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Defmitionsprinzipien für Operatoren Bergmanscher Art und
einige Anwendungen

1. Einleitung und Motivierung

Ehe Theorie und die Anwendung der Bergman- und verwandter Integraloperatoren
haben sich wahrend der letzten beiden Jahrzehnte zu einem umfangreichen

Sondergebiet der Theorie der partiellen Differentialgleichungen entwickelt - man
vergleiche etwa Bergmans klassisches Buch [4] mit dem Bericht [17] uber eine
1976 abgehaltene Spezialtagung Diese «funktionentheoretische Methode» kann
man folgendermassen motivieren
Viele Eigenschaften komplexer analytischer Funktionen lassen sich sehr eingehend
kennzeichnen, man denke etwa an die Fülle von Sätzen zum Koeffizientenproblem,
zur Werteverteilung, uber das Wachstum, die Lage und Art der Singularitäten
u a m Dagegen hat man, abgesehen von der zweidimensionalen Laplace-Glei-
chung, bei partiellen Differentialgleichungen zunächst nichts Vergleichbares Man
kann aber die komplexe Analysis hierfür fruchtbar machen, indem man
Integraloperatoren definiert, die als Ubersetzungspnnzip dienen, so dass man aus
funktionentheoretischen Methoden und Sätzen nun Ergebnisse uber Losungen der genannten

Gleichungen gewinnt, und zwar sowohl uber Klassen von Losungen ohne
Bezug auf irgendwelche Nebenbedingungen wie auch im Zusammenhang mit
Anfangs- oder Randwertaufgaben Von grundlegender Bedeutung ist hierbei die
Tatsache, dass es zu einer gegebenen Gleichung im allgemeinen verschiedenartige
Integraloperatoren gibt Um fur den jeweiligen Zweck eine gunstige Wahl zu
treffen, muss man also die Grundprinzipien kennen, die zu brauchbaren Operatoren
fuhren Wir zeigen in der vorliegenden Arbeit, dass man einige solche Prinzipien
in relativ einfacher Weise angeben und untersuchen kann

2. Das Prinzip der Substitution eines Integrals

Wir erläutern dieses Pnnzip fur Gleichungen der Form

Ay + a(x,y)y/x + ß(x,y)y/y + y(x,y)i// 0 (2 1)

Die Koeffizienten seien reell-analytisch in einem Gebiet, das den Nullpunkt
enthalt Dann können wir diese als holomorphe Funktionen von zx x + iX,
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z2=y+iYfortsetzen. Wir vereinfachen (2.1) noch, indem wir z zx + iz2, z* zx-iz2
einfuhren und eine der beiden ersten partiellen Ableitungen in der üblichen
Weise eliminieren. Dies ergibt

Lu=uzz* + b(z,z*)uz* + c(z,z*)u Q (2.2)

mit in einem Gebiet GxG*cC2 holomorphen Koeffizienten. Hierbei liegt G in der
z-Ebene, OeG, und G* ist das gemäss obiger Transformation entsprechende Gebiet
in der z* -Ebene. Ein erstes Prinzip, einen Integraloperator /W u=Tf zu definieren,
besteht in dem Ansatz

(Tf)(z,z*)=lg(z,z*,t)f(cp(z,t)) x(t)dt. (2.3)

t ist reell. Durch die Hilfsfunktion cp:GxI-+G0 (I—[t\9t^) erzwingen wir, dass/
nur von einer Variablen abhängt; das ist wesentlich, weil man so die
weitentwickelte Theorie der analytischen Funktionen einer einzelnen Variablen nutzbar
machen kann, x gibt Flexibilität hinsichtlich der Bedingungen für den Kern g.
Unter den folgenden Bedingungen liefert (2.3) nun Lösungen von (2.2):

Satz 2.1. Die Funktion h cpz/cpt mit auf Gxl holomorphem cp erfülle auf G die
Bedingung h(z,tx) 0,h(z,t2) 0. Weiterhin seig gx eine aufGxG*XIholomorphe
Lösung von

(gz*h)t=L~g, (2.4)

für die (g2*h)t stetig ist. Dann ist u=Tf für jedes auf G0 holomorphe f eine auf
GxG* holomorphe Lösung von (2.2).

Der Beweis ergibt sich durch Einsetzen von (2.3) in (2.2), wobei man partiell
integriert und

v (f°(P)t<Pz
{f°<p)z^

(pt

benutzt, um unter dem Integralzeichen einen gemeinsamen Faktor/zu erzeugen.
Satz 2.1 liefert auch den von Bergman [4] eingeführten Operator, indem man

tx -l, t2=l, <p(z,t)=jz(l-t2), x (l-t2)~x/2 (2.5)

wählt und g=g/r (l — t2)x/2g holomorph auf GxG*xI voraussetzt, also die
obigen (hinreichenden) Nebenbedingungen geringfügig abändert. Aus (2.4) folgt
dann

Mg=(l-t2)gz*t-rxgz* + 2ztLg~0. (2.6)



M. Kracht/E. Kreyszig/G. Schröder: Definitionsprinzipien für Operatoren Bergmanscher Art 27

3. Diskussion und Folgerungen

Satz 2.1 zeigt, dass für eine gegebene Gleichung (2.2) tatsächlich beliebig viele
Operatoren T existieren. Da T ein Übertragungsprinzip bewirken soll, kommt es

auf Einfachheit an. Also ist die günstige Wahl von Kernen ein zentrales Problem
in Theorie und Anwendung. Von z* unabhängige Kerne schhessen wir aus, denn
sie fuhren über (2.4) auf c 0, so dass (2.2) dann eine gewöhnliche Differentialgleichung

für uz* würde, ein Trivialfall, der uninteressant ist. Wesentliche Hilfe
bei der Vereinfachung von Kernen kann der folgende wichtige Satz leisten, dessen
Beweis sich aus Satz 2.1 leicht durch direkte Rechnung ergibt:

Satz 3.1. Ist gx ein Kern des durch (2.3) gegebenen Operators für eine vorgelegte
Gleichung (2.2) und genügt g2 der Gleichung

g2(z,z*,t) gx(z,z*,t)X(<p(z,t))

(X^O beliebig, aber so, dass Xocp auf Gxl holomorph ist), so ist auch g2 ein Kern
für die genannte Gleichung (2.2).

Diesen Satz kann man manchmal sogar benutzen, um alle Operatoren einer
gewissen Klasse explizit anzugeben. Hierzu eine typische Anwendung:
Eine Gleichung (2.2) und ein zugehöriger Bergman-Operator T, für den (2.5)
gilt, heissen von der Klasse E, wenn der Kern von Tdie Form

m

g e«, q(z,z*,t)=Y,%(z,z*)t» (3.1)
ß=o "

hat. Diese Klasse ist dadurch bedeutsam, dass man ihre Lösungen mittels der
Fuchs-Frobenius-Theorie für gewöhnliche Differentialgleichungen untersuchen
kann; vgl. [15]. Die Helmholtz-Gleichung

Ay/ + k2y/ 0, also uzz* + —- k2 u 0 (k konstant) (3.2)

ist von der Klasse E. Aus (2.6) ergeben sich als einfachste Kerne

g±(z,z*,t)=exp( +ik^/zz* t)

In Satz 3.1 wählen wir nun X exppm, wobei pm ein beliebiges Polynom vom
Grade m in dem durch (2.5) definierten cp ist, und schhessen, dass es in der Klasse E
für (3.2) unendhch viele Operatoren mit Kernen der Form

g=g± exppm

gibt.
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Naturlich kann man von (2 6) durch Vanablentransformationen vereinfachte
Bedingungen für den Kern erreichen Aber es ist oft besser, von vornherein (2 3)
abzuändern, beispielsweise in

(ff)(z,z*)= \g(z,z*,t)f(i)dt-f(z) (3 3)

Dieser Operator von Eichler [7] bietet den Vorteil sehr einfacher Bedingungen
für den Kern, namhch, z B im Falle b 0,

Lg 0, gz*(z,z*,z) c(z,z*),

wie man leicht durch Nachrechnung bestätigt Er hat wichtige Anwendungen,
von denen wir eine im letzten Abschnitt betrachten werden

4. Prinzip der Integration über einen Parameter

Wahrend die Funktionen/m Abschnitt 3 keine Losungen der gegebenen Gleichung
sind, besteht em zweites Pnnzip, Integraloperatoren zu definieren, darin, dass man
von vornherein Losungen f bestimmt, die noch von komplexen Parametern abhangen,

uber die man mtegnert Damit lasst sich dann ein weiteres
funktionentheoretisches Werkzeug, die Residuenintegration, anwenden, d h Eigenschaften
von Losungen lassen sich aus Residuen ermitteln Es ist bemerkenswert, dass man
verschiedene ad hoc eingeführte spezielle Operatoren diesem Prinzip unterordnen
kann Wir erläutern dies für die n-dimensionale Laplace-Gleichung Der wesentliche

Grundgedanke ist die Benutzung einer Hilfsvanablen v, die von den n
Ortsvanablen x (xx, ,xn) und n — 2 Integrationsvanablen £ (£i, ,<_n-2)
abhangt und so beschaffen ist, dass /, als Funktion der Xj aufgefasst, die Gleichung
Anf= 0 befriedigt Grundlegend dazu ist

Satz 4.1. Es sei f eine im Nullpunkt holomorphe Funktion von v a x, die stetig
von den Komponenten von £ abhangt Ist dann der Vektor a (ax, ,an) isotrop
(alsoa2=0),so ist

u(x) (Af)(x)= \ \ f{v{xAU)^^ ^r (4 1)
J J C«-2 £l

l£ll-l 16. 21-1

eine im Nullpunkt reguläre harmonische Funktion

Der Beweis ergibt sich unmittelbar, mdem man bedenkt, dass aus a2 0 die

Beziehung Anf= 0 folgt
Fur jedes n hat man behebig viele solche Operatoren, die sich durch die Wahl des

isotropen Vektors a unterscheiden Die Dimensionen n 3 und n 4 sind bei
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Anwendungen wichtig. Für n 3 erhalten wir aus Satz 4.1 u.a. den sog. Bergman-
Whittaker-Operator A, definiert durch

(Af)(x)= \ /(v^Ui)^ <4-2)

k,l i

mitv xx + (l/2)Zx(x3 + ix2)-(l/2)ZTl(x3-ix2).
Der Fall n 4 umfasst die dreidimensionale Wellengleichung (man setze x4=it).
Besonders einfach wird die Isotropiebedingung, wenn wir v ax ä • x mit
a (äx,...,ä4) und

x=—- (xx+ ix2,xx-ix2,x3 + ix4, — x3 + ix4)

einführen. Die Bedingung lautet dann äx a2 ä3 ä4. Dies motiviert die Wahl

a-(i,.r1<£U_Ur1)

und einen zugehörigen Operator von der Form (4.1) mit zwei Integrationen, der
übrigens mit einem von Gilbert [11] eingeführten Operator verwandt ist.
Folgendes ist für Anwendungen noch von Interesse. Diese und ähnliche Operatoren
haben die Eigenschaft, dass man durch geschickte Wahl von / harmonische
Funktionen erhält, die sich jeweils durch einzelne oder höchstens endlich viele
bekannte spezielle Funktionen darstellen lassen (Legendre- bzw. Jacobi-Polynome
im Falle der beiden vorstehenden Operatoren, wie man beweisen kann). Hierauf
wurde in Sonderfällen in der Literatur gelegentlich hingewiesen, aber eine systematische

Untersuchung dieses Zusammenhanges steht noch aus.

5. Prinzip der Integraldarstellung von Partikulärlösungen

Ein drittes Prinzip, Integraloperatoren der hier betrachteten Art zu gewinnen,
basiert auf der Theorie spezieller Funktionen: Man separiert die Gleichung (2.2)
in geeigneten Koordinaten, gewinnt dadurch eine linear unabhängige Folge von
Partikulärlösungen, verwendet eine Integraldarstellung dieser Funktionen und
bildet Reihen solcher Lösungen derart, dass man Integration und Summation
vertauschen kann. So erhält man ein einzelnes Integral, durch das ein Integraloperator

definiert wird.
Zum Beispiel führt die bekannte Integraldarstellung der Bessel-Funktion (siehe
Watson [20], S. 25)

l
Jn(s) 2nn\[(2n)\n]-Xsn \ elst(l-t2)n~x/2dt

im Falle der Helmholtz-Gleichung vermöge des Prinzips auf den obigen Operator
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mit dem Kern g±. Eine weitere Anwendung des Prinzips bietet die sog. Gleichung
des axialsymmetrischen Potentials

n-2
Vjw + Vä»+ —~^2 0. (5.1)

J2

Man erhält diese aus der Laplace-Gleichung An \p 0, indem man die Variablen
yx — xx, y2z=z(x\+ —r-x2)1/2 einführt; daher der Name. Mit yx rcosQ, y2 rsin0
folgt

n-1 1 n-2 /urr-\ ur+ -z u0Q-\ z— (cotu)u0 0.

Wir separieren die Variablen und erhalten Lösungen u u} der Form

Uj(r,0) cJvrJq(cosO), v j-l, y 0,l,...,

mit konstantem cJv. Die CJ sind Gegenbauer-Polynome. Diese haben für v > 0 die
Integraldarstellung (vgl. [8], S. 177)

C](s)=kJV }(s+(s2-l)x/2cos(p)Jsm2'-x(pd<p

mit kJV 2x~2vr (/ + 2v)/j\ F (v)2. Wir setzen nun

w=yx + iy2coscp rcosO + — rk + — \ sinO, £ el(f>,

und wählen cJV (2 i)2v/2 kJv. Dann ergibt sich

71 2v— X

Uj(r,0)=j(2i)2v ^sin2^x<pd(p= J^^-l)
o c

C ist dabei die obere Hälfte des Einheitskreises von 1 nach — 1. So erhalten wir
den gewünschten Integraloperator Ä für (5.1) in der Gestalt

r 2v -1

u(r,6) (Äf)(r,e)= )f(»)(i-\) -y • (5-2)

c

Hat also eine analytische Funktion/die Darstellung

oo oo

(a)f(w) £ ^ w>, so ist (b) u £ üj u} (5.3)

mit Uj=Ä(wi) die entsprechende Darstellung der Lösung u=Äf Und man sieht
unmittelbar, dass man aus (5.3 b) und funktionentheoretischen Koeffizientensätzen

di
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nun Aussagen über Lage und Art von Singularitäten, Fortsetzbarkeit,
Randverhalten und andere Eigenschaften von u gewinnen kann.

6. Prinzip der Differentialoperatoren

Hier handelt es sich darum, dass wir zuerst einen Differentialoperator definieren
und daraus dann einen Integraloperator herleiten. Ausgangspunkt ist die klassische

Idee von Laplace und Darboux [6], für gewisse lineare Differentialgleichungen
die Lösungen durch Linearkombinationen einer beliebigen Funktion / und

endlich vieler ihrer Ableitungen darzustellen. Die Koeffizienten der Kombinationen
hängen dabei von denen der Gleichung ab, aber nicht von der Wahl von/. Diese
Methode besitzt Bedeutung in der sphärischen Abbildung von Flächen im R3.

Die Methode wird gegenwärtig im Zusammenhang mit Differentialoperatoren
benutzt, um für gewisse Gleichungen (2.2) eine Funktionentheorie der Lösungen
zu entwickeln; vgl. z.B. Bauer und Peschl [3], Florian und Jank [9], Ruscheweyh
[19]. Wir zeigen, dass sich diese Methode in unsere Überlegungen einfügt und
ein weiteres Prinzip zur Gewinnung von Integraloperatoren liefert.
Über (2.2) setzen wir jetzt voraus, es gebe Funktionen px,...,pm derart, dass der
durch

m

(Df)(z,z*)= £ pß(z,z*)~^(z) (6.1)

definierte Differentialoperator D für jedes im Nullpunkt holomorphe/ eine Lösung
u=Df ergibt. (Dies gilt für viele praktisch wichtige Gleichungen; vgl. [13].) Aus
(6.1) und der Cauchy-Formel erhalten wir

m _/' f fit)

c

Damit ist schon ein Integraloperator Tx gewonnen, nämlich

(Txf)(z,z*)=Sgx(z,z*,t)f(t)dt
c

mit dem Kern

M=o 2ni(t—zY + i *

Man beachte, dass C geschlossen ist, also Residuenintegration unmittelbar
ermöglicht.
Einen anderen Operator ergibt das Prinzip, wenn wir statt (6.1)

u(z,z*)=Y. qM(z,z*)f^(z)
u-0
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ansetzen undf'M=f^_x fordern. Dieser Forderung genügen wir durch ein Liouville-
Integral:

fQ(z)=f(z), f,(z)=\
l ^ f(Od£, p=l,...,m.

0

Einsetzen ergibt den Integraloperator T2, definiert durch

«(z,z*)=(r27)(.,z») jg2(z,z*^)/(^)^ + 9o(z,7*)/(z) (6.2)

mit dem Kern

__(*,**.0=E _„(*.**)

Hierzu betrachten wir eine einfache Anwendung:
Die vorstehend erwähnte Arbeit [3] betrifft die oft untersuchte Gleichung

k
uzz* + -^-u 0, co=l+zz*. (6.3)

COL

Diese hat dadurch Bedeutung, dass sie sich aus der Wellengleichung A3\p \pu
durch Separation in Kugelkoordinaten, also durch den Produktansatz

\p R(r)Y(B,cp)exp(±ikt),

und anschliessende stereographische Projektion

z ^sin0/(l-cos0), z*==*r^sin0/(l-cos6O

in der Gleichung für Y ergibt; hierbei ist u(z,z*)= Y(6,cp). Ein Differentialoperator

für (6.3) mit k m (m + 1), m e N, ist definiert durch

„(z,z*) (£)/)(z(z*)= £ )lm Mh (- —) f\z) (6.4)
^=0 (m-p)\p\ \ co I

und lässt sich, wie oben angegeben, in einen Integraloperator überfuhren.
Abschliessend sei erwähnt, dass (6.4) mit m= 1 auch in der Theorie der Minimalflächen

angewendet werden kann, indem es die allgemeine Lösungsdarstellung

H(2,-*)-/'(-)--Y^r/(z)
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von H.A. Schwarz ergibt, zu deren Beweis man sonst die Weierstrass-Darstellung
für Minimalflächen heranzieht. Auf die geometrische Bedeutung dieses Ergebnisses
können wir in der Kürze nicht eingehen, sondern verweisen auf [5], S.423.

7. Anwendung auf aerodynamische Übergangsprobleme

Übergangsprobleme sind Strömungsprobleme, bei denen sowohl Unterschall- wie
Überschallströmung herrscht. Ein derartiges Problem, an dem gegenwärtig
gearbeitet wird, ergibt sich z.B. für Tragflügel beim Unterschallflug nahe der
Schallgeschwindigkeit, weil dann damit zu rechnen ist, dass an der Oberseite des

Tragflügels eine Überschallzone auftritt. Gesucht werden Profile, bei denen die
(nichtviskose, kompressible) Strömung praktisch schockfrei wird. Brauchbare
Rechenmethoden dazu kennt man erst seit etwa zehn Jahren. Einzelheiten über
das Problem, seine Entwicklung und seinen gegenwärtigen Stand sowie über
experimentelle Erfahrungen und einschlägige Literatur findet man in [1] und [10].
Andere Übergangsprobleme werden in [12] behandelt.
Übergangsprobleme sind deshalb besonders schwierig, weil sie auf Gleichungen
gemischten Typs fuhren, die im Unterschallbereich elliptisch und im Überschallbereich

hyperbolisch sind. Eine solche ist die Tricomi-Gleichung

°Vee+Voo Q, (71)

die für er>0 elliptisch und für o <0 hyperbolisch ist. Sie ist besonders wichtig
und wird in den Anwendungen häufig benutzt.
Wir geben zuerst eine recht einfache Herleitung von (7.1) aus den Grundgleichungen

an: Der Satz von der Erhaltung der Masse ergibt die Kontinuitätsgleichung

pt + div(pv)=0.

t ist die Zeit, p die Dichte und v die Geschwindigkeit. Im stationären Fall wird
pt 0. Die Strömung sei zweidimensional und wirbelfrei. Dann existiert ein
Geschwindigkeitspotential 0. Mit v (vx, v2)= grad^ erhalten wir also

Dies ist die Integrabilitätsbedingung des Systems

xp ist die Stromfunktion; y/ konst sind die Stromlinien. Wirken keine äusseren
Kräfte, so folgt aus dem 2. Newtonschen Gesetz, dass p eine Funktion von
q= | v| ist. (7.2) ist also nichtlinear, lässt sich aber linearisieren, indem man q und
0 arctan (v2/vx) verwendet, also zu Polarkoordinaten in der Hodographenebene
(der V! v2-Ebene) übergeht. (7.2) gewinnt dann die Gestalt
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± M2-l
± q

<f>q=
pq

Ve> </>e=jVq (7 3)

M=q/a ist hierbei die Machzahl, a V' dp/dp die lokale Schallgeschwindigkeit und
p der Druck Von q gehen wir zu o uber, das wir durch do/dq — p/q definieren
Weiterhin eliminieren wir c/> durch Differentiation Dies ergibt die sog Chaplygin-
Gleichung

Ky/00+y/a(I=O

mit K=(l-M2)/p2 Fur kleine \o\, dh nahe der Schalhnie, ist K^ba mit
konstantem b, also K^o nach einer geeigneten linearen Transformation der
unabhängigen Vanablen Dies ergibt (7 1) Vermöge

z~~o3l2 + i0, z* jo3/2-i6, w <7l/>

men wir (7 l)umin

*-£Lu-u22.\ „-0, (7 4)

und verwenden für die so transformierte Gleichung zur Losungsdarstellung einen
Eichler-Operator [siehe (3 3)]

u(z,z^ (ff)(z,z*)=]g(z,z*,t)f(t)dt-f(z) (7 5)

(vgl hierzu auch die Untersuchungen von Lanckau [16]) Die obengenannten
Bedmgungen für den Kern g werden viel einfacher, indem wir

*
2 dP 2t-z+ z*

g(z,z*,t)= —, n ——
z + z* dn z + z*

setzen Sie lauten dann, dass dP/dn der Legendre-Gleichung mit dem Parameter
v — l/6 (und p 0) genügen muss und dP/dn für r\=l den Wert -k/l hat
Fuhren wir r\ als Integrationsvanable ein und mtegneren dann partiell, so erhalten
wir bei entsprechender Wahl des Integrationsweges aus (7 5) einfach

00

^(z^^^Jp^/a^^/^^+^^+yC^^))^ (7 6)

Dieses Resultat ist bedeutsam auf zweierlei Weisen Erstens können wir durch
Einsetzen verschiedener Funktionen / nun Partikularlosungen erhalten, die von
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Carner, Chaplygm, Darboux, Ehlers, Guderley, Tamada und Tomotika betrachtet
wurden Diese ergeben sich nun alle aus der einheitlichen Darstellung (7 6) -
ubngens durch die Wahl sehr einfacher Funktionen / (einzelner Potenzen,
Exponential- sowie Loganthmusfunktionen) Zweitens kann man jetzt allgemeine
Eigenschaften von Klassen von Losungen untersuchen, die speziellen Klassen von
Funktionen / entsprechen, etwa Polynomen, meromorphen Funktionen, algebraischen

Funktionen usw Diese Tatsache ist wichtig bei Anwendung der sog
indirekten Methode Definitionsgemass besteht diese dann, dass man erst grosse
Klassen von Losungen bestimmt und diese dann nach Losungen durchforscht, die
von technisch realisierbaren Profilen erzeugt werden können Dieses Verfahren
findet ubngens auch Anwendung in der Elastizitatstheorie, da dort der direkte
Angnff auf Randwertprobleme ebenfalls oft zu schwierig ist In der Aerodynamik
kommt hinzu, dass die Probleme u U nicht sachgemass (im Sinne von Hadamard)
zu sein brauchen, vgl [1, 18]
Verwandte und andere Anwendungen findet man in [4] zitiert, und einen Überblick

uber einige neuere Forschungen auf dem Gebiet der Integraloperatoren
vermittelt [17]

Manfred Kracht, Universität Dusseldorf
Erwin Kreyszig, University of Windsor, Ontario

Gunnar Schröder, Universität Dusseldorf
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Kleine Mitteilungen

Bemerkungen über Zulässigkeitsmengen vollständig additiver Funktionen

Eine zahlentheoretische Funktion/:N->C heisst vollständig additiv, wenn für alle
naturhchen Zahlen n und m f(nm)=f(n)+f(m) gilt. Nach Kätai [3] nennt man
eine Menge A natürlicher Zahlen Eindeutigkeitsmenge vollständig additiver
Funktionen (2,-Menge), wenn für jede vollständig additive Funktion /:N->C aus
f(A)={0} die Gleichung/(N)={0} folgt. Verschiedene Autoren [1-5] haben
allgemeine Charakterisierungen und spezielle Beispiele für __.-Mengen gegeben.
Insbesondere hat die Menge P der Primzahlen diese Eigenschaft. Im allgemeinen
können aber die Werte einer vollständig additiven Funktion/auf einer is-Menge
nicht behebig vorgeschrieben werden. Mengen, die dies zulassen, und solche, die
zugleich auch is-Mengen sind, werden im folgenden charakterisiert.

Definition. Eine Menge B natürlicher Zahlen heisst zulässig oder Zuldssigkeits-
menge (kurz Z-Menge), falls sich jede Funktion f:B^>C so auf N fortsetzen lässt,
dass die Fortsetzungf: N -? C vollständig additiv ist.

Satz 1. Eine Menge BczN ist genau dann Z-Menge, wenn sich die Zahl 1 «nicht»
in der Form

1 *? Mt (1)

schreiben lässt, wobei die Zahlen k, bx und rx die Bedingungen A: keN, bx,...,bkeB;
bx*l;rx,...,rkeQ\{0] erfüllen.

Beweis:
1. Angenommen die Zahl 1 lässt sich in der Form (1) schreiben. Betrachte die
Funktion/: B -+ C zu

/(»):- {J
1 n=bx

sonst
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