77(23)1 wie l:p:p2, bei 77(34)1
wie l:p2:p39 bei 77<25>" wie 1:1:p29 bei 77(34)u wie l:p2:p4. Daraus folgt
übrigens: 77 (34)n und 77 (34)1 sind ähnliche Polyeder. Fritz Hohenberg, Graz

Inequalities involving convex sequences

To Ernst Trost on his 70th anniversary

1. Introduction

As an extension of the familiär estimate

a+—>2 (a>09a?l)9
a
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Wilson [12] showed that

l + a2 + a4+ ->+a2n n+l „ .*
z < =—r> («_> l,a>0,ö^ 1);

a + a3 + a5+---+a2n-x n
v

several other proofs were found at the same time ([8], p.205).
Then Nanson [9] proved that

CX + C3+'"+C2n+x c2 + c4+--+c2n
n+l n

for any convex sequence \cx,c2,...,c2n+x} with an odd number of terms; equality
holds if and only if the sequence is an arithmetic progression. The particular case

m which it is a positive geometrie progression, say ck ak~x with a>0, is Wilson's
inequality.
Nanson's proof consists in adding the inequalities

k(n-k) (c2k-lc2k+x + c2k+2)^0, k(n-k+l)(c2k_x-lc2k + c2k+x)^0

fork= l,...,n— 1.

Another proof, indicated in ([3], Theorem 130), uses the 'majorization theorem' due

(in various forms) to Schur [10], Hardy, Littlewood and Pölya ([2] and [3], Theorem
108), and Karamata [4].
In section 2 we prove an inequahty for convex sequences with an odd number of
terms which is equivalent to Nanson's. Then we discuss in section 3 an inequality
for convex functions which follows from the result in section 2, and its relation
to a result of Szegö's. Finally, several estimates similar to Wilson's are deduced
from the inequality in section 2.

2. An inequality for convex sequences

The following inequality contains Nanson's:

If {cx, c2,..., c2n +1} is a convex sequence with an odd number of terms, then

__.. ___ _L. - cx + c3+"-+c2n+x c2+c4+--+c2n
cx-c2 + c3-c4+ ¦ - • +c2n+x^> — ^ (1)

n+1 n

with strict inequality throughout unless the sequence is an arithmetic progression,
when there is equality throughout.

Proof: We begin by observing that for any real sequence,

CX + C3+'"+C2n+l ^
C2 + C4+"'+C2n

n+l n
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is equivalent to

Cl + C3+ *-C2*+1
Cl-C2 + C3-C4+"-+C2 _>_J 2n+l

(3)
n+ 1

and also to

c2 + c4+ - • • +c2n
cx-c2 + c3-c4+---+c2n+x^——=—^ ^-, (4)

all three being strict if one of them is (subtract — (cx + c3+ *-c2n+\) from both
1

V n
sides of (2) to get (3), and (c2 + c4+ \-c2n) to get (4): similarly, each of

(3) and (4) imphes (2)Y

For n= 1, (2) is simply the condition of convexity for a sequence of three terms:
cx + c3>2c2.
We proceed by induction: assume (2) is true for all convex sequences with 2n—l
terms (some n> 2). Let \cx,c2,...,c2n+x} be a convex sequence with 2 n+l terms:

cv_x-cv>cv-cv+x (v 2,3,...,2n). (5)

Set v 2,4,...,2w in (5), and add up:

n n

X (c2*-i-e2jt)_> 2 (c2k-c2k+i).
k=X k=X

Add c2n+ x to each side:

2«+l 2n

z (-ly-'c^zei^c,. (6)
k=X k=2

Now {c2,c3,...,c2n} is a convex sequence of 2n— 1 terms. By the induction
hypothesis, it satisfies (3):

i(-lfckZ±-±c2k. (7)
Ä:=2 n k=X

Finally, (6) and (7) imply

2n+l 1 n

E (-tf-'c^-Ic«, (8)
*=1 « k=X

which is (4) for the sequence {cx,c2,...,c2n+x}.
It is easily verified that equahty holds throughout (1) if the sequence is an
arithmetic progression. That (1) is strict throughout for all other convex sequences
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can be shown by induction It is clear for n 1 For n > 2, equality in (8)
requires equality in (7), and also in (5) for v 2 and v 2n Hence [cx,c2,c3],
sc2,c3, ,c2n] and {c2n-X,c2n,c2n+x\ are arithmetic progressions

3. Szego's inequality

Szego ([11], [1], section 49) has proved that
Ifax>a2> >a2n+x>0,andiff [0,ax]-+Ris convex, then

f(ai)-f(a2)+f(a3)-f(fl4)+ +f(a2n+x)^f(ax-a2 + a3-a4+ +a2n+x) (9)

(The same conclusion holds if 0<ax<a2< <a2rx+x, and [0,ax] is replaced by
[°><*2n+\\ replaceakhya2n+2_k,k=l, ,2n+l)
Wnght [13] has given an interesting proof of (9), and discussed the type of
convexity required off, he shows that (9) holds if

f(xx + ö)-f(xx)>f(x2 + ö)-f(x2) (Cx)

for allx!,jc2,(5 withO<x2<:XX<xx + 8<ax
Under different hypotheses, a different lower bound for the left side of (9) can
be obtained from (1)
Letf 7->R be convex on an interval I containing the sequence A=sax,a2, ,a2rl+ x}

Iff is non-decreasing andA is convex, or iffis non-increasing and A is concave, then

f( \ /Y \_i_/Y N /y \, ___/y w /(^i)+/fe)+ +/(ß2*+1) nm/(«i) -ffa)+/(*3> -ffa)+ +/(«2» +1) ^ 71 (10)
n+ l

Indeed, under these hypotheses tf(ax),f(a2), ,f(a2n+ x)} is a convex sequence
In (10), mid-point convexity is all we require off

2f(^)<f(x)+f(y) for all x,y (C2)

For all/, (CO implies (Q) There are/for which (C2) is true but not (C,) ([6], [7])
If/is continuous, (C2) implies (Cx) ([3], Theorem 110)
In (10),/is bounded above on any finite submterval of 7 and satisfies (C2), hence

fis continuous on the interior of 7 ([3], Theorem 111), and satisfies (Q) there And
if 7 contains some of its endpoints, and/is monotonic, (C2) implies (Cx) even if
x2 or xx + ö is an endpoint of 7 (for instance, if / mcreases, its only possible
discontinuity is at the right endpoint of 7)

Suppose now that all the conditions for (9) and (10) are met let sax a2, ,a2n+x}
be non-negative, monotonic and convex (respectively, concave), and let / be non-
decreasmg (respectively, non-increasing) and convex (C2) on a suitable interval
One may then ask whether one of (9), (10) is stronger than the other, but simple
examples show that in general no such companson is possible
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For instance, take ax>a2 a3= ••• =a2w+1_>0 and / strictly increasing; then the
right side of (9) is strictly larger than that of (10).
But ifA is an arithmetic progression, the right side of (9) is equal to

f(ai + a3+-'+a2n+\ \
J\ n+l r

and this is strictly less than the right side of (10) if/is strictly convex.

4. Wilson's and other inequalities

We return briefly to our Observation at the beginning of the proof in section 2,
and remark that for any real sequence {cx, c2,..., c2n + x}, (2) and

cx+c2 + c3+ \-c2n+x
Cx-c2 + c3-c4+--'+c2n+x2:^ 23^+1 ^^ (11)

are equivalent. Indeed, the right side of (11) lies between the two terms of (2),
of which it is a convex combination. Hence (3) implies (11), and (11) implies
(4). We conclude that for any real sequence (convex or not), the chain

2h+1 1 n 1 2«+l 1 nI (-l)*+1c,;>—- Tc-^—- X *__- S c2k (12)
k~x n+l jt_=o in+1 k=x n jt=i

is equivalent to any one of the six inequalities it contains. Equality either holds
throughout, or not at all. And if the sequence is convex, the only case of
equality is for an arithmetic progression.
Now apply (12) to the convex sequence ck ak~x (a>0): for«_> l,a>0,aj* l?

2n 1 n l 2n 1 n-lS(-l)fc^>^Z^>vi7TS^>-LZ^+,. (13)
k-o n+l k=o 2/t+l*to «fl

On dividing a term in (13) by another to its right we get six inequahties, one
of them Wilson's: forw^ l,a>0,a^ 1,

l+a2+a4+-"+a2'1 n+l
a+a3 + a5+--+a2n-x n

> (14)

l-a+a2-a3+"'+a2n 1

l + a2+a4+---+a2n > n+V (15)

l-a+a2-a3+ •••+a2n 1

l + a+a2+a3+---+a2n > 2/i+T
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l — a + a2-a3-\ \-a2n 1

-r->—, (17)
a + a3 + a5+ •••+a2w_1 n

l+a2 + aA+ '-+a2n n+l
l + a + a2 + a3+--+a2n 2«+T

l + a + a2 + a3+ --+a2n 2n+l

(18)

-f^ _i_ ^5 _i_ \n2n-X > (19)
a + d> + (f + -••+azn-1 n

Any one of these implies the other five. Each is of the form fn(a)>fn(l), where
fn (a) denotes the quotient on the left side.
The case a<0 is easy to dispose of; (13) holds for a<0 (consider the effect on
each sum of replacing an a>0 by —a). For a<0, the lower bounds in (15), (16)
and (18) may be replaced by 1, but the quotients in (14), (17) and (19) are
unbounded from below, as a-+ — oo.

Finally, we remark that (14) through (19) imply

fn(a)<fn(-l) for a<0,a^-l: (20)

consider the effect on/n (a) of replacing aby -a.
As a last example, take

l + a + a2+--+an n+l „ rt ix> (n^2,a>0,a^l) (21)
a + a2 + a3+--+an~x n-l

([5], p. 111). If/„ (a) denotes the left side of (14), then

fn(a)fn-x(a)>fn(l)fn-x(l)-!^\ (n^2,a>0,a* l)

whence

fn(Va~)fn_x(Va~)>^ (n^2,a>0,a^l),

and this is (21).
Another proofof (21) Starts from

Ci + c2+--+cH+l c2 + c3+--+cn
n+l n-l

(22)

vahd for any convex sequence \cx,c2,...,cn+x}, which we leave to the reader.
J. Steinig, Geneve
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Aufgaben

Aufgabe 841. Sechs in einer Ebene liegende Kreise, die einen gegebenen Grundkreis
k rechtwinklig schneiden, seien so angeordnet, dass im Inneren von k em
rechtwinkliges Kreisbogensechseck s entsteht. Zu je zwei Gegenseiten von s existiert dann

genau ein Mittellot, d.i. ein Kreis, der diese Seiten und den Grundkreis
rechtwinklig schneidet. Man zeige, dass sich die drei Mittellote innerhalb s in einem
Punkt schneiden. Der Beweis ist ohne Hilfsmittel der hyperbolischen Geometrie zu
fuhren. P. Buser, Bonn, BRD

Lösung: Im folgenden wird bezeichnet: Der Mittelpunkt von k mit M; die Kreise,
auf denen die Seiten des Kreisbogensechsecks liegen, mit kx,...,k6, ihre Mittelpunkte

mit MX,...,M6; die Lotkreise der Seitenpaare (kl,kl+3) mit /, und ihre
Mittelpunkte mit Lx,i= 1,2,3.
Aus den Voraussetzungen folgt zunächst, dass die /, paarweise reelle Schnittpunkte
haben. Zum Nachweis, dass sie genau zwei Punkte SX,S2 gemeinsam haben, also
demselben elliptischen Kreisbüschel angehören, genügt es zu zeigen, dass ihre
Mittelpunkte Lx kolhnear sind.
Das Dreieck MXM3M5 liegt polar zum Dreieck M2M4M6 in bezug auf den Grundkreis,

denn die Schnittpunktsehne von kx und dem Grundkreis ist einerseits die
Polare von Mx bezughch k, da kx den Grundkreis rechtwinkelig schneidet, und
andererseits müssen die Punkte M2 und M6 in ihrer Eigenschaft als Potenzpunkte
von kx,k3 und k bzw. von k5,kx und k auf dieser Schnittpunktsehne in ihrer
Eigenschaft als Potenzlinie von kx und k liegen; k2 und k6 schneiden ja kx und k
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