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IT ist von 24 kongruenten Fiinfecken begrenzt; jedes besitzt eine Symmetrieachse.
Eines ist in Figur 2 mit IIIIIIIVV bezeichnet. Man findet

T‘"=W Vp +Vp /3, ILU=ILIV=IV,Vv=2V7/3,
ILV=2Vp1/3 . (30)

5.2. Inzidenzen im Kantensystem von I1. Die Polaritit an x fiihrt die Verbindungs-
ebene [uv] komplanarer Kanten von /7 in den Schnittpunkt der entsprechenden
Kanten k ,k, von IT uber; dieser sei mit (uv) bezeichnet. In Figur 2 tragen k und
k, einen gegen (uv) gerichteten Pfeil. Aus der Ebene eines ebenen Vlerkantenzuges
von IT und aus der Ebene [34], gegeben durch (21) und (22), erhilt man (beim
gewihlten Radius von x)

—l -2 -2 -1 -4
ai=n=an=(G3.5),  en=(-L- -2 20). o

Aus den Ebenen [23]" und [34]", gegeben durch (23) und (24), folgt

-1 -3 -3 -1 -3
23 “=(p r_ P ) H=(_!L _r _1_’__)
@y=(E B ), (-2, 20 20 ()

In Figur 2 sind jene Punkte {(uv) bezeichnet, die zu den in Figur 1 mit (uv)
bezeichneten Punkten gehoren.

Die Punkte (23)!=... bilden den abgestumpften Wiirfel, der aus I7 durch die
Streckung aus M mit dem Faktor p=2/3 hervorgeht. Wie in 3.3 findet man: Die
Punkte (23)! bilden ein symmetrisches Polyeder, hingegen {34)! und (34)! je ein
unsymmetrisches Polyeder von I'. Die Koordinaten der Ecken verhalten sich, ab-
gesehen von Reihenfolge und Vorzeichen, bei I7 (23)! wie 1:p:p?, bei IT {34)!
wie 1:p?:p3, bei I7(23)1 wie 1:1:p? bei IT1{34)" wie 1:p?:p*. Daraus folgt
iibrigens: 7 (34)" und 17 {34)! sind dhnliche Polyeder. Fritz Hohenberg, Graz

Inequalities involving convex sequences
To Ernst Trost on his 70th anniversary
1. Introduction

As an extension of the familiar estimate

1
a+—a—>2 (@>0,a#1),
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Wilson [12] showed that

l1+a’+a*+ - +a*  n+l
>
a+a+a’+--- +atn!

(n=1,a>0,a#1);

several other proofs were found at the same time ([8], p. 205).
Then Nanson [9] proved that

C1+C3+ +C2n+1 > C2+C4+ +Czn
n+1 n

for any convex sequence {c,Cy,...,C2,41) With an odd number of terms; equality
holds if and only if the sequence is an arithmetic progression. The particular case
in which it is a positive geometric progression, say ¢, =a*~! with a>0, is Wilson’s
inequality.

Nanson’s proof consists in adding the inequalities

k(n—k) (cax—2cppr1tcak+2)20, k(m—k+1)(cp—1—2¢c+Cp4+1)20

fork=1,...,n—1.

Another proof, indicated in ([3], Theorem 130), uses the ‘majorization theorem’ due
(in various forms) to Schur [10], Hardy, Littlewood and Pdlya ([2] and [3], Theorem
108), and Karamata [4].

In section 2 we prove an inequality for convex sequences with an odd number of
terms which is equivalent to Nanson’s. Then we discuss in section 3 an inequality
for convex functions which follows from the result in section 2, and its relation
to a result of Szegd’s. Finally, several estimates similar to Wilson’s are deduced
from the inequality in section 2.

2. An inequality for convex sequences

The following inequality contains Nanson’s:
If {c;,¢y,...,Cyn4 1} is a convex sequence with an odd number of terms, then

CI+C3+ +(,'2,,+1 > 02+C4+ "'+02n
n+1 n

, (D

Ci—Cyt+c3—c4t+ -+ Cypp 1=
with strict inequality throughout unless the sequence is an arithmetic progression,

when there is equality throughout.

Proof: We begin by observing that for any real sequence,

Cl+C3+ +02n+1 > C2+C4+ +02n
n+1 ' n

@
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is equivalent to

Citest 4o,y

Ci—Ctce3—cy+ -+ = ) 3
1—Ct+c3—cy 2n+1 — 3)
and also to
Crte4+ - +c
Ci—CteC3—c4+ - +C3,4012 2ot 2 ) 4

n
. . . 1

all three being strict if one of them is Ksubtract —(c1+c3+ -+ + ¢, ) from both
n

sides of (2) to get (3), and
(3) and (4) implies (2)).

1 (ca+c4+ -+ +¢y,) to get (4); similarly, each of

For n=1, (2) is simply the condition of convexity for a sequence of three terms:

Cq + Cc3= 2 Cs.

We proceed by induction: assume (2) is true for all convex sequences with 2n— 1

terms (some n>2). Let {c,c;,...,¢5, 41} be a convex sequence with 2n+ 1 terms:
C,m1—C,2C,—Cpy (v=2,3,...,2n). &)

Setv=2,4,...,2nin (5), and add up:
n n
kz__ll (k-1 Cu)2 kE_ZI (2= Cak+1)-

Add ¢, to each side:

2n+1

2n
2 (=l =Y (—1feg. (6)
k=1 k=2

Now {c,c3,...,¢5,} is a convex sequence of 2n—1 terms. By the induction
hypothesis, it satisfies (3):

2n 1 »
-1 >— .
kz2( ¥ . kZ:ICZk (7)
Finally, (6) and (7) imply
2n+1 1 =2
2 ) lg=2— 3 oy, : @)
k=1 ni=1

which is (4) for the sequence {c;,¢;,..-,C3 4 1}-
It is easily verified that equality holds throughout (1) if the sequence is an
arithmetic progression. That (1) is strict throughout for all other convex sequences
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can be shown by induction. It is clear for n=1. For n>=2, equality in (8)
requires equality in (7), and also in (5) for v=2 and v=2n. Hence {(c,c;,c3}.
{C3,€3,...,02,) and [¢3,_1,C2,, €241} are arithmetic progressions.

3. Szegd’s inequality

Szego ([11]; [1], section 49) has proved that:
Ifa,zay= - 2ay,,120,and if f:[0,a,] > R is convex, then

f@)—fla)+flaz)—fla+ - +fa)Zf@—aytaz—as+ - +az,,1). (9)

(The same conclusion holds if 0<a;<a,<:---<ay,,, and [0,a,] is replaced by
[0,a,, . ]: replace ag by ay i n 1, k=1,...,20+ 1))
Wright [13] has given an interesting proof of (9), and discussed the type of
convexity required of f; he shows that (9) holds if

S +0)—f(x)=f(x,+0)—f(x2) (&)

for all x;,x,,0 with0<x,<x;<x,+d<a.

Under different hypotheses, a different lower bound for the left side of (9) can
be obtained from (1):

Let f: I—> R be convex on an interval I containing the sequence A= {a,,a,,...,ay,,1}
Iff'is non-decreasing and A is convex, or if f is non-increasing and A is concave, then

flap+f(a)+ - +f(arys1)

fa)=f(@)+f@)=f@)+ - +f (@)= - - 10)
Indeed, under these hypotheses {f(a,).f (a;).....f(a;,+ 1)} is a convex sequence.
In (10), mid-point convexity is all we require of f:

2 (x;y )s F)+f() forall x,y. (C,)

For all f, (C,) implies (C,). There are f for which (C,) is true but not (C,;) ([6], [7]).
If fis continuous, (C,) implies (C;) ([3], Theorem 110).

In (10), f is bounded above on any finite subinterval of I and satisfies (C,); hence
f is continuous on the interior of I ([3], Theorem 111), and satisfies (C,) there. And
if I contains some of its endpoints, and f is monotonic, (C,) implies (C;) even if
x, or x;+4d is an endpoint of I (for instance, if f increases, its only possible
discontinuity is at the right endpoint of 7).

Suppose now that all the conditions for (9) and (10) are met: let {a|.a,,...,a5,41}
be non-negative, monotonic and convex (respectively, concave), and let f be non-
decreasing (respectively, non-increasing) and convex (C,) on a suitable interval.
One may then ask whether one of (9), (10) is stronger than the other; but simple
examples show that in general no such comparison is possible.
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For instance, take a;>a,=a;="---=a,,,1=>0 and f strictly increasing; then the
right side of (9) is strictly larger than that of (10).
But if 4 is an arithmetic progression, the right side of (9) is equal to

’

f(01+a3+"' T )
n+1

and this is strictly less than the right side of (10) if fis strictly convex.

4. Wilson’s and other inequalities

We return briefly to our observation at the beginning of the proof in section 2,
and remark that for any real sequence {c;,c;,...,¢5, 41}, (2) and

C1+02+C3+ s +C2n+1
2n+1

(11

Ci—Cte3—cC4+ - +Crpp1 2

are equivalent. Indeed, the right side of (11) lies between the two terms of (2),
of which it is a convex combination. Hence (3) implies (11), and (11) implies
(4). We conclude that for any real sequence (convex or not), the chain

2n+1 1

1 ntl 1 &
2 ( ‘l)kﬂckZTZ 2k+122 1 ; 2'n'k§lczk (12)

is equivalent to any one of the six inequalities it contains. Equality either holds
throughout, or not at all. And if the sequence is convex, the only case of
equality is for an arithmetic progression.

Now apply (12) to the convex sequence ¢, = a~1(@>0):forn>1,a>0,a#1,

1 n—1

1 2 atk+1. (13)

2n n
— 1rak>
kg‘o( )ka n+1 kZ’o

k=0

On dividing a term in (13) by another to its right we get six inequalities, one
of them Wilson’s: forn>1,a>0,a# 1,

1+a*+a*+---+a®  n+1

14
a+@+d+ - +@ 1 p (14
l—a+a*—a*+ - +a*" 1
5 > , (15)
1+a?+ad*+ - +a n+1
l1—-a+a*—a*+ .- +a*" 1
: (16)

> )
l+a+a*+a*+---+a*" ~ 2n+1
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l—a+a*—a*+---+a* 1
>_—
at+a*+a’+---+a*" ! " n

b

l+a*+a*+ - +a*" n+1
> )
l+a+a*+a*+---+a*" = 2n+1

l+a+a+ad+---+a*" 2n+1
> .
a+ad+a’+ - +a?r! n
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(17)

(18)

(19)

Any one of these implies the other five. Each is of the form f, (a)>f, (1), where

f, (@) denotes the quotient on the left side.

The case a<0 is easy to dispose of; (13) holds for a<0 (consider the effect on
each sum of replacing an a>0 by —a). For a<0, the lower bounds in (15), (16)
and (18) may be replaced by 1, but the quotients in (14), (17) and (19) are

unbounded from below, asa— — oo.
Finally, we remark that (14) through (19) imply

f,@<f,(—=1) for a<0,a#—1:

consider the effect on f,, (a) of replacing aby —a.
As a last example, take

l+a+a*+---+a n+1
>
at+a*+a*+---+a"! 7 n—1

(n=2,a>0,a#1)

(5], p. 111). If £, (a) denotes the left side of (14), then

n+1
n—1

Ja@fn-1@>f, (D fp- 1 (D= (n22,a>0,a#1)

whence

L(Va) o (Va) > 25E (nz22,a>0,a%1),

n—1

and this is (21).
Another proof of (21) starts from

C1+Cz+ +Cn+1 > C2+C3+ "'+Cn
n+1 n—1

b

valid for any convex sequence {c;,¢,,...,¢, 1}, Which we leave to the reader.
J. Steinig, Genéve

(20)

@1

(22)
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Aufgaben

Aufgabe 841. Sechs in einer Ebene liegende Kreise, die einen gegebenen Grundkreis
k rechtwinklig schneiden, seien so angeordnet, dass im Inneren von k ein recht-
winkliges Kreisbogensechseck s entsteht. Zu je zwei Gegenseiten von s existiert dann
genau ein Mittellot, d.i. ein Kreis, der diese Seiten und den Grundkreis recht-
winklig schneidet. Man zeige, dass sich die drei Mittellote innerhalb s in einem
Punkt schneiden. Der Beweis ist ohne Hilfsmittel der hyperbolischen Geometrie zu
fithren. P. Buser, Bonn, BRD

Losung: Im folgenden wird bezeichnet: Der Mittelpunkt von k& mit M; die Kreise,
auf denen die Seiten des Kreisbogensechsecks liegen, mit k,...,kq, ihre Mittel-
punkte mit M,,..., M., die Lotkreise der Seitenpaare (k;,k;,3) mit /; und ihre
Mittelpunkte mit L, i=1,2,3.

Aus den Voraussetzungen folgt zunichst, dass die /; paarweise reelle Schnittpunkte
haben. Zum Nachweis, dass sie genau zwei Punkte §,,S, gemeinsam haben, also
demselben elliptischen Kreisbiischel angehdren, geniigt es zu zeigen, dass ihre
Mittelpunkte L; kollinear sind.

Das Dreieck M| M4 M liegt polar zum Dreieck M, M, M in bezug auf den Grund-
kreis, denn die Schnittpunktsehne von k; und dem Grundkreis ist einerseits die
Polare von M, beziiglich k, da k; den Grundkreis rechtwinkelig schneidet, und
andererseits miissen die Punkte M, und Mj in ihrer Eigenschaft als Potenzpunkte
von k,k; und k bzw. von ks,k; und k auf dieser Schnittpunktsehne in ihrer
Eigenschaft als Potenzlinie von k; und k liegen; k, und k¢ schneiden ja k; und &
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