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Kleine Mitteilungen

Bemerkungen über Zulässigkeitsmengen vollständig additiver Funktionen

Eine zahlentheoretische Funktion/:N->C heisst vollständig additiv, wenn für alle
naturhchen Zahlen n und m f(nm)=f(n)+f(m) gilt. Nach Kätai [3] nennt man
eine Menge A natürlicher Zahlen Eindeutigkeitsmenge vollständig additiver
Funktionen (2,-Menge), wenn für jede vollständig additive Funktion /:N->C aus
f(A)={0} die Gleichung/(N)={0} folgt. Verschiedene Autoren [1-5] haben
allgemeine Charakterisierungen und spezielle Beispiele für __.-Mengen gegeben.
Insbesondere hat die Menge P der Primzahlen diese Eigenschaft. Im allgemeinen
können aber die Werte einer vollständig additiven Funktion/auf einer is-Menge
nicht behebig vorgeschrieben werden. Mengen, die dies zulassen, und solche, die
zugleich auch is-Mengen sind, werden im folgenden charakterisiert.

Definition. Eine Menge B natürlicher Zahlen heisst zulässig oder Zuldssigkeits-
menge (kurz Z-Menge), falls sich jede Funktion f:B^>C so auf N fortsetzen lässt,
dass die Fortsetzungf: N -? C vollständig additiv ist.

Satz 1. Eine Menge BczN ist genau dann Z-Menge, wenn sich die Zahl 1 «nicht»
in der Form

1 *? Mt (1)

schreiben lässt, wobei die Zahlen k, bx und rx die Bedingungen A: keN, bx,...,bkeB;
bx*l;rx,...,rkeQ\{0] erfüllen.

Beweis:
1. Angenommen die Zahl 1 lässt sich in der Form (1) schreiben. Betrachte die
Funktion/: B -+ C zu

/(»):- {J
1 n=bx

sonst
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/ lässt sich nicht vollständig additiv fortsetzen, denn für die Fortsetzung / musste

gelten:

/(!)=/( ft? brkk) =rxf(bx)+ -+rj(bk)
rx • l+0+---+0 r, + 0.

Im Widerspruch zur Tatsache, dass für jede vollständig additive Funktion / stets

/(l) 0gilt.
2. Sei B eine Teilmenge von N, durch die 1 nicht in der Form (1) geschrieben
werden kann. Sei ferner /: B -? C eine Funktion. Dann ist zu zeigen, dass zu /
eine vollständig additive Fortsetzung/: N -? C existiert.
Betrachte den Vektorraum V, der von den Zahlen log/? mitpeP über dem Körper
der rationalen Zahlen aufgespannt wird. Da die Zahl 1 sich nicht in der Form (1)
schreiben lässt, sind in V die Vektoren logb mit beB linear unabhängig. Nach
entsprechenden Sätzen aus der linearen Algebra lässt sich also die Menge
C={logb\beB), falls sie nicht schon Basis von V ist, durch Hinzunahme einer
Menge C" geeigneter, linear unabhängiger Vektoren zu einer Basis C von V
ergänzen. Bezüglich dieser Basis ist nun jeder Vektor logxe V eindeutig darstellbar:

logx r1logc1+ hrylogc-.

Sei nun cp: V-> C die lineare Abbildung zu

logceC
<p(^ogc)=^0

log c e C"

Dann lässt sich die Funktion f:B->C, wie folgt, zu einer vollständig additiven
Funktion/: N -> C ergänzen:

f(n):= cp (logn).

Denn dann gilt:
1. f(nm) cp(lognm),

cp (logn + logm),
cp(logn) + cp(logm),

=f(n)+f(m).
2. Für beB, also logbeC:f(b) cp(logb)=f(b) q.e.d.

Satz 2. Eine Menge BczN ist genau dann Z-Menge, wenn sich jede natürliche Zahl n

aufhöchstens eine Weise in der Form

n brf b% (2)

schreiben lässt, wobei die Zahlen k,bx und rt die Bedingungen A': keN; bx,...,bkeB;
l<bx<>- <bk; rx,...,rkeQ\{0} erfüllen.
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Beweis: Lässt sich die Zahl 1 in der Form (1) schreiben, dann gibt es für jedes
beB zwei Darstellungen der Form (2), namhch

b b und b bl=bbrf b%.

Lässt sich umgekehrt irgendein «eN auf zwei Weisen in der Form (2) schreiben,
also

n br? b% und n cf cj' (k<l),

dann hat die Zahl 1 - nach dem Zusammenfassen möglicherweise gleicher bx und cy

(1 <, i,j<,k) - die Darstellung

l n- n-x=d<xi dl{,

wobei mindestens einer der Faktoren a]> von 1 verschieden ist. Mit Satz 1 folgt
die Behauptung von Satz 2 sofort.

Satz 3. Eine Menge AczN ist genau dann E-Menge (s.o.l) und Z-Menge (kurz
EZ-Menge), wenn für jedes N\{1} genau eine Darstellung in der folgenden Form
existiert:

n brf br$,

wobei die Zahlen k, bx und rx die Bedingungen A' erfüllen.

Beweis: Satz von Wolke [5] und Satz 2.

Satz 3'. Eine Menge AaN ist genau EZ-Menge, wenn für jedes peP mindestens
eine Darstellung der Form (*) existiert und diesfür die Zahl 1 nicht gilt:

P=brxl tff, (*)

wobei die Zahlen k,bx und rx die Bedingungen A' erfüllen.

Beweis: Aus dem Satz von Wolke [5] folgt unmittelbar, dass eine Menge A c N
genau dann .E-Menge ist, wenn sich jedes peP in der Form (*) darstellen lässt.
Dies und Satz 1 ergeben die Behauptung.

Beispielefür EZ-Mengen

[Zugleich Beispiele für Basen von V (siehe Beweis von Satz 1), bei denen die
Basisvektoren die Gestalt logx mit xeN haben.]

1. A W;pf;&;...} mit axeN9
2. A W;pt*i$'9i#;p1r9...} mit axeN9
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3 A {pi\pfp$\pfp%pf,pfpfpfp%™, mit ajeN,
4 A {pfp^,p^pf,pfpf,pt,pf, }, mit aseN

EZ-Menge der Form 1 sind in gewissem Sinn einzig, siehe Satz 5, doch zuerst
em Hilfssatz

Satz 4. Ist B eine EZ-Menge Dann existiert zu jedem beB mindestens eine
Primzahl p, in deren Darstellung p b\* br£ gemäss Satz 3' b auftritt, dh
b=bxfur ein imit l<i<,kgilt
Beweis Angenommen die Behauptung sei falsch, b sei die Zahl, zu der es keine
Pnmzahl mit der behaupteten Eigenschaft gibt Dann hat b zwei Darstellungen
bezuglich B, namhch 1 b b und 2 die durch die Primzahldarstellung von
b=p^ plf vermittelte, die b nicht enthalt Dies ist em Widerspruch zur
Voraussetzung, dass B Z-Menge ist (siehe Satz 2f)

Satz 5. Mengen der Form

A W,pi*,pp, i (*.eN)

sind die einzigen EZ-Mengen, deren Elemente paarweise teilerfremd sind

Beweis Sei B eine isZ-Menge, deren Elemente teilerfremd sind, sei beB und p
eine der nach Satz 4 existierenden Pnmzahlen, in deren Darstellung p b\] b'£

gemäss Satz 3 b auftritt Nach Voraussetzung gilt fur i +y (bx,bj)= 1, also folgt
p brmitreQ\{0} => b=pm mit meN, da beB und BczN gilt

Thomas Jahnke, Gesamthochschule Siegen, BRD
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Aufgaben

Aufgabe 837. Es seien Gx, G2 zwei Graphen mit je n Ecken xx bzw. yx (i 1,..., n) und
en Kanten. Fur die Grade (Valenzen) p (xx) bzw p (yx) der Ecken gelte p (xx)^p (yf)
(1 ^ i,j ^ n) Man bestimme max en. P. Erdos

Solution* By considenng the complement of the graphs Gx,i=l,l, one gets the
equivalent problem of determinmg the mmimum value of en
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