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mit den zusitzlich berechneten Spannungswerten in einigen der Stibe angege-
ben. Ein positiver Spannungswert entspricht einer Zugbeanspruchung, ein nega-
tiver Wert einer Druckspannung. Die Beanspruchung auf Zug und Druck ent-
sprechen der Anschauung.

Deformationen und Spannungen.

Verschiebungen der Knotenpunkte [cm] Spannungen [N cm~?]
i u; v, w, Stab g
1 03719 0,2093 -0,1150 PPy 12866
2 0,4070 0,1501 —0,1242 PP, —5917
3 0,5375 0,1608 0,0234 P,P; 7246
4 0,4219 0,1182 0,0150 P3P, —-7222
5 0,4570 0,1682 0,0150 PP, 5006
PPy 1548
PyPs 5000

H.R. Schwarz, Universitit Ziirich
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Geometric aspects of linear transformations of the plane

The purpose of this note is to present some interesting and useful connections
between plane geometry and linear transformations of the plane into itself. Of
course, such linear transformations are most often given by 2 X 2 matrices. While our
development does not easily extend into higher dimensional space, the two-
dimensional case is already one of considerable practical importance. For example,
in engineering mechanics the planar stress and strain tensors and the inertia tensor
of a solid with a plane of symmetry are each represented by a 2 X 2 matrix.

The following notational conventions will be adopted. A linear transformation 4 of
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the real plane R? into itself will be represented by the matrix [4]= [a g ] relative to
7

the standard ordered basis vectors (i,j). If x=<¢i+njeR? then the image of the
vector x under A4 will be written as Ax, which corresponds to the matrix multi-

plication [A] [i ] The inner product on R? will be denoted by (., and the

magnitude of x will be denoted by | x| ; whence || x[?={x,x). A circle centered at
ceR? of radius p will be denoted by C(c; p). Equality by definition will be denoted
by = .1 denotes the identity transformation.

In section 1, the eigenvalues and eigenvectors of the transformation 4 are
constructed geometrically relative to a circle I” which is associated with [4]. Section
2 applies these ideas to construct the zeros of a quadratic function; the method has
interesting historical connections. The concluding section discusses a geometric
approach to constructing the level curves of a general quadratic polynomial in two
variables. Our methods have also been applied to the phase plane analysis of the
differential equation x=Ax [1].

1. Eigenvalues and principal axes

Given the matrix [4]= [a § ], define the vectors
7

a=ai+yj, b=di—pj.

By taking the line segment between @ and b as a diameter, we define the (possibly
degenerate) circle I" = C(c; | r]|), where

1
(a—é)i+—i—(y_,3)j,

1
(a—é)i+—2-(y+ﬂ)j.

The trace a + d=1 of A is twice the abscissa of the center of I'; that is, y, = (1/2) 7 if
c=y,i+7,j. The determinant ad—fy=0c of A can also be identified geometrically
relative to the circle I' as shown in figure 1, since

: J
r ] r
e omirll
el
licH N N ltell
T>0 o=0 o<o

Figure 1
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o={a,by={c+r,c—ry=|cl*—|r|?.
The eigenvalues of A are defined as the (possibly complex) roots of the characteristic

equation O=determinant (4—Al)=A2—ti+a=2*=2y,A+ |c|*= |r|?> By the
quadratic formula the eigenvalues are

1
h2=miVﬁ~waP—wW)=mi54“%

where 4 denotes the discriminant

A=12—4g=4y1—4(lc|? = Ir1D)=4(IrI?=d).

The invariants 4, 4,,4 can now be identified geometrically relative to the circle I as
shown in figure 2. In the case 4> 0, the eigenvalues are real and distinct and are the
abscissae of the points of intersection of I” with the horizontal axis. When 4=0, the
circle I' has a tangency with the horizontal axis at the value of the repeated eigen-
value 4, =/,. In the case 4<0, the eigenvalues are complex and the real plane is
identified with the complex plane. The circle centered at (y,,0) which is tangent to I
is seen to have radius (1 /2) VvV —4 , which means its two intersection points with the
vertical line through the center of I geometrically determine the eigenvalues 4, and
J, in the complex plane. The circle C(0;V/ ¢ ) also passes through A, and 4,=7,
(bar denotes complex conjugate), since 0 =4, 4, = | 4;|?= | 1,|2.

A L s T
r Vo

\\)‘2 //
A>o0 A=o0 /1 A<o
7

Figure 2

Although I depends on the matrix [4] which, in the i,j-basis, represents the linear
transformation A, the invariants 7,0,4,4,,4, associated geometrically with I" are
independent of the basis. Thus, any change of basis must result in a circle I~ which
geometrically determines the same invariants. This is obvious for rotations of the
plane, say counterclockwise through an angle #: here c is unchanged, r is rotated
clockwise an angle 26, and hence I"=1I". Under a general change of basis in the case
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A4>0,I will be any of the circles which pass through the points i, and 4, on the
horizontal axis. In the case 4<0,I is any of the circles orthogonal to the family of
circles through 4, and 1,=/,: that is, I' is one of the Apollonian circles determined
by the distinct complex eigenvalues, including possibly the point circles 4, and 4,
themselves. The non-intersecting Apollonian circles, together with its orthogonal
family of circles which intersect at two distinct common points, constitute the well-
known Steiner circles. The case 4= 0 corresponds to a degenerate system of Steiner
circles.

In the case 4=>0, it remains to geometrically determine the eigenspaces ¢, and ¢,
which correspond respectively to the real eigenvalues 4, and 4,. Let

ulEa-—/lzi=(a—/'.2)i+yj
qua-21i=(a—-}~,)i+yj

define the vectors u; and u,, as shown in figure 3.

7 (a,7)

£, £ \ 0

(an —B)

Figure 3

Then

(A—-/lll)[ a;iz] — [a‘y}“' 5 51] [ a—ylz]

_ l:az—().] +Z2)a+21/12+ﬁy ]_— [0 ]
ya— (A +4,)y+0y Lo b

since A+, =a+6 and A 4, =ad—By. If u;#0, this shows that u;, and hence also
the unit vector e;=u,/|lu,|l, is an eigenvector corresponding to A,. If u;=0, e, is
taken as a unit tangent vector to I” at a. Defining e, analogously, it follows that in
all cases, ¢; and e, are unit eigenvectors corresponding respectively to 4, and 4,.

In the case of distinct eigenvalues (4> 0), it is geometrically clear that e, and e, are
linearly independent. Moreover, they are orthogonal if and only if I" is centered on
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the horizontal axis, and therefore corresponds to a matrix for which g=y; that is,
[4] is a symmetric matrix.

In the case 4=0, A=, =1, is a repeated eigenvalue. There is either one eigenvector
(when r#0 and I" is a proper circle), or else all directions are eigenvectors (when
r=0and I is a point circle) and A = A1.

The lines ¢, and ¢, determined by the eigenvectors are commonly called principal
axes. In summary, the circle I associated with 4 geometrically determines
1,0,4,41,4,,E,E, as shown in figures 1-3. A related method [2] shows how even
the image Ax of a given vector x can be geometrically determined; however, an
auxiliary set of axes is required in that construction.

2. Construction of the roots of a quadratic polynomial

In notation consistent with the preceding section, let us suppose the polynomial, in
the variable 4, is written in the form A2— 71+ ¢. If A4 is defined by

wel; 1]

we see T and o are, respectively, the trace and determinant of 4, and so A2—ti+¢
=0 is its characteristic equation. The zeros are thus determined geometrically by
constructing the circle I" whose diameter has the endpoints (z,0) and (0,1). Figure 4
illustrates the case x2+ x — 2.

4

Figure 4

This method is not new but is attributed to the Scottish essayist and historian
Thomas Carlyle (1795-1881). In his book, ‘Elements of Geometry’, Sir John
Leslie comments on this geometric solution of quadratics as follows: “The solution
of this important problem now inserted in the text was suggested to me by Mr.
Thomas Carlyle, an ingenious young mathematician, and formerly my pupil’
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(see Eves [3], p.80). It is not clear whether or not Carlyle realized his method would
construct the complex roots as well. It is also of interest to compare our work to the
early attempt of John Wallis [4] to construct the imaginary roots of quadratic poly-
nomials; while he failed to identify the imaginary axis explicitly, his reference to a
‘plain’ in which the roots can be found is the first reference to a geometrical inter-
pretation of the complex numbers.

3. Level curves of quadratic functions

Let q(&.7)=al+2BEn+on*+2uE+2vy, where a,B.8,u,v are constants. It is
assumed not each of a, .6 is zero. Our goal is to geometrically determine the nature
of the level curves ¢ ({.n) =,k a constant, and devise a procedure to sketch the level
curves rapidly yet accurately.

We begin by defining

[M]= [(Z, /;] p=pitvi,  x=Litnj,

which allows us to express g (x)=¢q (£, #) in the basis free form

g(x)=<{x, Ax>+2{x,p);

as usual, A is the linear transformation which [4] defines. Next consider the
translation X = x—¢ where X represents a new variable vector, viewed as eminating
from a new origin at t. Defining ¢ by § (X)=q (X + )= g (x), we find

G(X)=(X,AXY>+2(X At+p)+{t,At)+2{t,p).

Here the symmetry of A was used to show {z,Ax)={x,At). The symmetry also
shows the existence of a basis B =(e;,e,) of orthonormal eigenvectors of 4. If [4,V]
represents A in this basis, we have the expressions

0
0/,

A

[A,‘B]=[ ], p=[le,+ve,, t=Ce +1je,.

It has been shown how 4,,4,,e,,e, are geometrically determined by the circle I
corresponding to [4]. The components 2 and vV are likewise geometrically
determined, since they are the orthogonal projections of p onto the e, and e,
directions.

We now take two cases:

I. o=detd #0.
Equivalently, this is the case where I" intersects the £-axis at non-zero points 4; and
4,. By choosing
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t=—A"p=—i7lje,— iz lVe,

we get
§E)= (R AR = (A7 Y =2, B dpi® — a7 p2— A7 2.

Thus the level curves § (X)=constant is a family of ellipses (4;4,>0) or conjugate
hyperbolas (1,4, <0) centered at x=¢ and whose axes are the (orthogonal) principal
axes of A. If I" is a point circle, then ;= 41,, and the level curves are concentric
circles.

Figure S illustrates the case g (&,7)=5&2+6&n+5n>+4E+127.

Figure 5

In the hyperbolic case, the circle I", being centered on the &£-axis, will (in view of
fig.1) intersect the vertical »-axis at the two points +V — ¢ j,0=det4. Recalling
the vector b=0i— fj used in section 2 to define an endpoint of a diameter of I,
define the vectors *

i=b+V -0, v,=b—-V —0j.

Then

awy=l-pev=a10 S0 = ]-o.

and similarly (v,,4v,)=0. The vectors v, and v, thus define the two asymptotic
directions for the family of hyperbolas. They are determined by I",b, and the inter-
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section points of I" with the »-axis in an analogous manner to that by which I,
a=ai+yj, and the intersection points of I with the &-axis determine the principal
axes.

The level curves of g (¢, 57)=2 2+ 4 & — 4? are sketched in figure 6.

n

3>

/

Ik

v“S e
N

‘

ST "

m™m>

A

Figure 6

II. c=det4=0.

Here I” intersects the £-axis in a non-zero eigenvalue 4; let e denote a corresponding
unit eigenvector and ¢ denote the principal axis. The second eigenvalue is zero; let f
denote its corresponding unit eigenvector and ¥ the principal axis. Letting
p=ué+vfand r=—A"!je, we find

JE+ 2=k + A2

If p is parallel to e, which is geometrically determined by the circle I, then ¥=0 and
the locus is a family of straight lines parallel to the principal axis 3. If p is not in the
e direction, then v# 0 and the family of level curves consists of congruent parabolas.
The common axis of these parabolas is parallel to 3 and has been translated in the e
direction from x=0 a distance — A~ 1.

Since addition, subtraction, multiplication, division, and square roots of lengths can
all be constructed with straightedge and compass, the various axes and translation
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vectors defining any level curve can be constructed in the Euclidean sense. In
practice, a combination of both geometric and arithmetic methods is most
convenient to sketch any level curve quickly yet accurately.

Duane W. DeTemple and Donald G. Iverson, Washington State University
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Kleine Mitteilungen

An identity involving Ramanujan’s sum

Let f be an arithmetical function and let f’=u*f denote the Dirichlet convolution
of fand the Mobius function u:

n
ro=Yu@f(5),  nx1-
din
A Ramanujan series is a series of the form
[2.9]
Z aq cq (n) ’
q=1
where ¢, (n) is Ramanujan’s sum,

cg(n)= Eq: exp (Zniiq’l) ,

h=1
(h.g)=1
and where
o "(m
a,= 2 f( q) )
m=1 maq

H. Delange proved [1] the following.
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