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Kleine Mitteilungen

Bemerkungen iiber Zulissigkeitsmengen vollstiindig additiver Funktionen

Eine zahlentheoretische Funktion f:N— C heisst vollstindig additiv, wenn fiir alle
natiirlichen Zahlen n und m f(nm)=f(n)+f(m) gilt. Nach Katai [3] nennt man
eine Menge A natiirlicher Zahlen Eindeutigkeitsmenge vollstindig additiver Funk-
tionen (E-Menge), wenn fiir jede vollstindig additive Funktion f:N—C aus
f(4)={0} die Gleichung f(N)={0} folgt. Verschiedene Autoren [1-5] haben all-
gemeine Charakterisierungen und spezielle Beispiele fiir E-Mengen gegeben. Ins-
besondere hat die Menge P der Primzahlen diese Eigenschaft. Im allgemeinen
konnen aber die Werte einer vollstindig additiven Funktion f auf einer E-Menge
nicht beliebig vorgeschrieben werden. Mengen, die dies zulassen, und solche, die
zugleich auch E-Mengen sind, werden im folgenden charakterisiert.

Definition. Eine Menge B natiirlicher Zahlen heisst zulissig oder Zuldssigkeits-
menge (kurz Z-Menge), falls sich jede Funktion f:B— C so auf N fortsetzen lisst,
dass die Fortsetzung f: N — C vollstindig additiv ist.

Satz 1. Eine Menge B<N ist genau dann Z-Menge, wenn sich die Zahl 1 «nicht»
in der Form

1=b€1 bl’;k (1)

schreiben ldsst, wobei die Zahlen k, b; und r; die Bedingungen A: keN, b,,...,b, € B,
b#+1;r,...,r,e Q\{0} erfiillen.

Beweis:
1. Angenommen die Zahl 1 liasst sich in der Form (1) schreiben. Betrachte die
Funktionf: B—»Czu

n= bl
sonst

foy={



Kleine Mitteilungen 37

f lasst sich nicht vollstindig additiv fortsetzen, denn fir die Fortsetzung f miisste
gelten:

FO=f(by - - -b) =r f(b)+ - + 1 f(br)

=ry- 1+0++0=r1=+=0

Im Widerspruch zur Tatsache, dass fiir jede vollstindig additive Funktion f stets
f(1)=0 gilt.

2. Sei B eine Teilmenge von N, durch die 1 nicht in der Form (1) geschrieben
werden kann. Sei ferner f: B—C eine Funktion. Dann ist zu zeigen, dass zu f
eine vollstindig additive Fortsetzung f: N — C existiert.

Betrachte den Vektorraum V, der von den Zahlen logp mit pe P iiber dem Koérper
der rationalen Zahlen aufgespannt wird. Da die Zahl 1 sich nicht in der Form (1)
schreiben ldsst, sind in V" die Vektoren logb mit be B linear unabhingig. Nach
entsprechenden Siatzen aus der linearen Algebra ldsst sich also die Menge
C’={logb|be B}, falls sie nicht schon Basis von V ist, durch Hinzunahme einer
Menge C” geeigneter, linear unabhéngiger Vektoren zu einer Basis C von V
erginzen. Beziiglich dieser Basis ist nun jeder Vektor logxe V' eindeutig darstell-
bar:

logx=r;loge;+ --- +rgloge,.

Sei nun ¢ : V- C die lineare Abbildung zu

1 _ {/(c) logce C’
¢ (loge)=1, logce C”

Dann lisst sich die Funktion f: B— C, wie folgt, zu einer vollstindig additiven
Funktion f: N — C ergénzen:

f(n):=¢ (logn).

Denn dann gilt:
- 1. f(nm)=¢ (lognm),
=¢ (logn+logm),
=¢ (logn)+¢ (logm),
=f+fom.
2. FurbeB, also loghbe C’: f(b)=¢ (logb)=f(b) q.e.d.

Satz 2. Eine Menge B<N ist genau dann Z-Menge, wenn sich jede natiirliche Zahl n
auf hichstens eine Weise in der Form

n=b’il-... bZk (2)

schreiben ldsst, wobei die Zahlen k,b; und r; die Bedingungen A’”: keN; by,...,b; € B;
l<by<--- <by;ry,...,r,e Q\{0} erfiillen.
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Beweis: Lisst sich die Zahl 1 in der Form (1) schreiben, dann gibt es fiir jedes
b e B zwei Darstellungen der Form (2), nimlich

b=b und b=b-1=b-by- --- - bj.

Liasst sich umgekehrt irgendein neN auf zwei Weisen in der Form (2) schreiben,
also

n=bql .« see bZk und n=c5il e vee c‘;l (kSl),

dann hat die Zahl 1 - nach dem Zusammenfassen moglicherweise gleicher b; und ¢,
(1<i,j<k) - die Darstellung

l,—:n.n_l:d'll. .dil’

wobei mindestens einer der Faktoren &% von 1 verschieden ist. Mit Satz 1 folgt
die Behauptung von Satz 2 sofort.

Satz 3. Eine Menge AcN ist genau dann E-Menge (s.0.!) und Z-Menge (kurz
EZ-Menge), wenn fiir jedes N\{1} genau eine Darstellung in der folgenden Form
existiert:

n.—_b'il P brk,
wobei die Zahlen k,b; und r; die Bedingungen A’ erfiillen.
Beweis: Satz von Wolke [5] und Satz 2.

Satz 3’. Eine Menge AcN ist genau EZ-Menge, wenn fiir jedes pe P mindestens
eine Darstellung der Form (*) existiert und dies fiir die Zahl 1 nicht gilt:

p=b€1. .b'i(k, *)
wobei die Zahlen k,b; und r; die Bedingungen A’ erfiillen.

Beweis: Aus dem Satz von Wolke [5] folgt unmittelbar, dass eine Menge A <N
genau dann E-Menge ist, wenn sich jedes pe P in der Form (*) darstellen lasst.
Dies und Satz 1 ergeben die Behauptung.

Beispiele fiir EZ-Mengen

[Zugleich Beispiele fiir Basen von V (siche Beweis von Satz 1), bei denen die
Basisvektoren die Gestalt logx mit xeN haben.]

1. A={p};p%;p%; ...} mit g;eN,
2. A={p}; pPp%; P34 pe; ...} mit aeN,
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3. A={p}; pPp%; pY P5 PSP PSP PYY; ...}, mit a;eN,
4. A={p} p3; PP s PP pT; PSS -}, mit g; € N.

EZ-Menge der Form 1 sind in gewissem Sinn einzig, siehe Satz 5, doch zuerst
ein Hilfssatz:

Satz 4. Ist B eine EZ-Menge. Dann existiert zu jedem beB mindestens eine
Primzahl p, in deren Darstellung p=>by - --- - bx gemdss Satz 3’ b auftritt, d.h.
b=>b, fireinimit 1<i<k gilt.

Beweis: Angenommen die Behauptung sei falsch, b sei die Zahl, zu der es keine
Primzahl mit der behaupteten Eigenschaft gibt. Dann hat b zwei Darstellungen
beziiglich B, namlich 1. b=5b und 2. die durch die Primzahldarstellung von
b=pf - --- - pi vermittelte, die b nicht enthilt. Dies ist ein Widerspruch zur
Voraussetzung, dass B Z-Menge ist (siehe Satz 2!).

Satz 5. Mengen der Form
A=p{s P % .. (@;eN)
sind die einzigen EZ-Mengen, deren Elemente paarweise teilerfremd sind.

Beweis: Sei B eine EZ-Menge, deren Elemente teilerfremd sind, sei be B und p
eine der nach Satz 4 existierenden Primzahlen, in deren Darstellung p=»5} - --- - b
gemadss Satz 3 b auftritt. Nach Voraussetzung gilt fiir i/ (b;,5;)= 1, also folgt:
p=b'mitreQ\{0} = b=p" mitmeN, dabe B und B<N gilt.

Thomas Jahnke, Gesamthochschule Siegen, BRD
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Aufgaben

Aufgabe 837. Es seien G|, G, zwei Graphen mit je n Ecken x; bzw. y;(i=1,...,n) und
e, Kanten. Fiir die Grade (Valenzen) p (x;) bzw. p (y;) der Ecken gelte p (x;)#p ()
(1<i,j<n). Man bestimme maxe,,. P. Erdos

Solution: By considering the complement of the graphs G;i=1,2, one gets the
equivalent problem of determining the minimum value of e,.
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