Zeitschrift: Elemente der Mathematik

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 36 (1981)

Heft: 3

Artikel: Projektive Eigenschaften des abgestumpften Würfels

Autor: Hohenberg, Fritz

DOI: https://doi.org/10.5169/seals-35544

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 28.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

ELEMENTE DER MATHEMATIK

Revue de mathématiques élémentaires - Rivista di matematica elementare

Zeitschrift zur Pflege der Mathematik und zur Förderung des mathematisch-physikalischen Unterrichts

El. Math. Band 36 Heft 3 Seiten 49-72 Basel, 10. Mai 1981

Projektive Eigenschaften des abgestumpften Würfels

Herrn Prof. Dr. Ernst Walter Trost zum 70. Geburtstag gewidmet

Der «abgestumpfte Würfel» Π ist das einzige archimedische Polyeder der Hexaedergruppe Γ , das keine Symmetrieebenen besitzt. Π hat 24 Ecken, 60 Kanten und wird von 6 Quadraten und 32 gleichseitigen Dreiecken begrenzt. In jeder Ecke von Π treffen ein Quadrat und vier gleichseitige Dreiecke zusammen.

P. Huybers und H. S. M. Coxeter fanden ein Oktaeder Π_3 mit der Eigenschaft, dass durch jede Ecke von Π_3 vier (verlängerte) Kanten von Π gehen [Math. Rep. Acad. Sci., The Royal Society of Canada 1, 269–274 (1979)]. Das ist eine projektive Eigenschaft; sie kommt auch kollinear verwandten Polyedern zu.

Hier wird gezeigt: Ausser den Ecken von Π und Π_3 gibt es im Kantensystem von Π noch 120 weitere Schnittpunkte; sie bilden die Ecken von 5 gleicheckigen (darunter 3 symmetrischen) Polyedern von Γ . Ferner wird ein gleichflächiges Polyeder Π_2 angegeben, in dessen 24 Ebenen die Ecken von Π und Π_3 und auch alle 120 hier gefundenen Schnittpunkte liegen. Mit Hilfe des zu Π polaren Polyeders Π werden auch die gleichflächigen Polyeder bestimmt, die von den Verbindungsebenen komplanarer Kanten von Π gebildet werden; eines ist symmetrisch, drei sind unsymmetrisch. Zahlreiche weitere Inzidenzen erhält man, wenn man zu den Kanten von Π die Diagonalen hinzunimmt. – In Abschnitt 1 wird zunächst das allgemeine gleicheckige Polyeder von Γ , in Abschnitt 2 der Sonderfall Π bestimmt.

Eine analoge Untersuchung des abgestumpften Dodekaeders soll folgen.

1. Das allgemeine gleicheckige Polyeder $\Pi(p,q)$ der Hexaedergruppe Γ

Ein Würfel sei mit Π_4 bezeichnet, seine v-zähligen Achsen mit a_v (v=4,3,2), seine Symmetrieebenen mit σ . Der Mittelpunkt M von Π_4 sei Ursprung, die Achsen a_4 seien Achsen kartesischer Koordinaten x_1, x_2, x_3 . Figur 1 zeigt Π_4 in dünnen Linien, unten den Grundriss auf $\sigma(x_3=0)$, oben den Aufriss auf $\sigma(x_1+x_2=0)$. Als Punkt erscheint im Grundriss $a_4(x_1=x_2=0)$, im Aufriss $a_2(x_1-x_2=x_3=0)$. Hat Π_4 die Kantenlänge 2, so sind $(\pm 1, \pm 1, \pm 1)$ die Ecken von Π_4 .

Die Hexaedergruppe Γ , deren 24 Drehungen Π_4 in sich überführen, führt einen Punkt I allgemeiner Lage in 24 Punkte über. Liegt I in einer Symmetrieebene, so ist alles weitere trivial. Wir setzen

$$1(p,q,1) \text{ mit } 1>p>q>0$$
 (1)

voraus. Γ führt I in 24 Punkte über; in den Ebenen $x_3 = \pm 1, \pm p, \pm q$ liegen je vier dieser Punkte (und sie bilden ein Quadrat). Die Bezeichnung in Figur 1 ist so gewählt, dass I, I, I, I, I in I ist so gewählt, dass I, I, I, I in I is I in I, I in I is I in I in

$$\begin{array}{lll}
1(p,q,1), & 2(-q,p,1), & 3(-p,-q,1), & 4(q,-p,1), \\
5(q,1,p), & 6(-1,q,p), & 7(-q,-1,p), & 8(1,-q,p), \\
1'(1,p,q), & 2'(-p,1,q), & 3'(-1,-p,q), & 4'(p,-1,q).
\end{array} \tag{2}$$

Daraus entstehen durch 180°-Drehung um $a_2(x_1-x_2=x_3=0)$ die Punkte $\bar{I}, \bar{2}, \bar{3}, \bar{4}$ (in $x_3=-1$), $\bar{5}, \bar{6}, \bar{7}, \bar{8}$ (in $x_3=-p$), $\bar{I}', \bar{2}', \bar{3}', \bar{4}'$ (in $x_3=-q$), z. B. $\bar{I}'(p,1,-q)$. Das (konvexe) Polyeder mit diesen 24 Ecken heisse $\Pi(p,q)$. Es ist gleicheckig; Γ führt die von einer Ecke ausgehenden Kanten in die von jeder anderen Ecke ausgehenden Kanten über. $\Pi(p,q)$ besitzt

- a) 6 Quadrate Δ_4 in den Ebenen ε_4 ($x_v = \pm 1$), begrenzt von 24 Kanten k_4 ,
- b) 8 gleichseitige Dreiecke Δ_3 , deren Ebenen ε_3 ($\pm x_1 \pm x_2 \pm x_3 = 1 + p + q$) zu den dreizähligen Achsen a_3 von Π_4 normal sind. Die Ebenen ε_3 begrenzen ein Oktaeder Π_3 . Die Seiten von Δ_3 sind 3 Kanten k_3 von Π (p,q), die eine a_3 normal kreuzen, z. B. kreuzen die Seiten von Δ_3 (11'5) und die von Δ_3 ($\bar{3}\bar{3}'7$) die a_3 ($x_1: x_2: x_3 = 1:1:1$) normal.
- c) Weitere 24 Dreiecke Δ_2 in Ebenen ε_2 . Jedes ist von einer Kante k_4 , einer Kante k_3 und einer Kante k_2 (z. B. $I'\bar{I}'$) begrenzt.

Sichtbare Kanten k_2 sind in Figur 1 durch Doppellinien dargestellt, unsichtbare k_2 kurz gestrichelt. Sichtbare Kanten k_3 und k_4 sind in vollen Linien gezeichnet, unsichtbare lang gestrichelt.

 $\Pi(p,q)$ hat 24 Kanten k_4 , 24 Kanten k_3 , aber nur 12 Kanten k_2 . Denn jede k_2 (z. B. $I'\bar{I}'$) schneidet eine a_2 (im Beispiel: $x_1-x_2=x_3=0$) im Mittelpunkt von k_2 normal, daher gestattet k_2 die 180°-Drehung um eine a_2 , also eine zweigliedrige Untergruppe von Γ . An die Seiten eines Quadrats Δ_4 grenzen 4 Dreiecke Δ_2 , an die Seiten eines Dreiecks Δ_3 grenzen 3 Dreiecke Δ_2 .

 k_{ν} ($\nu = 4, 3, 2$) habe die Länge l_{ν} . Nach (2) folgt [etwa aus Δ_2 (125)]

$$l_4^2 = 2(p^2 + q^2),$$
 $l_3^2 = 2(1 - p - q + p^2 - p q + q^2),$ $l_2^2 = 2(1 - p)^2 + 4q^2.$ (3)

2. Der abgestumpfte Würfel des Archimedes

Aus $\Pi(p,q)$ erhält man den abgestumpften Würfel Π , wenn $l_2 = l_3 = l_4$ ist. Das ergibt nach (3) die (linear abhängigen) Gleichungen

$$l_2 = l_3$$
 oder $p - q - p q - q^2 = 0$, (4)

$$l_2 = l_4$$
 oder $1 - 2p + q^2 = 0$, (5)

$$l_3 = l_4$$
 oder $1 - p - q - p q = 0$. (6)

Eliminiert man aus (4)–(6) erstens q, zweitens p, so folgt

$$p^3 + p^2 + p - 1 = 0 (7)$$

$$q^3 + q^2 + 3q - 1 = 0. (8)$$

Diese kubischen Gleichungen haben je eine reelle Wurzel, nämlich

$$p = \left(-1 + \sqrt[3]{17 + 3\sqrt{33}} + \sqrt[3]{17 - 3\sqrt{33}}\right) / 3 \approx 0.544, \tag{9}$$

$$q = \left(-1 + \sqrt[3]{26 + 6\sqrt{33}} + \sqrt[3]{26 - 6\sqrt{33}}\right) / 3 \approx 0'296. \tag{10}$$

Auf die konjugiert komplexen Polyeder, die zu den komplexen Wurzeln von (7) und (8) gehören, sei nicht eingegangen. Sie könnten in bekannter Weise durch reelle Substrate veranschaulicht werden.

Addition von (6) und (7) ergibt $(p^2-q)(p+1)=0$. Wegen (1) folgt

$$q = p^2. (11)$$

Ersetzt man q in (8) durch p^2 , so folgt die Zerlegung von (8) in die Faktoren $p^3 + p^2 + p - 1$ und $p^3 - p^2 + p + 1$. Der erste Faktor ist der Ausdruck in (7), der zweite ergibt nullgesetzt die Gleichung mit der Wurzel -p; das bedeutet den Übergang von Π zu einem anderen abgestumpsten Würfel, der aus Π durch Spiegelung an M entsteht.

 Π hat die Kantenlänge $l = l_4 = l_3 = l_2$, nämlich

$$l = \sqrt{2(p^2 + 2p - 1)} = \sqrt{2(q^2 + q)} \approx 0.876.$$
 (12)

Die Koeffizienten von (7) oder (8) ergeben die kubische Gleichung

$$l^6 + 12 l^4 + 32 l^2 - 32 = 0 (13)$$

für l^2 . Sie hat die einzige reelle Wurzel

$$l^{2} = 2\left(-6 + \sqrt[3]{54 + 6\sqrt{33}} + \sqrt[3]{54 - 6\sqrt{33}}\right)/3. \tag{14}$$

Figur 1 stellt Π in Grund- und Aufriss dar. Beide Bilder sind symmetrisch bezüglich des Bildes von M. Von der Sichtbarkeit abgesehen, ist der Grundriss auch symmetrisch zu den Geraden $x_1 = 0, x_2 = 0, x_1 \pm x_2 = 0$, und der Aufriss symmetrisch zur x_3 -Achse und zu $\sigma(x_3 = 0)$.

Wir bestimmen noch die Radien von vier Kugeln um M. R sei der Radius der Umkugel von Π . r sei der Radius der Kantenkugel, die jede Kante von Π in deren Mittelpunkt berührt, z. B. $k_2(l'\bar{l}')$ in ((1+p)/2,(1+p)/2,0). ρ_3 sei der Radius der Kugel, die die Ebene jedes Dreiecks Δ_3 oder Δ_2 in dessen Mittelpunkt berührt, z. B. die Ebene ε_2 von $\Delta_2(l\,l'\,5)$ in $((1+p+p^2)/3,(2+p)/3,p/3)$. ρ_4 sei der Radius der Kugel, die die Ebene jedes Quadrats Δ_4 in dessen Mittelpunkt berührt. Es folgt

$$R = \sqrt{\frac{l^2}{2} + 1} = \sqrt{p(p+2)} , \qquad r = \sqrt{\frac{l^2}{4} + 1} = (1+p)/\sqrt{2} ,$$

$$\rho_3 = \sqrt{\frac{l^2}{6} + 1} = p^{-1}/\sqrt{3} , \qquad \rho_4 = 1 . \tag{15}$$

In Figur 1 ist 2r der Abstand von $k_2(2'\bar{4}')$ und $k_2(\bar{2}'4')$. Im Aufriss erscheinen $\Delta_3(2\,2'6)$ und $\Delta_3(\bar{2}\,\bar{2}'\bar{6})$ als Parallele im Abstand $2\,\rho_3$, die Quadrate in $x_3=1$ und $x_3=-1$ als Parallele im Abstand $2\,\rho_4$.

3. Inzidenzen im Kantensystem des abgestumpften Würfels

Während $\Pi(p,q)$ im allgemeinen keine Paare komplanarer Kanten besitzt, existieren Paare komplanarer Kanten bei Π .

Es sollen nun alle Paare komplanarer Kanten k_{μ}, k_{ν} ($\mu, \nu = 4, 3, 2$) von Π bestimmt werden. Solche Kanten schneiden sich (in ihrer Verlängerung) in einem mit $k_{\mu} \cap k_{\nu}$ oder ($\mu \nu$) bezeichneten Punkt. Die Verbindungsebene heisse [$\mu \nu$]. Wir definieren 12 Ebenen ε^{I} und 12 Ebenen ε^{II} :

$$\varepsilon^{I}(p x_{m} \pm x_{n} = 0) \text{ und } \varepsilon^{II}(p^{2} x_{m} \pm x_{n} = 0), \quad (m, n = 1, 2, 3).$$
 (16)

Es genügt, eine Teilfigur ϕ von Π zu betrachten, bestehend aus dem Quadrat 1234 und 12 gleichseitigen Dreiecken, die mit ihm eine Kante oder Ecke gemein haben. ϕ ist symmetrisch zu

$$\varepsilon_0^{\text{I}}(p x_1 - x_2 = 0) \quad \text{und} \quad \varepsilon_0^{\text{II}}(x_1 - p^2 x_2 = 0)$$
 (17)

(Fig. 1, Grundriss). Die Spiegelung an $\varepsilon_0^{\rm I}$ oder $\varepsilon_0^{\rm II}$ führt ϕ in sich über, jedoch Π in einen anderen abgestumpften Würfel Π' , der ϕ enthält!

(Bei den Rechnungen zu den folgenden Formeln wurden rationale Funktionen von p mittels (7) passend umgeformt. Z. B. ist $p^3 = -p^2 - p + 1$, $p^4 = 2p - 1$, $p^{-1} = p^2 + p + 1$, $p^{-2} = p^2 + 2p + 2$.)

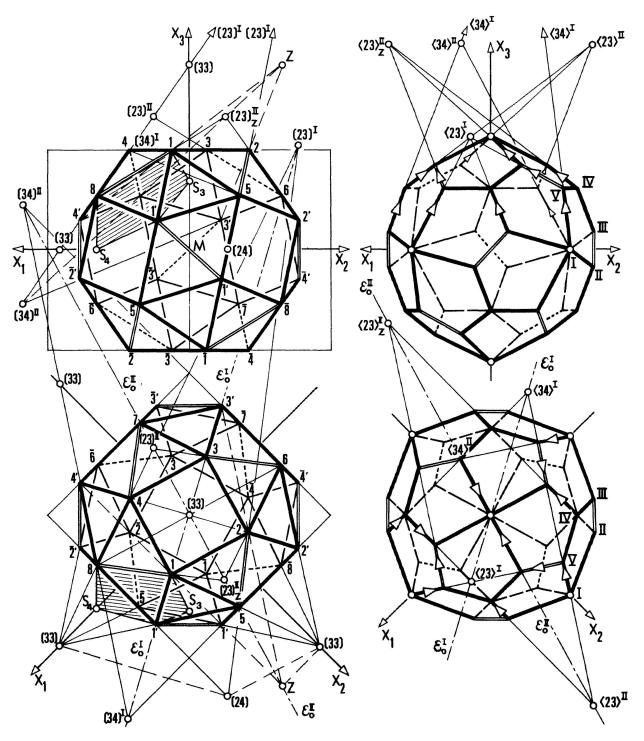
- 3.1. Inzidenzen, die aus Spiegelungen an den Ebenen $\varepsilon^{\rm I}$ folgen
- 3.11. Schnittpunkte (33) (siehe Einleitung). $k_3(11')$ und $k_3(33')$ liegen in $\varepsilon_0^{\rm I}$, daher existiert

$$(33) = (0, 0, p^{-1}), [33] = \varepsilon_0^{\mathrm{I}}.$$
 (18)

90°-Drehung um $a_4(x_1=x_2=0)$ ergibt, dass $(0,0,p^{-1})$ zugleich $k_3(22') \cap k_3(44')$ ist. Durch Γ geht (33) in die Ecken des Oktaeders Π_3 über. In jeder Ecke von Π_3 schneiden sich 4 Kanten k_3 von Π . Die Ebenen ε_3 der Seitenflächen von Π_3 sind $\pm x_1 \pm x_2 \pm x_3 = p^{-1}$.

3.12. Schnittpunkte $(23)^{\rm I}$ und $(34)^{\rm I}$. Die Spiegelung an $\varepsilon_0^{\rm I}$ vertauscht ε_2 (22'5) und ε_3 (44'8). Auf der Schnittgeraden dieser zwei Ebenen liegen daher in $\varepsilon_0^{\rm I}$ die Punkte k_3 (22') $\cap k_3$ (44') = (33) = (0,0, p^{-1}) und k_2 (25) $\cap k_3$ (48) = (23) und k_3 (4'8) $\cap k_4$ (2'5) = (34) Es ist

$$(23)^{I} = (-p^{-2}, -p^{-1}, p^{-2}), (34)^{I} = (p^{-1}, 1, 1). (19)$$



Figur 1. Archimedisches Polyeder II (Grund- und Aufriss).

Figur 2. Dual-archimedisches Polyeder II (Grund- und Aufriss).

Nach (19) liegt $(23)^{\text{I}}$ in ε_0^{I} , in $\varepsilon^{\text{I}}(x_2 + p x_3 = 0)$, in $\sigma(x_1 + x_3 = 0)$, in $\varepsilon_3(x_1 - x_2 + x_3 = p^{-1})$, in $\varepsilon_3(-x_1 - x_2 - x_3 = p^{-1})$. (34) liegt in ε_0^{I} , in $\varepsilon^{\text{I}}(p x_1 - x_3 = 0)$, in $\sigma(x_2 - x_3 = 0)$, ferner in $\varepsilon_3(x_1 - x_2 + x_3 = p^{-1})$ und $\varepsilon_3(x_1 + x_2 - x_3 = p^{-1})$.

3.13. Schnittpunkte (24). Die Spiegelung an ε_0^I führt $k_3(48) \cap k_3(51') = (p^{-1}, 0, 0)$ in $k_2(25) \cap k_4(81') = (24)$ über. Spiegelt man dann (24) an ε_0^{II} , so erhält man $k_3(15) \cap k_3(62') = (0, p^{-1}, 0)$. Daher ist (24) Schnittpunkt der Normalen aus $(p^{-1}, 0, 0)$ zu ε_0^I mit der Normalen aus $(0, p^{-1}, 0)$ zu ε_0^{II} (Fig. 1). Es ist

$$(24) = (1, 1+p, 0). (20)$$

Beim Übergang von Π zu Π' vertauschen (33) und (24) ihre Rollen.

Die Kugel um l mit dem Radius l schneidet die Umkugel von Π im Umkreis des Fünfecks 481'52. Zu jeder Ecke von Π gehört also ein ebener Vierkantenzug von Π , bestehend aus den Endpunkten der von der Ecke ausgehenden Kanten. $k_{3432}(481'52)$ liegt in der Ebene

$$[23]^{I} \equiv [24] \equiv [33] \equiv (p x_1 + p^2 x_2 + x_3 - 1 = 0). \tag{21}$$

In (21) liegen die Kanten, die sich in (23)^I und (24) schneiden, ferner k_3 (48) und k_3 (1'5) mit ihrem Schnittpunkt (33)= $(p^{-1},0,0)$. (21) ist normal zu $\varepsilon_0^{\rm I}$, zu $\varepsilon^{\rm I}(x_1-p\,x_3=0)$ und zu $\varepsilon^{\rm II}(x_2-p^2\,x_3=0)$.

Die Kanten mit dem Schnittpunkt (34)^I liegen in der Ebene

$$[34]^{I} \equiv (p^{2}x_{1} + p^{3}x_{2} - x_{3} + p^{2} = 0).$$
(22)

 $[34]^{I}$ ist normal zu ε_0^{I} und zu $\varepsilon^{II}(x_1+p^2x_3=0)$.

- 3.2. Inzidenzen, die aus Spiegelungen an den Ebenen $\varepsilon^{\mathrm{II}}$ folgen
- 3.21. Schnittpunkte $(23)^{\text{II}}$ und $(34)^{\text{II}}$. Die Spiegelung an $\varepsilon_0^{\text{II}}$ vertauscht $\varepsilon_2(33'6)$ mit $\varepsilon_3(44'8)$. Auf der Schnittgeraden dieser zwei Ebenen liegen daher in $\varepsilon_0^{\text{II}}$ die Punkte $k_3(33') \cap k_3(44') = (33) = (0,0,p^{-1})$ und $k_2(36) \cap k_3(48) = (23)^{\text{II}}$ und $k_3(4'8) \cap k_4(3'6) = (34)^{\text{II}}$. Es ist

$$(23)^{II} = (-\lambda p^3, -\lambda p, \lambda) \quad \text{mit} \quad \lambda = (1 - p + p^2)^{-1},$$

$$[23]^{II} = (p^2 x_1 + x_2 + x_3 - p = 0),$$
(23)

$$(34)^{II} = (-1, -p^{-2}, -p), [34]^{II} = (p^4 x_1 + p^2 x_2 - x_3 + p = 0). (24)$$

- (23)^{II} liegt in $\varepsilon_0^{\text{II}}$ und in $\varepsilon^{\text{I}}(x_2+p\,x_3=0)$. [23]^{II} ist normal zu $\varepsilon_0^{\text{II}}$, zu $\varepsilon^{\text{II}}(x_1-p^2\,x_3=0)$ und zu $\sigma(x_2-x_3=0)$. (34)^{II} liegt in $\varepsilon_0^{\text{II}}$ und in $\varepsilon^{\text{I}}(p\,x_1-x_3=0)$. [34]^{II} ist normal zu $\varepsilon_0^{\text{II}}$ und zu $\varepsilon_0^{\text{II}}(x_2+p^2\,x_3=0)$.
- 3.22. Ebene Dreikantenzüge von Π . 6348 ist ein ebener Dreikantenzug k_{243} in der Ebene [23]^{II}. Seine Ebene ist nach Formel (23) parallel zu $a_2(x_1=0,x_2+x_3=0)$. 6348 geht durch 180°-Drehung um $a_4(x_1=x_2=0)$ in $k_{243}(8126)$ über, daraus erhält

man durch 90°-Drehung um die x_2 -Achse $k_{243}(\bar{2}\bar{5}1'1)$, dessen Ebene zu $a_2(x_1-x_2=0,x_3=0)$ parallel ist und die daher im Aufriss als Gerade erscheint. Dasselbe gilt für die k_{243} , die aus $\bar{2}\bar{5}1'1$ durch 180°-Drehung um $a_2(x_1-x_2=0,x_3=0)$ und daraus durch 180°-Drehung um $a_4(x_1=x_2=0)$ hervorgehen.

II besitzt 24 ebene Dreikantenzüge. Sie liegen in 12 Paaren paralleler Ebenen, zugleich in 6 Quadrupeln von Ebenen, die zu einer a₂ parallel sind.

3.3. Die sechs Polyeder der Schnittpunkte

 Γ führt jeden Schnittpunkt $(\mu \nu)$ zweier (verlängerter) Kanten von Π in die Ecken eines Polyeders Π $(\mu \nu)$ über.

a) $\Pi(33) = \Pi_3$ ist das Oktaeder mit den Ecken $(\pm p^{-1}, 0, 0), (0, \pm p^{-1}, 0), (0, 0, \pm p^{-1}).$ b) $\Pi(23)^{\rm I}, \Pi(34)^{\rm I}, \Pi(24)$. Die Streckung aus M mit dem Faktor p^{-2} führe Π_4 in den Würfel $(p^{-2} \cdot \Pi_4)$ über. Nach (19) liegt $(23)^{\rm I}$ in $\sigma(x_1 + x_3 = 0)$, und wegen $p^{-1} < p^{-2}$ liegt der Punkt $(23)^{\rm I}$ im Innern einer Kante von $p^{-2} \cdot \Pi_4$. Daher geht $(23)^{\rm I}$ durch Γ in die 24 Ecken eines Polyeders der Gruppe Γ über. Analog bei $(34)^{\rm I}$ mittels $(p^{-1} \cdot \Pi_4)$. Es ist

$$\Pi(23)^{I} = (3,4+4,4+4), s_3 = (1+p)\sqrt{2}, s_8 = 2p^{-1},$$
 (25)

$$\Pi(34)^{I} = (2+2,3,2+2,4), \quad s_3 = (p+p^2)\sqrt{2}, \quad s_4 = 2.$$
 (26)

In jeder Ecke von Π (23)^I treffen ein gleichseitiges Dreieck (Seitenlänge s_3) und zwei halbreguläre Achtecke (Seitenlängen abwechselnd s_3 und s_8 , Innenwinkel 135°) zusammen, in jeder Ecke von Π (34)^I ein gleichseitiges Dreieck (Seitenlänge s_3), ein Quadrat (Seitenlänge s_4) und zwei Rechtecke (Seitenlängen s_3 und s_4).

(24) liegt nach (20) in $\sigma(x_3=0)$. Mittels $(1+p) \cdot \Pi_4$ folgt

$$\Pi(24) = (3+3,3+3,4), \qquad s_4 = \sqrt{2}, \qquad s_6 = p\sqrt{2}.$$
 (27)

In jeder Ecke treffen ein Quadrat (Seitenlänge s_4) und zwei halbreguläre Sechsecke (Seitenlängen abwechselnd s_4 und s_6 , Innenwinkel 120°) zusammen.

c) $\Pi(23)^{II}$ und $\Pi(34)^{II}$ sind spezielle unsymmetrische Polyeder der Gruppe Γ . Die Koordinaten ihrer 24 Ecken verhalten sich (bis auf Reihenfolge und Vorzeichen) bei $\Pi(23)^{II}$ nach (23) wie $1:p:p^3$, bei $\Pi(34)^{II}$ nach (24) wie $1:p^2:p^3$ (hingegen bei Π wie $1:p:p^2$).

Ergebnis: Die Schnittpunkte (verlängerter) Kanten von Π sind: 1. Die Ecken des Oktaeders Π_3 , 2. die Ecken dreier spezieller symmetrischer und zweier spezieller unsymmetrischer Polyeder der Gruppe Γ . Das sind $6 \cdot 6 + 3 \cdot 24 + 2 \cdot 24 = 156$ Inzidenzen. Rechnet man die Fernpunkte paralleler Kanten k_4 hinzu, ferner die Ecken von Π , in denen 5 Kanten 10 Inzidenzen entsprechen, so gibt es 408 Inzidenzen im Kantensystem von Π . Die Aufzählung ist vollständig.

Die Hüllpolyeder der Verbindungsebenen komplanarer Kanten von Π ergeben sich in 5.2. aus dem zu Π dualen Polyeder.

3.4. Die Ebenen ε_2 der 24 Dreiecke Δ_2 und ihr Polyeder Π_2

Ein Dreieck Δ_2 enthält je eine Kante k_4, k_3, k_2 von Π und drei Ecken von Π . Ausserhalb der Ecken liegen auf k_2 je zwei Punkte $(23)^{\rm I}, (24), (23)^{\rm II}$, die zum Mittelpunkt von k_2 symmetrisch liegen (denn Π gestattet die 180°-Drehung um die Achse a_2 , die k_2 normal schneidet). k_3 enthält je einen Punkt $(33), (23)^{\rm I}, (34)^{\rm I}, (23)^{\rm II}, (34)^{\rm II}$. k_4 enthält je einen Punkt $(24), (34)^{\rm I}, (34)^{\rm II}$. Diese Punkte auf k_2, k_3, k_4 sind voneinander verschieden, denn je zwei dieser Kanten haben nur eine Ecke von Π gemein. In der Ebene ε_2 von Δ_2 liegen also 3 Ecken und 6+5+3=14 andere Kantenschnittpunkte von Π . Aus ε_2 entsteht durch Γ ein gleichflächiges Polyeder Π_2 der Gruppe Γ . Die Ebenen ε_2 von Π_2 enthalten alle 24 Ecken und 60 Kanten von Π und alle 156 Schnittpunkte verlängerter Kanten von Π .

Um die 24 besonderen Fünfecke Δ_5 zu bestimmen, von denen Π_2 begrenzt ist, suchen wir etwa Δ_5 in ε_2 (1'18) (Fig. 1, schraffiert). 1' ist Schnittpunkt von ε_2 (1'18), ε_2 (1' \bar{I} '5), ε_2 (1' \bar{I} '5); daher ist 1' eine Ecke von Δ_5 . 18 ist Schnittkante zweier Dreiecke Δ_2 ; daher ist k_2 (18) eine Seite von Δ_5 . Deren Endpunkte sind Schnittpunkte dreier Ebenen ε_2 , sie sind daher Ecken von Π_2 . Eine weitere Ecke von Δ_5 ist der Schnittpunkt S_3 der Ebenen ε_2 jener Dreiecke Δ_2 , die mit Δ_3 (1'51) je eine Kante k_3 gemein haben. Eine weitere Ecke von Δ_5 ist der Schnittpunkt S_4 der Ebenen jener 4 Dreiecke Δ_2 , die mit Δ_4 (1'8 \bar{Z} '5) je eine Kante k_4 gemein haben. Man findet

$$S_3(x_1 = x_2 = x_3 = (2-p)^{-1}), S_4((1-p+p^2)^{-1}, 0, 0).$$
 (28)

In $\varepsilon_2(1'18)$ liegt ausserhalb Δ_5 der auf $k_3(11')$ liegende Punkt $(33) = (0, 0, p^{-1})$; in ihm schneiden sich 4 Ebenen ε_2 .

 Π_2 hat denselben Inkugelradius ρ_3 wie Π_3 . Der abgestumpfte Würfel Π ist Durchschnitt von Π_4 , Π_3 und Π_2 .

4. Inzidenzen im Geradensystem der Kanten und Diagonalen von Π

Von jeder Ecke von Π gehen 5 Kanten, 1 Quadratdiagonale und 17 Raumdiagonalen aus. K sei die Menge der 60 Kanten von Π . D sei die Menge der 12 Quadratdiagonalen und 204 Raumdiagonalen von Π . Die Inzidenzen in K sind in Abschnitt 3 untersucht. In $K \cup D$ kommen weitere Inzidenzen hinzu: a) Schnittpunkte von Kanten mit Diagonalen; auch sie liegen in Ebenen ε_2 von Π_2 , b) Schnittpunkte von Diagonalen.

- 4.1. Fernpunkte. Normal zu $\varepsilon_0^{\rm I}$ sind 67,58,24,2'4', normal zu $\varepsilon_0^{\rm II}$ sind 3'4',2'1',68 und $k_4(12), k_4(34)$. In den Fernpunkten der Normalen zu den 12 Ebenen $\varepsilon^{\rm I}$ und 12 Ebenen $\varepsilon^{\rm II}$ schneiden sich also je 4 bzw. 5 Geraden aus $K \cup D$. Das bedeutet 72 + 120 = 192 Inzidenzen in Fernpunkten.
- 4.2. Schnittpunkte, die 4 Oktaeder bilden. Es ist $13 \cap 24 = (0,0,1)$, $57 \cap 68 = (0,0,p)$, $1'3' \cap 2'4' = (0,0,p^2)$. Ferner ist $13' \cap 24' \cap 31' \cap 42' = (0,0,1-p+p^2)$. Jeder dieser Punkte geht durch Γ in die Ecken eines Oktaeders über.

- 4.3. Dreifache Schnittpunkte, die einen Würfel bilden. Es ist $1'2 \cap 58 \cap 1\overline{I'} = (p, p, p)$. Γ führt diesen Punkt in die Ecken eines Würfels über.
- 4.4. Diagonalenschnittpunkte in den Ebenen, die 2 oder 3 Kanten von Π enthalten. Zwei komplanare Kanten k_{μ}, k_{ν} , die keine Ecke von Π gemein haben, bilden ein Trapez. Dessen Parallelseiten schneiden sich in einem Fernpunkt, die Schenkel im Punkt (μ, ν) . Der Schnittpunkt der Trapezdiagonalen heisse $|\mu\nu|$. $(\mu\nu)$ und $|\mu\nu|$ sind konjugiert bezüglich der Umkugel von Π (vollständiges Viereck!). So erhält man aus $(23)^{\rm I}$, $(34)^{\rm I}$, $(23)^{\rm II}$, $(34)^{\rm II}$ je 24 Schnittpunkte $|23|^{\rm I}$, $|34|^{\rm I}$, $|23|^{\rm II}$, $|34|^{\rm II}$ je zweier Raumdiagonalen von Π . Zu $k_3(1'5) \cap k_3(84) = (33) = (p^{-1}, 0, 0)$ gehört $|33| = (1-p+p^2, p^3, p)$, zu (24) = (1, 1+p, 0) gehört |24| = (p, p, p) (siehe 4.3). |33| und |24| liegen symmetrisch zu $\varepsilon_0^{\rm I}$. Der Punkt |33| liegt auch in $\varepsilon^{\rm II}(x_2-p^2x_3=0)$.
- 4.5. Diagonalschnittpunkte in den Ebenen, die vier Kanten von Π enthalten. Die Ebene ε , in der der ebene Vierkantenzug 251'84 liegt, enthält 4 Kanten, 1 Quadratdiagonale und 5 Raumdiagonalen von Π . Von diesen 10 Geraden schneiden sich in jeder Ecke vier, in $(33), (24), (23)^{\rm I}$ je zwei; zu ihnen gehören nach 4.4 die Punkte |33|, |24| und ein Punkt $|23|^{\rm I} = (p^2, p^3, 2p p^2)$ in $\varepsilon_0^{\rm I}$. Ferner existieren in ε noch drei Paare von Diagonalenschnittpunkten, symmetrisch zu $\varepsilon_0^{\rm I}$ liegend.
- 4.6. Andere Schnittpunkte. Als weiterer Schnittpunkt, zugleich als Beispiel für die zahlreichen Beziehungen zwischen den Schnittpunkten in $K \cup D$, sei

$$Z = 14' \cap 23' = (p, p^{-1}, p^{-1}) \tag{29}$$

erwähnt (Fig. 1). Eine perspektive Kollineation habe das Zentrum Z; Kollineationsebene sei irgendeine Ebene durch 6 und 8. Durch die Kollineation lässt sich $k_{243}(8126)$ in 84'3'6 überführen, daher $k_2(18) \cap k_3(26) = (\lambda p^3, \lambda p, \lambda)$ (in Fig. 1 mit $(23)_Z^{II}$ bezeichnet) in $k_3(84') \cap k_4(63') = (34)_Z^{II} = (-1, -p^{-2}, -p)$, ebenso $|23|_Z^{II}$ in $|34|_Z^{II}$. Diese Punkte liegen auf zwei Kollineationsstrahlen, daher: Die Geraden $(23)_Z^{II}(34)_Z^{II}$ und $|23|_Z^{II}|34|_Z^{II}$ in ε_0^{II} gehen durch Z.

5. Das unsymmetrische dual-archimedische Polyeder $ar{\varPi}$ von \varGamma

- 5.1. Gestalt von $\bar{\Pi}$. Die Polarität an einer Kugel \varkappa um M führt Π in ein Polyeder $\bar{\Pi}$ über. In Figur 2 ist $\bar{\Pi}$ in derselben Art dargestellt wie Π in Figur 1; beide Figuren besitzen dieselben Symmetrieeigenschaften. Als Kugel \varkappa ist in Figur 2 die Kugel gewählt, die die Dreiecksebenen von Π berührt; nach (15) ist ihr Radius $\rho_3 = p^{-1}/\sqrt{3}$. In der Polarität entspricht dann
- a) jedem Dreieck Δ_2 oder Δ_3 von Π sein Mittelpunkt; dessen Koordinaten folgen aus (2), (9), (10). In Figur 2 erscheint er als Schwerpunkt des Bildes von Δ_2 oder Δ_3 in Figur 1. Von jedem dieser Punkte gehen drei Kanten von $\bar{\Pi}$ aus;
- b) einem Quadrat Δ_4 von Π , in der Ebene $x_{\rm m}=\pm 1$ liegend, der Punkt mit $x_{\rm m}=\pm \rho_3^2/\rho_4=\pm p^{-2}/3$ auf der $x_{\rm m}$ -Achse. Diese 8 Ecken von $\bar{\Pi}$ sind in Figur 2 durch Ringe hervorgehoben. Von ihnen gehen je 4 Kanten von $\bar{\Pi}$ aus.

 $\bar{\Pi}$ ist von 24 kongruenten Fünfecken begrenzt; jedes besitzt eine Symmetrieachse. Eines ist in Figur 2 mit I II III IV V bezeichnet. Man findet

$$\overline{I,II} = \overline{I,V} = (\sqrt{p} + \sqrt{p^{-1}})/3, \qquad \overline{II,III} = \overline{III,IV} = \overline{IV,V} = 2\sqrt{p}/3,
\overline{II,V} = 2\sqrt{p^{-1}}/3.$$
(30)

5.2. Inzidenzen im Kantensystem von $\bar{\Pi}$. Die Polarität an \varkappa führt die Verbindungsebene $[\mu \nu]$ komplanarer Kanten von Π in den Schnittpunkt der entsprechenden Kanten \bar{k}_{μ} , \bar{k}_{ν} von $\bar{\Pi}$ über; dieser sei mit $\langle \mu \nu \rangle$ bezeichnet. In Figur 2 tragen \bar{k}_{μ} und \bar{k}_{ν} einen gegen $\langle \mu \nu \rangle$ gerichteten Pfeil. Aus der Ebene eines ebenen Vierkantenzuges von Π und aus der Ebene $[34]^{\rm I}$, gegeben durch (21) und (22), erhält man (beim gewählten Radius von \varkappa)

$$\langle 23 \rangle^{I} = \langle 33 \rangle = \langle 24 \rangle = \left(\frac{p^{-1}}{3}, \frac{1}{3}, \frac{p^{-2}}{3}\right), \qquad \langle 34 \rangle^{I} = \left(-\frac{p^{-2}}{3}, -\frac{p^{-1}}{3}, \frac{p^{-4}}{3}\right).$$
 (31)

Aus den Ebenen [23]II und [34]II, gegeben durch (23) und (24), folgt

$$\langle 23 \rangle^{\text{II}} = \left(\frac{p^{-1}}{3}, \frac{p^{-3}}{3}, \frac{p^{-3}}{3}\right), \qquad \langle 34 \rangle^{\text{II}} = \left(-\frac{p}{3}, -\frac{p^{-1}}{3}, \frac{p^{-3}}{3}\right).$$
 (32)

In Figur 2 sind jene Punkte $\langle \mu \nu \rangle$ bezeichnet, die zu den in Figur 1 mit $(\mu \nu)$ bezeichneten Punkten gehören.

Die Punkte $\langle 23 \rangle^{\rm I} = \dots$ bilden den abgestumpften Würfel, der aus Π durch die Streckung aus M mit dem Faktor $p^{-2}/3$ hervorgeht. Wie in 3.3 findet man: Die Punkte $\langle 23 \rangle^{\rm II}$ bilden ein symmetrisches Polyeder, hingegen $\langle 34 \rangle^{\rm I}$ und $\langle 34 \rangle^{\rm II}$ je ein unsymmetrisches Polyeder von Γ . Die Koordinaten der Ecken verhalten sich, abgesehen von Reihenfolge und Vorzeichen, bei $\Pi \langle 23 \rangle^{\rm I}$ wie $1:p:p^2$, bei $\Pi \langle 34 \rangle^{\rm I}$ wie $1:p:p^2$, bei $\Pi \langle 34 \rangle^{\rm I}$ wie $1:p^2:p^4$. Daraus folgt übrigens: $\Pi (34)^{\rm II}$ und $\Pi \langle 34 \rangle^{\rm I}$ sind ähnliche Polyeder. Fritz Hohenberg, Graz

Inequalities involving convex sequences

To Ernst Trost on his 70th anniversary

1. Introduction

As an extension of the familiar estimate

$$a + \frac{1}{a} > 2$$
 $(a > 0, a \ne 1),$