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ELEMENTE DER MATHEMATIK

Revue de mathématiques élémentaires - Rivista di matematica elementare

Zeitschrift zur Pflege der Mathematik
und zur Forderung des mathematisch-physikalischen Unterrichts

El. Math. Band 36 Heft 1 Seiten 1-24 Basel, 10.Januar 1981

Zur Methode der finiten Elemente

1. Aligemeiner Uberblick

Vor rund 25 Jahren haben die Ingenieure begonnen, die Methode der finiten
Elemente zu entwickeln, da sie recht komplexe Strukturen der modernen Tech-
nik entweder hinsichtlich ihrer statischen Sicherheit unter dem Einfluss von &us-
seren Belastungen oder aber auf ihre dynamischen Eigenschaften, d.h. beispiels-
weise auf ihre Eigenschwingungen, zu untersuchen hatten. Man denke hierbei
etwa an moderne Dachkonstruktionen von Stadien, hohe Antennenmasten, Schiffs-
und Flugzeugkonstruktionen, Staumauern, gewagte Briickenkonstruktionen im
Autobahnbau, Atomreaktoren mit Sicherheitsbehéltern, Hochleistungsturbinen und
ahnliche weniger spektakuldre technische Errungenschaften, denen wir im tig-
lichen Leben begegnen. Alle diese Entwicklungen wiren ohne entsprechende ver-
antwortungsbewusste und fachgerechte Berechnungen mit Hilfe von modernen
Rechenanlagen schlechthin nicht denkbar.

Um die zugrundeliegende Idee der Methode zu verstehen, muss man sich die
Tatsache vergegenwirtigen, dass sich die Konstruktion in einigen der erwidhnten
Fille aus vielen einzelnen Bauteilen, z.B. Stiben, Balken oder Platten, zusam-
mensetzt, deren elastomechanisches Verhalten unter Belastung der Ingenieur auf-
grund bekannter Grundprinzipien der Mechanik beschreiben kann und somit
vollkommen beherrscht. Es entspricht deshalb einem ganz natiirlichen Vorgehen,
die zu untersuchende Struktur in ihre Bestandteile zu zerlegen, welche fortan als
die Elemente bezeichnet werden, um so die komplexe Aufgabe in mathemati-
scher Manier auf die Behandlung der einzelnen Teile zuriickzufilhren. Bei an-
deren Problemstellungen, denen kontinuierliche rdumliche Gebilde zugrunde lie-
gen, zerlegt der Ingenieur in Verallgemeinerung der Idee die gegebene Struktur
geeignet in solche Elemente, die er nach Prinzipien der Mechanik zu behandeln
weiss, womit er wiederum die komplizierte Problemstellung auf einfachere und
losbare Aufgaben zuriickfiihrt.

Der beschriebene technische Hintergrund macht verstindlich, dass die Methode
der finiten Elemente sowohl im Gebiet des Bauwesens und des Maschinenbaus
als auch im Bereich der Luft- und Raumfahrtkonstruktionen ihre grosste Ver-
breitung gefunden hat und dass sie fiir die praktischen Zwecke laufend verbes-
sert und verfeinert wird.

Das Verfahren der finiten Elemente ist unter dieser Bezeichnung etwas spiter
auch zur Losung von partiellen Differentialgleichungen und von Systemen von
partiellen Differentialgleichungen verwendet worden und hat so in diesem mehr
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mathematisch orientierten Bereich Einzug gehalten. Als typische Aufgabenstel-
lungen seien hier die elliptischen Rand- und Eigenwertprobleme, die Wirme-
leitung oder Diffusion und Probleme der Stromungsmechanik genannt. Die prin-
zipielle Idee der Methode besteht darin, das Grundgebiet der Aufgabe in geeig-
net gewihlte Teilgebiete, auch wieder Elemente genannt, zu unterteilen, um in
diesen die gesuchte Funktion, bzw. die gesuchten Funktionen, durch einfache
Funktionen in einem zu prizisierenden Sinn moglichst gut zu approximieren.
Als Approximationsfunktionen in den einzelnen Elementen werden in der Regel
Polynome so gewihlt, dass die solcherart zusammengesetzte Naherungsfunktion
im ganzen Grundgebiet die erforderlichen Stetigkeitseigenschaften besitzt.

Die skizzierte Idee des Verfahrens ist wohl zum ersten Mal 1928 in [4] erwdhnt
und dann 1943 in [5] mit einem konkreten Vorschlag fir die Durchfithrung dar-
gestellt worden. Die grundlegende Idee ist aber auch 1938 in [2] fiir theoretische
Zwecke angewandt worden. Der Verfasser lernte eine konkrete Anwendung 1954
in einer eindriicklichen Vorlesung von G. Polya iiber Variationsprinzipien ken-
nen, in welcher vermoge komplementidrer Extremalprinzipien nach dieser Me-
thode obere und untere Schranken fiir die Kapazitit oder Torsionssteifigkeit be-
rechnet wurden [6, 7]. Diese Ansitze scheinen zu jener Zeit wenig beachtet wor-
den zu sein. Erst das Aufkommen von leistungsfihigen Rechenanlagen verhalf
der Methode zum Durchbruch.

Die Methode der finiten Elemente besitzt zwei verschiedene Gesichtspunkte, wel-
che miteinander ein vollstindiges Bild ergeben, sich aber infolge ihrer vollkom-
men gegensitzlichen Zielsetzungen nur schwer vereinigen lassen. Der Praktiker,
der die konkrete Losung eines Problems in Form von Zahlwerten anstrebt, ist
an den erforderlichen theoretischen Grundlagen und an den algorithmischen
Fragen fir eine zweckmaissige, effiziente und numerisch sichere Durchfithrung
der Methode interessiert. Demgegeniiber befassen sich seit etwa gut zehn Jahren
viele Mathematiker mit theoretischen Fragestellungen, welche die Existenz und
Eindeutigkeit der Niaherungslosung, die Konvergenz der Niaherungslosung be-
ziiglich einer Norm bei Verfeinerung der Elementeinteilung gegen die exakte
Losung oder die Zulassigkeit bestimmter Ansitze iiberhaupt betreffen. Gelegent-
lich liefern die theoretischen Untersuchungen Richtlinien fiir die praktische Durch-
fihrung, doch ist leider festzustellen, dass viele der zahlreichen abstrakten Pu-
blikationen kaum mehr eine Beziehung zu den fiir die Anwendung relevanten
Fragestellungen haben.

Da der Anwendungsbereich der Methode der finiten Elemente sehr vielseitig ist,
soll der Grundgedanke anhand eines einfachen und elementaren Beispiels aus
dem Ingenieurwesen dargelegt werden. Die Darstellung erfolgt dabei unter dem
algorithmischen, auf die praktische Durchfithrung ausgerichteten Aspekt, der hier
ohnehin angebracht ist, da Fragen der Konvergenz ausser Diskussion stehen. Fiir
eine entsprechend ausfithrliche Behandlung der Methode in anderen Anwen-
dungsgebieten sei auf [9] verwiesen. Wer mehr an theoretischen Gesichtspunk-
ten interessiert ist, sei etwa auf [1, 2, 8, 11] hingewiesen. In einem spéteren Bei-
trag soll die Anwendung der Methode der finiten Elemente zur Losung von
elliptischen Randwertaufgaben dargestellt und auf einige reizvolle Probleme der
Numerik der linearen Algebra eingegangen werden.
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2. Ein Problem der Statik

Wir betrachten ein einfaches raumliches Fachwerk nach Figur 1, unter dem man
sich konkret etwa die Bergstation eines Skiliftes vorstellen kann. Die Konstruk-
tion baut sich aus 16 Stabelementen auf. Die sechs Fusspunkte der Konstruktion
liegen vereinfachend in einer horizontalen Ebene, der (x,y)-Ebene des Koordi-
natensystems von Figur 1, und seien im Boden verankert. Die Verbindungsstel-
len bzw. die Fusspunkte der Konstruktion werden Knotenpunkte genannt. Sie
sind in Figur 1 mit P, bis P;, bezeichnet. Im Knotenpunkt P; unterliegt die
Konstruktion der einzigen dusseren Kraft F in x-Richtung, etwa verursacht durch
das dort befestigte Umlenkrad.
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Figur 1 X

Die verwendeten Stabelemente sind so beschaffen, dass sie keine wesentlichen
Biegemomente aufnehmen konnen, sondern dass sie allein zu beriicksichtigen-
den Zug- oder Druckkriften unterworfen sind. Aufgrund dieser Annahme kon-
nen in den Verbindungsstellen von Stabelementen auch keine wesentlichen Bie-
gemomente iibertragen werden, so dass demzufolge in allen Knotenpunkten eine
gelenkige Verbindung bzw. Lagerung angenommen werden muss. Deshalb sind
Verstrebungsstibe, wie P;P, und P,Pg, erforderlich, um der Konstruktion die
seitliche Stabilitdt zu vermitteln. Die genannten Vereinfachungen fiir die Berech-
nung der Deformation und insbesondere der auftretenden Spannungen in den
Stiben werden aber durch die Erfahrung voll gerechtfertigt.

Nach dieser allgemeinen Beschreibung der Problemstellung erfolgt die Mathe-
matisierung der Aufgabe. In der Mechanik existiert eine Reihe von Prinzipien
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oder Methoden, die Bedingungsgleichungen des vorgelegten Problems aufzustel-
len. Im folgenden soll das Prinzip des Minimums der gesamten potentiellen Ener-
gie eines Systems verwendet werden, welches besagt, dass die tatsidchliche Defor-
mation eines Korpers unter dem Einfluss von dusseren Kréften die gesamte po-
tentielle Energie minimiert.

Die gesamte potentielle Energie der betrachteten Konstruktion setzt sich zusam-
men aus der Deformationsenergie der einzelnen Stibe und dem Potential der
ausseren Krifte. Wir wenden uns zuerst dem Problem zu, die Deformationsener-
gie eines homogenen, isotropen Stabes konstanten Querschnitts 4 unter einer
zunichst beliebigen Deformation in Stabrichtung zu beschreiben. Wir betrach-
ten einen Stab der Lange / nach Figur 2, mit der {-Achse in Stabrichtung.

-' 'g

oo
Yy

Falls (&) die Verschiebung des Querschnittes an der Stelle ¢ bedeutet, so wird
die Deformationsenergie des Stabes unter Zugrundlegung der linearen Elastizi-
tiatstheorie gegeben durch [9]

!
1
Istan= EA | @(@Pd¢. 0
0

wo E den Elastizititsmodul des Materials bedeutet. Wirken auf den Stab nur
Krifte an den Stabenden in Stabrichtung, so stellt sich unter den Annahmen
iiber den Stab eine linear variierende Verschiebung des Querschnittes ein. Be-
deutet #; die Verschiebung des linken und #, die Verschiebung des rechten En-
des des Stabes, so liasst sich die Verschiebung # (&) mit Hilfe linearer Interpola-
tion darstellen als

a(¢)=<1——‘fl—)a,+§l~a2. ‘ 2)
Mit
i (&)= (=t +iy)/! 3)

ergibt sich somit fiir die Deformationsenergie (1) des Stabes

ISTAB=§‘—“”‘(Q%—2'31172+13§)- )
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Die Deformationsenergie ist somit eine quadratische Form in den beiden Ver-

schiebungen &, und #, in Stabrichtung an den Stabendpunkten. Der Ausdruck
(4) wird mit Hilfe von

1 . EA 1 -1
N = d —_ ——
i, { 2] und S, ] [_ I 1], (5)

geschrieben als

by

>

alr's,a,. (6)

Die Matrix S, bezeichnet man als die Elementsteifigkeitsmatrix eines Zugstabes.
Der Vektor 4, enthdlt die beiden den Deformationszustand charakterisierenden
Knotenvariablen des Stabelementes und heisst Elementvektor. Der Faktor EA /I
beriicksichtigt die geometrischen und physikalischen Daten des Stabes.

Die vorhergehenden Betrachtungen dienten einzig der Vorbereitung, die Defor-
mationsenergie eines Stabes in allgemeiner raumlicher Lage bei ebenfalls allge-
meiner Verschiebung seiner beiden Endpunkte in den drei Koordinatenrichtun-
gen aufzustellen. Dazu betrachten wir ein Stabelement nach Figur 3, dessen beide
Endpunkte mit P, und P, bezeichnet sind, deren allgemeine raumliche Verschie-
bungen mit den Wertetripeln (u;,v;,w;) bzw. (u,,v,,w,) beschrieben werden. Diese
Verschiebungen werden fiir das Folgende als klein vorausgesetzt im Verhiltnis

zur Linge des Stabes, so dass die Richtung des Stabes in erster Approximation
unverdndert bleibt. Seien x;, y;, z; die kartesischen Koordinaten des Punktes
P;(i=1,2), dann sind die Richtungskosinus des Stabes gegeben durch

X2 — Xy =N 2~z
e A ey ™
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so dass sich die allein massgebenden Verschiebungen in Stabrichtung zu
di=c,u;+c,v;+c,w;, (i=12) (8)

ergeben. Die lineare Relation (8) erlaubt nun, die Deformationsenergie eines
Stabelementes in allgemeiner rdumlicher Lage aus (6) herzuleiten vermoge der
linearen Transformation

u)
Vi
} i ©)
U

V2
wh

Substitution von (9) in (6) und anschliessende Ausmultiplikation der Matrizen
liefert schliesslich die Darstellung der Deformationsenergie in der Form

Israp=
T & e, o, i =& —ce, —cc | [wi]
2 ey C cc, L —oe, — —cc | v
1 E4 M CC, G, CF L —6c, —ec, —C w,
2 1 U, —c2 =, —ce, G e o | |
vy -, =€ —c, 6L G e | | v
(W] |l o -2 e o0 o | |

Die resultierende sechsreihige Elementsteifigkeitsmatrix ist symmetrisch, setzt sich
aus vier dreireihigen, abgesehen vom Vorzeichen identischen, Untermatrizen zu-
sammen, welche die rdumliche Lage des Stabelementes beriicksichtigen.

Die totale Deformationsenergie des Systems ergibt sich durch Addition iber
alle Stabelemente und ist offensichtlich eine quadratische Form in den Verschie-
bungen sémtlicher Knotenpunkte. Im konkreten Beispiel mit 11 Knotenpunkten
ist dies eine quadratische Form in den 33 Knotenvariablen.

An dieser Stelle sollen die geometrischen Randbedingungen des Problems be-
riicksichtigt werden. Aufgrund der Verankerung der Knotenpunkte P4 bis Py,
miissen die zugehorigen 18 Knotenvariablen verschwinden. Deshalb reduziert
sich die totale Deformationsenergie auf eine quadratische Form in den 15 Kno-
tenvariablen der Knotenpunkte P, bis Ps. Fassen wir die 15 Knotenvariablen
im Vektor u=(uy, vy, wy,uy, V3, Wy, ..., us, vs,ws)T zusammen, wobei sich die Indizie-
rung der Verschiebungen auf die Knotenpunkte bezieht, so lautet die totale De-
formationsenergie des Systems

1
Isvs=“2“llTSu, (11)
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mit der Gesamtsteifigkeitsmatrix § der Ordnung 15. Die Matrix § baut sich aus
den Matrizen in (10) unter Einschluss der i.a. elementabhingigen Faktoren EA /I
additiv auf, wobei jedes Stabelement entsprechend seiner Endknotenpunkte nur
Beitrdge in die diesbeziiglichen Stellen liefert.

Greift im Knotenpunkt P; eine dussere Kraft F; mit den Komponenten F;,, F,,

F;, an, so lautet schliesslich die gesamte potentielle Energie des Systems mit dem
Kraftvektor F= (le’Fly’ Flz9F2x1F2y9F22’ "”FSx’FSy’FSZ)T

1
HSYS=*2“HTSH"‘FTH. (12)

Die gesamte potentielle Energie (12) ist damit durch die freien und unbekann-
ten Verschiebungen von Knotenpunkten dargestellt. Sie nimmt fiir die tatséch-
liche Deformation des Systems ein Minimum an. Die notwendige Bedingung
dafiir besteht darin, dass der Gradient verschwindet, und fithrt auf das lineare
Gleichungssystem

grad1gyg=Su—F=0 (13)

mit symmetrischer Koeffizientenmatrix §, welche aus physikalischen Griinden so-
gar positiv definit ist. Die gesuchten Verschiebungen der Knotenpunkte erge-
ben sich schliesslich als Losungen von (13). Bei der praktischen Losung des li-
nearen Gleichungssystems kann die Symmetrie und positive Definitheit ausge-
niitzt werden, da die GauB3sche Elimination mit Pivots lings der Diagonale aus-
fiuhrbar ist, wobei die Symmetrie erhalten bleibt und sich der erforderliche Re-
chenaufwand auf etwa die Hilfte reduziert im Vergleich zur Losung eines all-
gemeinen Gleichungssystems [10].

Der prinzipielle Rechenablauf ist damit vollstindig beschrieben. Er besteht grund-
satzlich darin, aufgrund der Daten der einzelnen Stdbe die Gesamtsteifigkeits-
matrix § des linearen Gleichungssystems (13) aufzubauen, den Kraftvektor F als
Konstantenkolonne in (13) zu definieren und das System zu losen. Die sog. Kom-
pilation der Matrix § iibernimmt zweckmaissigerweise ein Computerprogramm,
das tbrigens recht einfach ist. Als Grundlage fiur die Durchfithrung der Rech-
nung sind erstens die Koordinaten der Knotenpunkte und zweitens die Num-
mernpaare der Knotenpunkte sowie die Querschnittflichen der einzelnen Stdbe
zusammenzustellen. Neben dem Wert fiir den Elastizititsmodul E ist schliess-
lich noch F vorzugehen.

3. Beispiel

Zur Tllustration soll die Deformation der Konstruktion der Figur 1 mit den dort
angegebenen Abmessungen unter der Annahme bestimmt werden, dass alle Stidbe
den gleichen Querschnitt A =35 cm? aufweisen, E=2 - 10’ N cm~2 sei und die ein-
zige von Null verschiedene Kraftkomponente F;,=10° N betrage. Die Losung des
zugehorigen Gleichungssystems in 15 Unbekannten ist in der Tabelle zusammen
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mit den zusitzlich berechneten Spannungswerten in einigen der Stibe angege-
ben. Ein positiver Spannungswert entspricht einer Zugbeanspruchung, ein nega-
tiver Wert einer Druckspannung. Die Beanspruchung auf Zug und Druck ent-
sprechen der Anschauung.

Deformationen und Spannungen.

Verschiebungen der Knotenpunkte [cm] Spannungen [N cm~?]
i u; v, w, Stab g
1 03719 0,2093 -0,1150 PPy 12866
2 0,4070 0,1501 —0,1242 PP, —5917
3 0,5375 0,1608 0,0234 P,P; 7246
4 0,4219 0,1182 0,0150 P3P, —-7222
5 0,4570 0,1682 0,0150 PP, 5006
PPy 1548
PyPs 5000

H.R. Schwarz, Universitit Ziirich
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Geometric aspects of linear transformations of the plane

The purpose of this note is to present some interesting and useful connections
between plane geometry and linear transformations of the plane into itself. Of
course, such linear transformations are most often given by 2 X 2 matrices. While our
development does not easily extend into higher dimensional space, the two-
dimensional case is already one of considerable practical importance. For example,
in engineering mechanics the planar stress and strain tensors and the inertia tensor
of a solid with a plane of symmetry are each represented by a 2 X 2 matrix.

The following notational conventions will be adopted. A linear transformation 4 of
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