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Definitionsprinzipien fiir Operatoren Bergmanscher Art und
einige Anwendungen

1. Einleitung und Motivierung

Die Theorie und die Anwendung der Bergman- und verwandter Integraloperato-
ren haben sich wihrend der letzten beiden Jahrzehnte zu einem umfangreichen
Sondergebiet der Theorie der partiellen Differentialgleichungen entwickelt - man
vergleiche etwa Bergmans klassisches Buch [4] mit dem Bericht [17] iiber eine
1976 abgehaltene Spezialtagung. Diese «funktionentheoretische Methode» kann
man folgendermassen motivieren:

Viele Eigenschaften komplexer analytischer Funktionen lassen sich sehr eingehend
kennzeichnen; man denke etwa an die Fiille von Sitzen zum Koeffizientenproblem,
zur Werteverteilung, iiber das Wachstum, die Lage und Art der Singularititen
u.a.m. Dagegen hat man, abgesehen von der zweidimensionalen Laplace-Glei-
chung, bei partiellen Differentialgleichungen zunichst nichts Vergleichbares. Man
kann aber die komplexe Analysis hierfiir fruchtbar machen, indem man Integral-
operatoren definiert, die als Ubersetzungsprinzip dienen, so dass man aus funktio-
nentheoretischen Methoden und Sitzen nun Ergebnisse iiber Losungen der genann-
ten Gleichungen gewinnt, und zwar sowohl iiber Klassen von Losungen ohne
Bezug auf irgendwelche Nebenbedingungen wie auch im Zusammenhang mit
Anfangs- oder Randwertaufgaben. Von grundlegender Bedeutung ist hierbei die
Tatsache, dass es zu einer gegebenen Gleichung im allgemeinen verschiedenartige
Integraloperatoren gibt. Um fiir den jeweiligen Zweck eine giinstige Wahl zu
treffen, muss man also die Grundprinzipien kennen, die zu brauchbaren Operatoren
fiuhren. Wir zeigen in der vorliegenden Arbeit, dass man einige solche Prinzipien
in relativ einfacher Weise angeben und untersuchen kann.

2. Das Prinzip der Substitution eines Integrals
Wir erldutern dieses Prinzip fiir Gleichungen der Form

dy+a(x,p)y+pBxy)y,+y(xy)y=0. 2.1)

Die Koeffizienten seien reell-analytisch in einem Gebiet, das den Nullpunkt
enthidlt. Dann konnen wir diese als holomorphe Funktionen von z;=x+iX,
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z,=y+1iY fortsetzen. Wir vereinfachen (2.1) noch, indem wir z=2z,+iz,, z¥=2z,— iz,
einfiihren und eine der beiden ersten partiellen Ableitungen in der iiblichen
Weise eliminieren. Dies ergibt

Lu=u,«+b(z,z*)ux+c(z,z2*)u=0 (2.2)

mit in einem Gebiet Gx G* = C? holomorphen Koeffizienten. Hierbei liegt G in der
z-Ebene, Oe G, und G* ist das gemiss obiger Transformation entsprechende Gebiet
in der z*-Ebene. Ein erstes Prinzip, einen Integraloperator f» u= Tf zu definieren,
besteht in dem Ansatz

(Tf)(z,z*>=fg (e.2%0)f (9 (2.0) 7 () d. 2.3)

t ist reell. Durch die Hilfsfunktion ¢:GXI1- Gy (I=[t,,1,]) erzwingen wir, dass f
nur von einer Variablen abhingt; das ist wesentlich, weil man so die weit-
entwickelte Theorie der analytischen Funktionen einer einzelnen Variablen nutzbar
machen kann. 7 gibt Flexibilitit hinsichtlich der Bedingungen fiir den Kern g.

Unter den folgenden Bedingungen liefert (2.3) nun Lésungen von (2.2):

Satz 2.1. Die Funktion h=0,/p, mit auf GxI holomorphem ¢ erfiille auf G die
Bedingung h(z,t,)=0, h(z,t,)=0. Weiterhin sei g =gt eine auf G X G* x I holomorphe
Losung von

@~h),=Lg, 2.4)

fiir die (§,»h), stetig ist. Dann ist u=Tf fiir jedes auf G, holomorphe f eine auf
G X G* holomorphe Lisung von (2.2).

Der Beweis ergibt sich durch Einsetzen von (2.3) in (2.2), wobei man partiell
integriert und

_(foo)o.

(fop), ’

benutzt, um unter dem Integralzeichen einen gemeinsamen Faktor f zu erzeugen.
Satz 2.1 liefert auch den von Bergman [4] eingefithrten Operator, indem man

1
n=-1, n=1, ¢@n=7z2(0-7), r=(1—13)" 12 2.5)

wihlt und g=g/t=(1—1*'2g holomorph auf GxG*xI voraussetzt, also die
obigen (hinreichenden) Nebenbedingungen geringfiigig abdndert. Aus (2.4) folgt
dann i

Mg=(1-1)g,,—t'g +22tLg=0. (2.6)
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3. Diskussion und Folgerungen

Satz 2.1 zeigt, dass fiir eine gegebene Gleichung (2.2) tatsidchlich beliebig viele
Operatoren T existieren. Da T ein Ubertragungsprinzip bewirken soll, kommt es
auf Einfachheit an. Also ist die giinstige Wahl von Kernen ein zentrales Problem
in Theorie und Anwendung. Von z* unabhingige Kerne schliessen wir aus, denn
sie fithren tiber (2.4) auf ¢=0, so dass (2.2) dann eine gewohnliche Differential-
gleichung fiir u,» wiirde, ein Trivialfall, der uninteressant ist. Wesentliche Hilfe
bei der Vereinfachung von Kernen kann der folgende wichtige Satz leisten, dessen
Beweis sich aus Satz 2.1 leicht durch direkte Rechnung ergibt:

Satz 3.1. Ist g, ein Kern des durch (2.3) gegebenen Operators fiir eine vorgelegte
Gleichung (2.2) und geniigt g, der Gleichung

gz(Z,Z*,t)=gl(Z,Z*,t)/1 ((P (2’[))

(A#0 beliebig, aber so, dass Lo@ auf GX I holomorph ist), so ist auch g, ein Kern
fiir die genannte Gleichung (2.2).

Diesen Satz kann man manchmal sogar benutzen, um alle Operatoren einer
gewissen Klasse explizit anzugeben. Hierzu eine typische Anwendung:

Eine Gleichung (2.2) und ein zugehoriger Bergman-Operator 7, fiur den (2.5)
gilt, heissen von der Klasse E, wenn der Kern von 7 die Form

m
g=el, q(z,z*,1)= Zoqu (z,2%)t* @3.1)

hat. Diese Klasse ist dadurch bedeutsam, dass man ihre Losungen mittels der
Fuchs-Frobenius-Theorie fiir gewdhnliche Differentialgleichungen untersuchen
kann; vgl. [15]. Die Helmholtz-Gleichung

1
Adu+k?y=0, also u,.+ " kK2u=0  (k konstant) (3.2)

ist von der Klasse E. Aus (2.6) ergeben sich als einfachste Kerne
g: (2%, n=exp(+ikVzz* 1) .
In Satz 3.1 wihlen wir nun A=expp,, wobei p, ein beliebiges Polynom vom

Grade m in dem durch (2.5) definierten ¢ ist, und schliessen, dass es in der Klasse E
fiir (3.2) unendlich viele Operatoren mit Kernen der Form

=8+ €XPPm

gibt.
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Natiirlich kann man von (2.6) durch Variablentransformationen vereinfachte Bedin-
gungen fur den Kern erreichen. Aber es ist oft besser, von vornherein (2.3)
abzuindern, beispielsweise in

(TN (2.2%)= [ & (2.2, 0 f () di~£(2). (33)

Dieser Operator von Eichler [7] bietet den Vorteil sehr einfacher Bedingungen
fiir den Kern, namlich, z. B. im Falle 5=0,

Lg:ov gz*(Z,Z*,Z)=C(Z,Z*),

wie man leicht durch Nachrechnung bestitigt. Er hat wichtige Anwendungen,
von denen wir eine im letzten Abschnitt betrachten werden.

4. Prinzip der Integration iiber einen Parameter

Wihrend die Funktionen fin Abschnitt 3 keine Losungen der gegebenen Gleichung
sind, besteht ein zweites Prinzip, Integraloperatoren zu definieren, darin, dass man
von vornherein Ldsungen f bestimmt, die noch von komplexen Parametern abhén-
gen, itber die man integriert. Damit ldsst sich dann ein weiteres funktionen-
theoretisches Werkzeug, die Residuenintegration, anwenden, d.h. Eigenschaften
von Losungen lassen sich aus Residuen ermitteln. Es ist bemerkenswert, dass man
verschiedene ad hoc eingefithrte spezielle Operatoren diesem Prinzip unterordnen
kann. Wir erldutern dies fur die n-dimensionale Laplace-Gleichung. Der wesent-
liche Grundgedanke ist die Benutzung einer Hilfsvariablen v, die von den n
Ortsvariablen x=(x,,...,x,) und n—2 Integrationsvariablen ¢=(¢,,...,&,_,) ab-
hédngt und so beschaffen ist, dass f, als Funktion der x; aufgefasst, die Gleichung
4,f=0 befriedigt. Grundlegend dazu ist

Satz 4.1. Es sei [ eine im Nullpunkt holomorphe Funktion von v=a-x, die stetig
von den Komponenten von ¢ abhangt Ist dann der Vektor a=(ay,...,a,) isotrop
(also a*=0), so ist

dén_z o w dﬁl
fn—Z él

u(x)=(A4f) (x)= j ,[ f(v(x,8).¢) @.1)

& =1 [€n—2l=1
eine im Nullpunkt regulire harmonische Funktion.

Der Beweis ergibt sich unmittelbar, indem man bedenkt, dass aus a*=0 die
Beziehung 4, =0 folgt.

Fiir jedes n hat man beliebig viele solche Operatoren, die sich durch die Wahl des
isotropen Vektors a unterscheiden. Die Dimensionen n=3 und n=4 sind bei
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Anwendungen wichtig. Fiir n=3 erhalten wir aus Satz 4.1 u.a. den sog. Bergman-
Whittaker-Operator A, definiert durch

d¢
(Af)(X)-_— j f(v(x’él)vél) _El (42)
1§ 1=1 :
mit v=1x;+(1/2) &) (x3+ix2) = (1/2) &7 (x3 = ixa).
Der Fall n=4 umfasst die dreidimensionale Wellengleichung (man setze x4=if).
Besonders einfach wird die Isotropiebedingung, wenn wir v=a-x=a- % mit

&=(511,...,Z14) und

X= ‘é’ (x1+ix2,x1—-ix2,x3+ix4, “X3+iX4)

einfithren. Die Bedingung lautet dann &, @, = @5 a,. Dies motiviert die Wahl
a=(L¢r'eLaN e

und einen zugehorigen Operator von der Form (4.1) mit zwei Integrationen, der
iibrigens mit einem von Gilbert [11] eingefithrten Operator verwandt ist.

Folgendes ist fiir Anwendungen noch von Interesse. Diese und dhnliche Operatoren
haben die Eigenschaft, dass man durch geschickte Wahl von f harmonische
Funktionen erhilt, die sich jeweils durch einzelne oder hochstens endlich viele
bekannte spezielle Funktionen darstellen lassen (Legendre- bzw. Jacobi-Polynome
im Falle der beiden vorstehenden Operatoren, wie man beweisen kann). Hierauf
wurde in Sonderfillen in der Literatur gelegentlich hingewiesen, aber eine systema-
tische Untersuchung dieses Zusammenhanges steht noch aus.

5. Prinzip der Integraldarstellung von Partikulirlosungen

Ein drittes Prinzip, Integraloperatoren der hier betrachteten Art zu gewinnen,
basiert auf der Theorie spezieller Funktionen: Man separiert die Gleichung (2.2)
in geeigneten Koordinaten, gewinnt dadurch eine linear unabhingige Folge von
Partikulidrlosungen, verwendet eine Integraldarstellung dieser Funktionen und
bildet Reihen solcher Losungen derart, dass man Integration und Summation
vertauschen kann. So erhilt man ein einzelnes Integral, durch das ein Integral-
operator definiert wird.

Zum Beispiel fithrt die bekannte Integraldarstellung der Bessel-Funktion (siche
Watson [20], S.25)

1
J,()=2"n![@n)' n]"'s" ]' st (1 — )" 1/2 gy
-1

im Falle der Helmholtz-Gleichung vermége des Prinzips auf den obigen Operator
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mit dem Kern g, . Eine weitere Anwendung des Prinzips bietet die sog. Gleichung
des axialsymmetrischen Potentials

n—2
Wyt Wyt 2 v,,=0. (5.1)

Man erhilt diese aus der Laplace-Gleichung 4, =0, indem man die Variablen
y1=x1, y=(3+ --- +x2)1/2 einfithrt; daher der Name. Mit y,=rcosf, y,=rsinf
folgt

n—1 1 n—2
u,+ — u,+ ) Upg+ 5 (cot@)uy=0.

Wir separieren die Variablen und erhalten Losungen u=u; der Form

w(n0)=cyP Ci(cosd), v=2-1, j=0L..,

mit konstantem c;,. Die C} sind Gegenbauer-Polynome. Diese haben fiir v>0 die
Integraldarstellung (vgl. [8], S.177)

T
C (s)=k;, g (s+ (2= 1) cosp)/sin?"~1p dyp
mit k;,=2'~2'T" (j+2v)/j'T" (v)%. Wir setzen nun

i 1 '
w=y1+iy2cos¢)=rcosﬁ+-i-r(.f-{——f—) sinf . E=el,

und wihlen ¢;, = (2 /2 k;,. Dann ergibt sich
T 2v—1

uj(r,e)=—;—(2i)2v .[Msinzv"god(p= jwz‘ (5—%) 55—.
0 C

C ist dabei die obere Hilfte des Einheitskreises von 1 nach —1. So erhalten wir
den gewiinschten Integraloperator A4 fiir (5.1) in der Gestalt

2v—-1
~ 1 d
u(r,0)=(4/)(r,0)= jf(w) (i—"é—) —-g (52)
C

Hat also eine analytische Funktion f die Darstellung
o . . fe.0)
(a)f(w)= 'Zoaj w, soist (b) u= zoaj u; (5.3)
i= j=

mit uj==f'1' (W) die entsprechende Darstellung der Losung u=Af. Und man sieht
unmittelbar, dass man aus (5.3b) und funktionentheoretischen Koeffizientensitzen
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nun Aussagen iiber Lage und Art von Singularititen, Fortsetzbarkeit, Rand-
verhalten und andere Eigenschaften von u gewinnen kann.

6. Prinzip der Differentialoperatoren

Hier handelt es sich darum, dass wir zuerst einen Differentialoperator definieren
und daraus dann einen Integraloperator herleiten. Ausgangspunkt ist die klassi-
sche Idee von Laplace und Darboux [6], fiir gewisse lineare Differentialgleichun-
gen die Losungen durch Linearkombinationen einer beliebigen Funktion f und
endlich vieler ihrer Ableitungen darzustellen. Die Koeffizienten der Kombinationen
hingen dabei von denen der Gleichung ab, aber nicht von der Wahl von f. Diese
Methode besitzt Bedeutung in der sphirischen Abbildung von Flichen im R3.
Die Methode wird gegenwirtig im Zusammenhang mit Differentialoperatoren
benutzt, um fiir gewisse Gleichungen (2.2) eine Funktionentheorie der Losungen
zu entwickeln; vgl. z. B. Bauer und Peschl [3], Florian und Jank [9], Ruscheweyh
[19]. Wir zeigen, dass sich diese Methode in unsere Uberlegungen einfiigt und
ein weiteres Prinzip zur Gewinnung von Integraloperatoren liefert.

Uber (2.2) setzen wir jetzt voraus, es gebe Funktionen p,...,p,, derart, dass der
durch

(BN @.2%)= 3. pu(e, 2 2 6.1)

definierte Differentialoperator D fiir jedes im Nullpunkt holomorphe f eine Lésung
u=Df ergibt. (Dies gilt fiir viele praktisch wichtige Gleichungen; vgl. [13].) Aus
(6.1) und der Cauchy-Formel erhalten wir

p! 5 Vi)

2nid (@—zpt!
C

(DN (z.2%)= 201’# (z,z%) dt.
g

Damit ist schon ein Integraloperator T gewonnen, ndmlich

(T\ /) (z,2*)= ggl (2.2, 0)f () dt

mit dem Kern

m

u!p,(z,z*)

gl(z’Z*’t)-:

Man beachte, dass C geschlossen ist, also Residuenintegration unmittelbar
ermoglicht.
Einen anderen Operator ergibt das Prinzip, wenn wir statt (6.1)

LGP WAL 0)
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ansetzen und f;,=f, _, fordern. Dieser Forderung geniigen wir durch ein Liouville-
Integral:

=o'

— 2L FOdE,  u=1,..,m.

f@=f@), f,@)= 5
0

Einsetzen ergibt den Integraloperator T, definiert durch

u(z,z*)=(T,)) (z,z*):ggz (2,2*,EVF(E)AE+ qo (2, 2*) f(2) (6.2)

mit dem Kern

=y

B2 9= 34,6 T

Hierzu betrachten wir eine einfache Anwendung:
Die vorstehend erwihnte Arbeit [3] betrifft die oft untersuchte Gleichung

k
“zz*"'gz_“:()’ w=1+zz*. (6.3)

Diese hat dadurch Bedeutung, dass sie sich aus der Wellengleichung 45y =y,
durch Separation in Kugelkoordinaten, also durch den Produktansatz

w=R(r)Y(0,p)exp(xikt),
und anschliessende stereographische Projektion
z=¢"%sind /(1 — cosf), z*=e"%sinf /(1 — cosf)

in der Gleichung fiir Y ergibt; hierbei ist u(z,z*)=Y(0,¢). Ein Differential-
operator fiir (6.3) mit k=m(m+ 1), meN, ist definiert durch

w2t =(D]) e, = 3 I (- ZN 64)

und l4sst sich, wie oben angegeben, in einen Integraloperator iiberfithren.
Abschliessend sei erwidhnt, dass (6.4) mit m=1 auch in der Theorie der Minimal-
flichen angewendet werden kann, indem es die allgemeine Losungsdarstellung

u(z,z*)=f’
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von H.A. Schwarz ergibt, zu deren Beweis man sonst die Weierstrass-Darstellung
fur Minimalfldchen heranzieht. Auf die geometrische Bedeutung dieses Ergebnisses
konnen wir in der Kiirze nicht eingehen, sondern verweisen auf [S5], S.423.

7. Anwendung auf aerodynamische Ubergangsprobleme

Ubergangsprobleme sind Stromungsprobleme, bei denen sowohl Unterschall- wie
Uberschallstromung herrscht. Ein derartiges Problem, an dem gegenwirtig gear-
beitet wird, ergibt sich z. B. fur Tragfliigel beim Unterschallflug nahe der Schall-
geschwindigkeit, weil dann damit zu rechnen ist, dass an der Oberseite des
Tragfliigels eine Uberschallzone auftritt. Gesucht werden Profile, bei denen die
(nichtviskose, kompressible) Stréomung praktisch schockfrei wird. Brauchbare
Rechenmethoden dazu kennt man erst seit etwa zehn Jahren. Einzelheiten iiber
das Problem, seine Entwicklung und seinen gegenwirtigen Stand sowie fiiber
experimentelle Erfahrungen und einschlédgige Literatur findet man in [1] und [10].
Andere Ubergangsprobleme werden in [12] behandelt.

Ubergangsprobleme sind deshalb besonders schwierig, weil sie auf Gleichungen
gemischten Typs fithren, die im Unterschallbereich elliptisch und im Uberschall-
bereich hyperbolisch sind. Eine solche ist die Tricomi-Gleichung

JW60+V/00=09 (71)

die fiir 6>0 elliptisch und fiir 6 <0 hyperbolisch ist. Sie ist besonders wichtig
und wird in den Anwendungen haufig benutzt.

Wir geben zuerst eine recht einfache Herleitung von (7.1) aus den Grundgleichun-
gen an: Der Satz von der Erhaltung der Masse ergibt die Kontinuititsgleichung

p,+div(pv)=0.

t ist die Zeit, p die Dichte und v die Geschwindigkeit. Im stationdren Fall wird
p,=0. Die Stromung sei zweidimensional und wirbelfrei. Dann existiert ein
Geschwindigkeitspotential ¢. Mit v=(v,,v,)=grad¢ erhalten wir also

(Pd)x+ (p¢y)y =0.

Dies ist die Integrabilitatsbedingung des Systems

p¢x='//y’ p¢y=_V/x' (72)

w ist die Stromfunktion; w=konst sind die Stromlinien. Wirken keine &dusseren
Krifte, so folgt aus dem 2. Newtonschen Gesetz, dass p eine Funktion von
q=|v| ist. (7.2) ist also nichtlinear, ldsst sich aber linearisieren, indem man ¢ und
6 =arctan (v,/v,) verwendet, also zu Polarkoordinaten in der Hodographenebene
(der v, v,-Ebene) iibergeht. (7.2) gewinnt dann die Gestalt
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M -1 q
Vo, 9= "V, (7.3)

b=
" pq p

M=gq/a ist hierbei die Machzahl, a=\/dp/dp die lokale Schallgeschwindigkeit und
p der Druck. Von q gehen wir zu ¢ iiber, das wir durch do /dg=—p/q definieren.
Weiterhin eliminieren wir ¢ durch Differentiation. Dies ergibt die sog. Chaplygin-
Gleichung

KW00+W00=0
mit K=(1—M?)/p*. Fiir kleine |o|, d.h. nahe der Schallinie, ist K~bs mit

konstantem b, also K~ ¢ nach einer geeigneten linearen Transformation der unab-
héngigen Variablen. Dies ergibt (7.1). Vermoge

2 2
z=—é—a3/2+i0, z*=—3—a3/2——i9, u=g'ly

formen wir (7.1) um in

k= A (7.4)

Lu=t ot ——— u=0,
U e 6

und verwenden fiir die so transformierte Gleichung zur Lésungsdarstellung einen
Eichler-Operator [siehe (3.3)]

- ¥4
u(z,2*)=(If) (z.2*)= [ § (2, 2*, 0 f () dt = f (2) (7.5)

%0
(vgl. hierzu auch die Untersuchungen von Lanckau [16]). Die obengenannten

Bedingungen fiir den Kern g werden viel einfacher, indem wir

2 dpP _2t—z+2*
z+z* dn’ ” z+z*

g(z.2*,n=

setzen. Sie lauten dann, dass dP/dn der Legendre-Gleichung mit dem Parameter
v=—1/6 (und u=0) geniigen muss und dP/dn fur y=1 den Wert —k/2 hat.
Fithren wir  als Integrationsvariable ein und integrieren dann partiell, so erhalten
wir bei entsprechender Wahl des Integrationsweges aus (7.5) einfach

b d /1 1
w2 | Pyt af (G5 emm)ar. 16
1

Dieses Resultat ist bedeutsam auf zweierlei Weisen. Erstens kénnen wir durch
Einsetzen verschiedener Funktionen f nun Partikulidrlésungen erhalten, die von
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Carrier, Chaplygin, Darboux, Ehlers, Guderley, Tamada und Tomotika betrachtet
wurden. Diese ergeben sich nun alle aus der einheitlichen Darstellung (7.6) -
tibrigens durch die Wahl sehr einfacher Funktionen f (einzelner Potenzen,
Exponential- sowie Logarithmusfunktionen). Zweitens kann man jetzt allgemeine
Eigenschaften von Klassen von Losungen untersuchen, die speziellen Klassen von
Funktionen f entsprechen, etwa Polynomen, meromorphen Funktionen, algebrai-
schen Funktionen usw. Diese Tatsache ist wichtig bei Anwendung der sog.
indirekten Methode. Definitionsgemiss besteht diese darin, dass man erst grosse
Klassen von Ldsungen bestimmt und diese dann nach Lésungen durchforscht, die
von technisch realisierbaren Profilen erzeugt werden kénnen. Dieses Verfahren
findet iibrigens auch Anwendung in der Elastizititstheorie, da dort der direkte
Angriff auf Randwertprobleme ebenfalls oft zu schwierig ist. In der Aerodynamik
kommt hinzu, dass die Probleme u.U. nicht sachgemaiss (im Sinne von Hadamard)
zu sein brauchen; vgl. [1, 18].
Verwandte und andere Anwendungen findet man in [4] zitiert, und einen Uber-
blick iiber einige neuere Forschungen auf dem Gebiet der Integraloperatoren
vermittelt [17].
Manfred Kracht, Universitidt Diisseldorf
Erwin Kreyszig, University of Windsor, Ontario
Gunnar Schroder, Universitdt Diisseldorf
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Kleine Mitteilungen

Bemerkungen iiber Zulissigkeitsmengen vollstiindig additiver Funktionen

Eine zahlentheoretische Funktion f:N— C heisst vollstindig additiv, wenn fiir alle
natiirlichen Zahlen n und m f(nm)=f(n)+f(m) gilt. Nach Katai [3] nennt man
eine Menge A natiirlicher Zahlen Eindeutigkeitsmenge vollstindig additiver Funk-
tionen (E-Menge), wenn fiir jede vollstindig additive Funktion f:N—C aus
f(4)={0} die Gleichung f(N)={0} folgt. Verschiedene Autoren [1-5] haben all-
gemeine Charakterisierungen und spezielle Beispiele fiir E-Mengen gegeben. Ins-
besondere hat die Menge P der Primzahlen diese Eigenschaft. Im allgemeinen
konnen aber die Werte einer vollstindig additiven Funktion f auf einer E-Menge
nicht beliebig vorgeschrieben werden. Mengen, die dies zulassen, und solche, die
zugleich auch E-Mengen sind, werden im folgenden charakterisiert.

Definition. Eine Menge B natiirlicher Zahlen heisst zulissig oder Zuldssigkeits-
menge (kurz Z-Menge), falls sich jede Funktion f:B— C so auf N fortsetzen lisst,
dass die Fortsetzung f: N — C vollstindig additiv ist.

Satz 1. Eine Menge B<N ist genau dann Z-Menge, wenn sich die Zahl 1 «nicht»
in der Form

1=b€1 bl’;k (1)

schreiben ldsst, wobei die Zahlen k, b; und r; die Bedingungen A: keN, b,,...,b, € B,
b#+1;r,...,r,e Q\{0} erfiillen.

Beweis:
1. Angenommen die Zahl 1 liasst sich in der Form (1) schreiben. Betrachte die
Funktionf: B—»Czu

n= bl
sonst

foy={
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