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Zur Methode der finiten Elemente

1 Allgemeiner überblick

Vor rund 25 Jahren haben die Ingenieure begonnen, die Methode der finiten
Elemente zu entwickeln, da sie recht komplexe Strukturen der modernen Technik

entweder hinsichtlich ihrer statischen Sicherheit unter dem Einfluss von
äusseren Belastungen oder aber auf ihre dynamischen Eigenschaften, d h beispielsweise

auf ihre Eigenschwingungen, zu untersuchen hatten Man denke hierbei
etwa an moderne Dachkonstruktionen von Stadien, hohe Antennenmasten, Schiffsund

Flugzeugkonstruktionen, Staumauern, gewagte Bruckenkonstruktionen im
Autobahnbau, Atomreaktoren mit Sicherheitsbehaltern, Hochleistungsturbinen und
ähnliche weniger spektakuläre technische Errungenschaften, denen wir im
täglichen Leben begegnen Alle diese Entwicklungen waren ohne entsprechende ver-
antwortungsbewusste und fachgerechte Berechnungen mit Hilfe von modernen
Rechenanlagen schlechthin nicht denkbar
Um die zugrundeliegende Idee der Methode zu verstehen, muss man sich die
Tatsache vergegenwärtigen, dass sich die Konstruktion in einigen der erwähnten
Falle aus vielen einzelnen Bauteilen, z B Stäben, Balken oder Platten,
zusammensetzt, deren elastomechamsches Verhalten unter Belastung der Ingenieur
aufgrund bekannter Grundprinzipien der Mechanik beschreiben kann und somit
vollkommen beherrscht Es entspricht deshalb einem ganz natürlichen Vorgehen,
die zu untersuchende Struktur in ihre Bestandteile zu zerlegen, welche fortan als
die Elemente bezeichnet werden, um so die komplexe Aufgabe in mathematischer

Manier auf die Behandlung der einzelnen Teile zurückzuführen Bei
anderen Problemstellungen, denen kontinuierliche räumliche Gebilde zugrunde
liegen, zerlegt der Ingenieur in Verallgemeinerung der Idee die gegebene Struktur
geeignet in solche Elemente, die er nach Prinzipien der Mechanik zu behandeln
weiss, womit er wiederum die komplizierte Problemstellung auf einfachere und
losbare Aufgaben zurückfuhrt
Der beschriebene technische Hintergrund macht verständlich, dass die Methode
der finiten Elemente sowohl im Gebiet des Bauwesens und des Maschinenbaus
als auch im Bereich der Luft- und Raumfahrtkonstruktionen ihre grosste
Verbreitung gefunden hat und dass sie fur die praktischen Zwecke laufend verbessert

und verfeinert wird
Das Verfahren der finiten Elemente ist unter dieser Bezeichnung etwas spater
auch zur Losung von partiellen Differentialgleichungen und von Systemen von
partiellen Differentialgleichungen verwendet worden und hat so in diesem mehr
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mathematisch orientierten Bereich Einzug gehalten Als typische Aufgabenstellungen

seien hier die elliptischen Rand- und Eigenwertprobleme, die Warme-
leitung oder Diffusion und Probleme der Stromungsmechanik genannt Die
prinzipielle Idee der Methode besteht dann, das Grundgebiet der Aufgabe in geeignet

gewählte Teilgebiete, auch wieder Elemente genannt, zu unterteilen, um in
diesen die gesuchte Funktion, bzw die gesuchten Funktionen, durch einfache
Funktionen in einem zu präzisierenden Sinn möglichst gut zu approximieren
Als Approximationsfunktionen in den einzelnen Elementen werden in der Regel
Polynome so gewählt, dass die solcherart zusammengesetzte Naherungsfunktion
im ganzen Grundgebiet die erforderlichen Stetigkeitseigenschaften besitzt
Die skizzierte Idee des Verfahrens ist wohl zum ersten Mal 1928 in [4] erwähnt
und dann 1943 in [5] mit einem konkreten Vorschlag fur die Durchfuhrung
dargestellt worden Die grundlegende Idee ist aber auch 1938 m [3] für theoretische
Zwecke angewandt worden Der Verfasser lernte eine konkrete Anwendung 1954

in einer emdruckhchen Vorlesung von G Polya uber Variationsprinzipien kennen,

in welcher vermöge komplementärer Extremalpnnzipien nach dieser
Methode obere und untere Schranken für die Kapazität oder Torsionssteifigkeit
berechnet wurden [6, 7] Diese Ansätze scheinen zu jener Zeit wenig beachtet worden

zu sein Erst das Aufkommen von leistungsfähigen Rechenanlagen verhalf
der Methode zum Durchbruch
Die Methode der finiten Elemente besitzt zwei verschiedene Gesichtspunkte, welche

miteinander ein vollständiges Bild ergeben, sich aber infolge ihrer vollkommen

gegensätzlichen Zielsetzungen nur schwer vereinigen lassen Der Praktiker,
der die konkrete Losung eines Problems m Form von Zahlwerten anstrebt, ist
an den erforderlichen theoretischen Grundlagen und an den algorithmischen
Fragen für eine zweckmassige, effiziente und numerisch sichere Durchfuhrung
der Methode interessiert Demgegenüber befassen sich seit etwa gut zehn Jahren
viele Mathematiker mit theoretischen Fragestellungen, welche die Existenz und

Eindeutigkeit der Naherungslosung, die Konvergenz der Naherungslosung
bezüglich einer Norm bei Verfeinerung der Elementeinteilung gegen die exakte
Losung oder die Zulassigkeit bestimmter Ansätze überhaupt betreffen Gelegentlich

liefern die theoretischen Untersuchungen Richtlinien fur die praktische
Durchfuhrung, doch ist leider festzustellen, dass viele der zahlreichen abstrakten
Publikationen kaum mehr eme Beziehung zu den für die Anwendung relevanten
Fragestellungen haben
Da der Anwendungsbereich der Methode der finiten Elemente sehr vielseitig ist,
soll der Grundgedanke anhand eines einfachen und elementaren Beispiels aus
dem Ingenieurwesen dargelegt werden Die Darstellung erfolgt dabei unter dem

algorithmischen, auf die praktische Durchfuhrung ausgerichteten Aspekt, der hier
ohnehin angebracht ist, da Fragen der Konvergenz ausser Diskussion stehen Fur
eine entsprechend ausführliche Behandlung der Methode in anderen
Anwendungsgebieten sei auf [9] verwiesen Wer mehr an theoretischen Gesichtspunkten

interessiert ist, sei etwa auf [1, 2, 8, 11] hingewiesen In einem spateren
Beitrag soll die Anwendung der Methode der finiten Elemente zur Losung von
elliptischen Randwertaufgaben dargestellt und auf einige reizvolle Probleme der
Numerik der linearen Algebra eingegangen werden
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2. Ein Problem der Statik

Wir betrachten ein einfaches räumliches Fachwerk nach Figur 1, unter dem man
sich konkret etwa die Bergstation eines Skihftes vorstellen kann Die Konstruktion

baut sich aus 16 Stabelementen auf Die sechs Fusspunkte der Konstruktion
liegen vereinfachend in einer horizontalen Ebene, der (;c,j>)-Ebene des

Koordinatensystems von Figur 1, und seien im Boden verankert Die Verbindungsstellen
bzw die Fusspunkte der Konstruktion werden Knotenpunkte genannt Sie

smd in Figur 1 mit Px bis Pxx bezeichnet Im Knotenpunkt P3 unterliegt die
Konstruktion der einzigen äusseren Kraft F in x-Richtung, etwa verursacht durch
das dort befestigte Umlenkrad

AZ

a p.
170cm

A/200cm

100cm
200cm

200cm

Figur 1

200cm

Die verwendeten Stabelemente sind so beschaffen, dass sie keine wesentlichen
Biegemomente aufnehmen können, sondern dass sie allein zu berücksichtigenden

Zug- oder Druckkräften unterworfen sind Aufgrund dieser Annahme können

m den Verbindungsstellen von Stabelementen auch keine wesentlichen
Biegemomente übertragen werden, so dass demzufolge in allen Knotenpunkten eine
gelenkige Verbindung bzw Lagerung angenommen werden muss Deshalb sind
Verstrebungsstabe, wie PXP2 und P2P%, erforderlich, um der Konstruktion die
seitliche Stabilität zu vermitteln Die genannten Vereinfachungen fur die Berechnung

der Deformation und msbesondere der auftretenden Spannungen in den
Stäben werden aber durch die Erfahrung voll gerechtfertigt
Nach dieser allgemeinen Beschreibung der Problemstellung erfolgt die Mathe-
matisierung der Aufgabe In der Mechanik existiert eine Reihe von Prinzipien
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oder Methoden, die Bedingungsgleichungen des vorgelegten Problems aufzustellen

Im folgenden soll das Prinzip des Minimums der gesamten potentiellen Energie

eines Systems verwendet werden, welches besagt, dass die tatsächliche
Deformation eines Korpers unter dem Einfluss von äusseren Kräften die gesamte
potentielle Energie minimiert
Die gesamte potentielle Energie der betrachteten Konstruktion setzt sich zusammen

aus der Deformationsenergie der einzelnen Stabe und dem Potential der
äusseren Krafte Wir wenden uns zuerst dem Problem zu, die Deformationsenergie

eines homogenen, isotropen Stabes konstanten Querschnitts A unter einer
zunächst beliebigen Deformation in Stabrichtung zu beschreiben Wir betrachten

einen Stab der Lange / nach Figur 2, mit der £-Achse in Stabrichtung

Figur 2

Falls w(£) die Verschiebung des Querschnittes an der Stelle q bedeutet so wird
die Deformationsenergie des Stabes unter Zugrundlegung der linearen
Elastizitatstheorie gegeben durch [9]

(1)

wo E den Elastizitätsmodul des Materials bedeutet Wirken auf den Stab nur
Krafte an den Stabenden in Stabnchtung, so stellt sich unter den Annahmen
uber den Stab eine linear variierende Verschiebung des Querschnittes ein
Bedeutet üx die Verschiebung des linken und ü2 die Verschiebung des rechten Endes

des Stabes, so lasst sich die Verschiebung ü(£) mit Hilfe linearer Interpolation

darstellen als

«(£>=(i-j-)„ _.* -
1 + T "2

Mit

„'(£)=(-_, + _2)//

(2)

(3)

ergibt sich somit für die Deformationsenergie (1) des Stabes

1 EA
^STAB —

2 /
{Ü\-2ÜXÜ2 + Ü$ (4)
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Die Deformationsenergie ist somit eine quadratische Form in den beiden
Verschiebungen üx und ü2 in Stabrichtung an den Stabendpunkten. Der Ausdruck
(4) wird mit Hilfe von

üe= und Se
EA

l
1

-1
-f

1

geschrieben als

1 „«'STAB" uiS„u„.

(5)

(6)

Die Matrix Se bezeichnet man als die Elementsteifigkeitsmatrix eines Zugstabes.
Der Vektor üe enthält die beiden den Deformationszustand charakterisierenden
Knotenvariablen des Stabelementes und heisst Elementvektor. Der Faktor EAJl
berücksichtigt die geometrischen und physikalischen Daten des Stabes.
Die vorhergehenden Betrachtungen dienten einzig der Vorbereitung, die
Deformationsenergie eines Stabes in allgemeiner räumlicher Lage bei ebenfalls
allgemeiner Verschiebung seiner beiden Endpunkte in den drei Koordinatenrichtungen

aufzustellen. Dazu betrachten wir ein Stabelement nach Figur 3, dessen beide
Endpunkte mit Px und P2 bezeichnet sind, deren allgemeine räumliche Verschiebungen

mit den Wertetripeln (ux,vx,wx) bzw. (u2,v2,w2) beschrieben werden. Diese
Verschiebungen werden für das Folgende als klein vorausgesetzt im Verhältnis

Figur 3

zur Länge des Stabes, so dass die Richtung des Stabes in erster Approximation
unverändert bleibt. Seien xx, yx, zx die kartesischen Koordinaten des Punktes
Px (i=l, 2), dann sind die Richtungskosinus des Stabes gegeben durch

c,=
*2" y2-yx z2-zx

—1—> cz=—_— (7)
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so dass sieh die allein massgebenden Verschiebungen in Stabrichtung zu

ül cxux + cyvx + czwl, (/=1,2) (8)

ergeben. Die hneare Relation (8) erlaubt nun, die Deformationsenergie eines
Stabelementes in allgemeiner räumlicher Lage aus (6) herzuleiten vermöge der
linearen Transformation

"wi"
vi
wxcx cy cz 0 0 0

0 0 0 cx cy cz
(9)

Substitution von (9) in (6) und anschliessende Ausmultiplikation der Matrizen
liefert schliesslich die Darstellung der Deformationsenergie in der Form

^stab ~~

"V T r c2
CxCy cxcz -c2 Cx^y ~CxCz' ~ux

vi Cjfiy C2
cycz ~~ CXCy -c2 'CyC, Vi

1 EA wx c c^x^z cyCz cl ^x^z Cy^z -c2*-_¦ wx

1 l
u2 -c2̂x ^x^y ^x^z c2

*~x ^X^y CX^Z u2

v2 ^x^y -c2 -CyC, CXCy c2 C C^y^z v2

w2 ~cxcz -cyc2 -* ^x^z c c C2
z w2

(10)

Die resultierende sechsreihige Elementsteifigkeitsmatrix ist symmetrisch, setzt sich
aus vier dreireihigen, abgesehen vom Vorzeichen identischen, Untermatrizen
zusammen, welche die räumliche Lage des Stabelementes berücksichtigen.
Die totale Deformationsenergie des Systems ergibt sich durch Addition über
alle Stabelemente und ist offensichtlich eine quadratische Form in den Verschiebungen

sämtlicher Knotenpunkte. Im konkreten Beispiel mit 11 Knotenpunkten
ist dies eine quadratische Form in den 33 Knotenvariablen.
An dieser Stelle sollen die geometrischen Randbedingungen des Problems
berücksichtigt werden. Aufgrund der Verankerung der Knotenpunkte P6 bis Pxx

müssen die zugehörigen 18 Knotenvariablen verschwinden. Deshalb reduziert
sich die totale Deformationsenergie auf eine quadratische Form in den 15 Kno-
tenvariablen der Knotenpunkte Px bis P5. Fassen wir die 15 Knotenvariablen
im Vektor w=(wi,v1,w1,W2,v2,>V2,...,M5,V5,>V5)r zusammen, wobei sich die Indizierung

der Verschiebungen auf die Knotenpunkte bezieht, so lautet die totale
Deformationsenergie des Systems

^sYs^y"1^"' (11)
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mit der Gesamtsteifigkeitsmatrix S der Ordnung 15. Die Matrix S baut sich aus
den Matrizen in (10) unter Einschluss der i.a. elementabhängigen Faktoren EA/l
additiv auf, wobei jedes Stabelement entsprechend seiner Endknotenpunkte nur
Beiträge in die diesbezüglichen Stellen liefert.
Greift im Knotenpunkt Pl eine äussere Kraft Fx mit den Komponenten Flx, Fiy,
Flz an, so lautet schliesslich die gesamte potentielle Energie des Systems mit dem
Kraftvektor F=(FXx,FXy,FXz,F2x,F2y,F2z,...,F5x,F5y,F5z)T

n^^-^Su-f^u. (12)

Die gesamte potentielle Energie (12) ist damit durch die freien und unbekannten

Verschiebungen von Knotenpunkten dargestellt. Sie nimmt für die tatsächliche

Deformation des Systems ein Minimum an. Die notwendige Bedingung
dafür besteht darin, dass der Gradient verschwindet, und führt auf das lineare
Gleichungssystem

grad77SYS Sii-_F=0 (13)

mit symmetrischer Koeffizientenmatrix 5, welche aus physikalischen Gründen
sogar positiv definit ist. Die gesuchten Verschiebungen der Knotenpunkte ergeben

sich schliesslich als Lösungen von (13). Bei der praktischen Lösung des

linearen Gleichungssystems kann die Symmetrie und positive Definitheit ausgenützt

werden, da die Gaußsche Elimination mit Pivots längs der Diagonale
ausfuhrbar ist, wobei die Symmetrie erhalten bleibt und sich der erforderliche
Rechenaufwand auf etwa die Hälfte reduziert im Vergleich zur Lösung eines
allgemeinen Gleichungssystems [10].
Der prinzipielle Rechenablauf ist damit vollständig beschrieben. Er besteht
grundsätzlich darin, aufgrund der Daten der einzelnen Stäbe die Gesamtsteifigkeitsmatrix

S des linearen Gleichungssystems (13) aufzubauen, den Kraftvektor F als
Konstantenkolonne in (13) zu definieren und das System zu lösen. Die sog.
Kompilation der Matrix 5 übernimmt zweckmässigerweise ein Computerprogramm,
das übrigens recht einfach ist. Als Grundlage für die Durchführung der Rechnung

sind erstens die Koordinaten der Knotenpunkte und zweitens die
Nummernpaare der Knotenpunkte sowie die Querschnittflächen der einzelnen Stäbe
zusammenzustellen. Neben dem Wert für den Elastizitätsmodul E ist schliesslich

noch F vorzugehen.

3. Beispiel

Zur Illustration soll die Deformation der Konstruktion der Figur 1 mit den dort
angegebenen Abmessungen unter der Annahme bestimmt werden, dass alle Stäbe
den gleichen Querschnitt A 5 cm2 aufweisen, E=2 • 107N cm"2 sei und die
einzige von Null verschiedene Kraftkomponente F3x= 105 N betrage. Die Lösung des

zugehörigen Gleichungssystems in 15 Unbekannten ist in der Tabelle zusammen
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mit den zusätzlich berechneten Spannungswerten in einigen der Stabe angegeben

Em positiver Spannungswert entspricht einer Zugbeanspruchung, em negativer

Wert einer Druckspannung Die Beanspruchung auf Zug und Druck
entsprechen der Anschauung

Deformationen und Spannungen

Verschiebungen der Knotenpunkte [cm] Spannungen [N cm 2]

/ u. v. w, Stab a

03719 0 2093 -0 1150 /Vi 12866
0 4070 0 1501 -0 1242 PxPl -5917
0 5375 0 1608 0 0234 P2P3 7246
0 4219 0 1182 0 0150 P3P4 -7222
0 4570 0 1682 0 0150 P1P4

P\0P4
P4P5

5006
1548

5000

H R Schwarz, Universität Zürich
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Geometrie aspects of linear transformations of the plane

The purpose of this note is to present some interesting and useful connections
between plane geometry and linear transformations of the plane into itself Of
course, such hnear transformations are most often given by 2 x 2 matrices While our
development does not easily extend mto higher dimensional space, the two-
dimensional case is already one of considerable practical importance For example,
m engmeenng mechanics the planar stress and strain tensors and the mertia tensor
of a solid with a plane of symmetry are each represented by a 2 x 2 matrix
The following notational Conventions will be adopted A linear transformation A of
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