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Die Schmiegkegelschnitte einer Klothoide

Als fahrdynamisch giinstiger Ubergangsbogen zwischen geradliniger und kreis-
formiger Mittenlinie einer Strasse wurde 1937 von L. Oerley der Klothoidenbogen
in den Strassenbau eingefiihrt. Die Koordinaten der Punkte sowohl der Klothoide
als auch ihrer Evolute kann man mit hinreichender Genauigkeit Tabellenwerken
entnehmen. Trotzdem sind Verfahren von Interesse, welche Klothoidenbdgen
sowohl beim Entwurf als auch bei der Bauausfithrung im Geldnde approximieren.
Als Beispiele fiihren wir an: Néidherungsformeln unter Beniitzung kubischer
Parabeln, niherungsweise Bestimmung einer Klothoide aus gegebenen Punkten
oder Tangenten, auf Sehnen bzw. Tangenten bzw. Sekanten basierende Absteck-
verfahren, Zweiachtelmethode zur Punkteverdichtung (vgl. etwa [5]); weiters sei
auf die Zusammensetzung von Klothoidenbogen im Zusammenhang mit Brems-
kurven [2] hingewiesen. In ([5], S.115) wird eine von Nadenik [6] stammende
aufwendige Konstruktion einzelner Punkte des eine Klothoide von maximaler
Ordnung berithrenden Schmiegkegelschnittes angegeben, der fiir eine Anndherung
hoherer Ordnung einer Klothoide wertvolle Dienste leistet. Die vorliegende
Mitteilung bringt eine einfache direkte Achsen- und Scheitelkonstruktion des
Schmiegkegelschnittes zu einem Klothoidenpunkt P unter Beniitzung des Kriim-
mungskreises der Klothoide in P.

1. Schmiegkegelschnitte einer ebenen Kurve

Nach ([1], Bd.II, S.27) gibt es in jedem Nichtwendepunkt c(uy) einer reguldren
ebenen C*-Kurve ¢ (I),uye I genau einen von vierter Ordnung beriihrenden Schmieg-
kegelschnitt S. Dieser wird in dem durch die Frenet-Basis') (¢ (up), ¢, (4p)) von c (1)
in c(u,) bestimmten kartesischen Koordinatensystem (c(up);x,y) durch eine
Funktion F: R?— R der Gestalt

F(x,y):=ax*+2Bxy+yy*+y, a,f.yeR, a+0 1)

1) Denken wir die gegebene Kurve durch einen normierten Weg c:1— R? beschrieben, also |é|=1in I,
so gelten fiir die Vektoren c;(up):=¢ (ug), ¢2(up)=: 1 &(up) § ~1¢ (1p) der Frenet-Basis von c(I) im Nicht-
wendepunkt c(ug) die Ableitungsgleichungen ¢ (ug)=x(up)cy(up), €¢2(40) = — x(ug)é;(up) mit
x(up)= || €(uo) | + 0.
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festgelegt. Nach ([1], Bd.1, S.32) beriihren®) einander die Kurven ¢(J) und S im
gemeinsamen Punkt ¢ (uy)=: P genau dann von k-ter Ordnung (k=1,2,...), wenn die
ersten k Ableitungen der zusammengesetzten Funktion Foc:I—R an der Stelle
uge I verschwinden. Ist die Kriimmung x» (ug)=:x, von c(I) im Punkt P ungleich
Null, so beriihren einander die beiden Kurven ¢ (I) und S in P genau fir

V) }.fo
[ == r=s = = - ——— 'y=_.

2’ 6%0’

von vierter Ordnung, wie kurze Rechnung unter Beniitzung der Ableitungs-
gleichungen eines normierten Weges ¢ aus Fussnote 1 zeigt. Genau fiir zusétzlich

liegt Berithrung funfter Ordnung (oder sechspunktige Berithrung) im dann sex-
taktisch genannten Punkt P vor. Weiters gibt es genau eine ¢ (f) im Nichtwende-
punkt P hyperoskulierende Parabel, die sich fiir Koeffizienten a’, #” und y’ mit

[ [ g— r ﬁ2 —_— }%(2)
a a, ﬂ ﬂ’ Yy = a - 18%8 (4)

in (1) einstellt. Die Mittelpunkte aller ¢(I) in P hyperoskulierenden Kegelschnitte
liegen auf der Affinnormale genannten Geraden

X=4y, A=—"—=——> ®)

dutch P, welche parallel zur Achse der hyperoskulierenden Parabel ist.

2. Schmiegkegelschnitte einer Klothoide

Fiir eine durch die natiirliche Gleichung »:ueR x (u):=u festgelegte Einheits-
klothoide®) ¢ (R)=:C bestimmen sich die Koeffizienten in der Gleichung (1) des
Schmiegkegelschnittes der Kurve im Punkt ¢ (#9)=: P (1y+ 0) nach (2) zu

u 1 1 1
az———O- ﬁ: == — s )):'-:a--

1
= = 4__
3603 1843 Qug—4. ()

Dabei ist |uy| die Bogenlinge WP vom Wendepunkt c(0)=:W der Einheits-

2) Statt Berithrung erster bzw. zweiter bzw. dritter Ordnung sprechen wir auch von Beriihrung bzw.
Oskulation bzw. Hyperoskulation.

3) Misst man die Ebene mit einem LingenmaBstab zur Einheitsstrecke e’= ke statt e aus, keR*, so
verindert sich die Krimmung einer ebenen Kurve von x () zu »'(«)=k"2x(u). Nach geeigneter Wahl
des MabBstabes lisst sich daher eine Klothoide mit der natiirlichen Gleichung x:uw+ k~2u als Einheits-
klothoide auffassen.
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klothoide C zum Kurvenpunkt P. Wegen der zentrischen Symmetrie von C beziiglich
W (vgl. [5], S.38) setzen wir im folgenden uy,>0 voraus. Genau fir fZ2—ay=0,
also fur u;=(5 /9)‘/4 ist der Schmiegkegelschnitt zum Punkt ¢ (#;)=:Q von C eine
Parabel*), fiir P zwischen W und Q eine Hyperbel und ausserhalb dieses Bogens
eine Ellipse. Diese Ellipsen werden mit wachsender Bogenlidnge u, immer kreis-
formiger, wie Diskussion von (1) zusammen mit (6) lehrt. Die Klothoide C ist wegen
(3) frei von sextaktischen Punkten. Nach ([3], S.52) ist daher der Durchschnitt je
zwei ihrer Schmiegkegelschnitte leer, falls die Berithrpunkte dem Kurvenbogen
c(R*) oder ¢(R™) angehdren. Insbesondere liegen die nicht hyperbelférmigen
Schmiegkegelschnitte ganz in der den betreffenden Klothoidenbogen enthaltenden
Halbebene beziiglich der Wendetangente, welche Grenzlage der Schmiegkegel-
schnitte fir uy— 0 ist.

3. Kriimmungskreis in einem Kegelschnittpunkt

Unser Ziel ist eine direkte Achsen- und Scheitelkonstruktion des Schmiegkegel-
schnittes S zu einem Klothoidenpunkt P unter Beniitzung des Kriitmmungskreises
S} der Klothoide in P, der natiirlich auch den Kriimmungskreis von S in P abgibt.
Wir diskutieren deshalb zunichst den Zusammenhang zwischen einem Kegelschnitt
und dem Kritmmungskreis in einem seiner Punkte.

Ein Kegelschnitt L der Gestalt (1) besitzt im Koordinatenursprung P=(0,0)
den oskulierenden Kriimmungskreis L,

x2+y2+g—=0. O

Bekanntlich gibt es genau eine (P,a)-Elation ¢ mit dem Oskulationspunkt P als
Zentrum und einer Achse a durch P, die ¢ (L,)=L leistet; die durch die in P
oskulierenden Kegelschnitte L; und L eindeutig bestimmte Achse a dieser
perspektiven Kollineation ¢ fillt genau dann in die gemeinsame Tangente ¢ (y=0)
von L; und L in P, wenn L; und L in P hyperoskulieren, also P ein Scheitel von L
ist (vgl. etwa [4], S.65). In+(1) ist P=(0,0) genau fiir #=0 ein Scheitel; fir 40
wird die Elationsachse a durch

a—y

2p

beschrieben, wie Elimination von x und y aus (1), (7) und dem Ansatz x=puy,
p1eR fiir a erkennen lidsst. Da ein Klothoidenpunkt nie Scheitel des betreffenden

x=puy, p= @)

4) Fir die Koordinaten (xg,yp) des schon in [6] erwihnten Punktes Q der Einheitsklothoide mit
parabelformigem Schmiegkegelschnitt im auf den Wendepunkt als Ursprung und auf die Wende-
tangente als x-Achse gestiitzten kartesischen Koordinatensystem ergibt die Auswertung der Integrale in
([5], S.40): xo=0,851426289 ..., yp=0,106189997 ... Die Tangente in Q schliesst mit der Wendetangente
den Winkeldp=21°21"10,35..." ein. Die Bogenlinge WQ errechnet sich zu P@= (5/9)1/4=0,863340021 ...
und der Kriimmungsradius in Q zu (WQ)~1=1,158292185 ...
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ssesease®®
™~

L

W, Figur 1

Schmiegkegelschnittes ist (vgl. (6)), geniigt es, den Punkt P als Nichtscheitel von L
vorauszusetzen. Insbesondere schneiden einander dann L; und L in zwei Punkten P
und R auf der von ¢ verschiedenen Elationsachse a (vgl. Fig.1). Diskussion des
durch (1) festgelegten Kegelschnittes L im Falle einer Ellipse bzw. Hyperbel
(B2—ay <0 bzw. >0) liefert zusammen mit (8) das bekannte Ergebnis, dass die
Winkelsymmetralen der Elationsachse a und der gemeinsamen Tangente ¢ von L,
und L im Oskulationspunkt P die Achsenrichtungen von L sind. Im Falle einer
Parabel L entsteht ¢ durch Spiegelung von ¢ an dem Parabeldurchmesser durch
P (vgl. Fig. 1).

Die L, in L abbildende Elation ¢ zum Zentrum P lisst sich konstruktiv verfolgen,
wenn neben der Achse a(#¢) der Bildpunkt ¢ (X;)=:X eines Punktes X;(¢a)
bekannt ist. Ein solches Punktepaar bestimmen die Schnittpunkte des Kollineations-
strahles ¢ mit den Tangenten /; bzw. / von L; bzw. L im von P verschiedenen,
gemeinsamen Punkt Rea der beiden Kegelschnitte. Bei der folgenden Anwendung
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auf die Klothoide besteht dieses zweckmissige Punktepaar stets aus eigentlichen
Punkten, so dass wir in

X'=(‘5:Ta’°>’ w(xl)=x=(—m;‘;—/5,0), p=2r o)

parallele Lage von /; bzw. I zur Oskulationstangente t nicht beriicksichtigen miissen;
damit sind alle in (9) auftretenden Nenner ungleich Null. Fiir die konstruktive
Durchfithrung der Elation ¢ ist die Verschwindungsgerade v, von Interesse: Diese
zur Elationsachse a parallele Gerade trifft die Oskulationstangente ¢ im Punkt®) ¥,
mit

=50

der unter ¢ in den Fernpunkt ¥ von ¢ abgebildet wird.

Ist (P,¢) ein Linienelement eines Kreises L, und a eine von ¢ verschiedene Gerade
durch P, so gibt es zwei (P,a)-Elationen, die L, jeweils in eine im Punkt P
oskulierende Parabel uberfithren; die zu a parallelen Kreistangenten geben die
Verschwindungsgeraden jener Elationen ab. Der Figur 1 kann man eine direkte
Scheitelkonstruktion des (punktiert eingezeichneten) parabelformigen Bildes
@ (L) =L von L, bei einer Elation ¢ dieser Art (die Verschwindungsgerade ¥, beriihrt
L im Punkt U,) entnehmen: Das Lot aus P auf den Parabeldurchmesser PU, trifft
7, im Punkt W,; die von %, verschiedene Kreistangente b, durch W, beriihrt L, im
Urbild B, des Parabelscheitels B, der sich dann als Lésung der Vervollstindigungs-
aufgabe der Elation ¢ (Achse a, Verschwindungsgerade 7)) ergibt.

4. Konstruktive Festlegung einer Elation, die den Kriitmmungskreis zu einem
Klothoidenpunkt in den Schmiegkegelschnitt iiberfiihrt

Es sei (c(up),t) ein Linienelement der Einheitsklothoide®) ¢(R)=C und S, der
Kriitmmungskreis von C in ¢ (up)= P vom Radius py= (1 (%)) ~'=uy!. Wir beniitzen
wie bisher P bzw. ¢ als Ursprung bzw. x-Achse eines kartesischen Koordinaten-
systems. Durch Einsetzen von (6) in (9) erhalten wir

Xi=(-30,0=(32 0}, p@)=X=(~20.00=(0,0), w=WP, (1)

5) Die (P,a)-Elation ¢ induziert auf ¢ eine parabolische Projektivitdt n mit Z;=(z,,0)» Z=(z,0) und
z=2z1(—2Bz;+ 1)1, wie ein unbestimmter Ansatz z=(0z;+ 6,)(63z1+94)"1,0;€R,0;04— 5203+ 0 fiir
7 mit n(P)=P=(0,0) und n(X;)=X gemiss (9) lehrt. Genau fiir z;=(28)"! ist daher n(Z,)=n(V})
der Fernpunkt ¥ von t.

6) In Abhingigkeit von der Bogenlinge up= WP vom Wendepunkt W zum Kurvenpunkt P der Einheits-
klothoide C konnen wir die Koordinaten von P und den Anstieg der Tangente in P im auf Wendepunkt
und Wendetangente gestiitzten kartesischen Koordinatensystem etwa [5] entnehmen.
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was die in ([5], S. 115) und [6] nicht beriicksichtigte Beziehung
PX:PX,=2:3 (12)

erkennen lisst. Abtragen der Strecke 3uy/2 bzw. uy= WP auf der Tangente ¢ aus-
gehend von P in Richtung wachsender Bogenlinge u auf der Klothoide C ergibt den
Punkt X; bzw. X auf ¢; ein Kreisbogen um X, durch P trifft den Kreis S, im von P
verschiedenen Schnittpunkt R mit der Elationsachse a, da die Kreistangente s, in R
dann durch X; verlduft (vgl. Abschnitt 3). Die Elation ¢ zum Zentrum P, welche
den Kritmmungskreis S, der Klothoide C auf den Schmiegkegelschnitt S abbildet,
kann daher unter Beniitzung der Achse’) a=PR und X, X konstruktiv bequem
verfolgt werden. Wir formulieren den einige Ergebnisse zusammenfassenden

Satz 1. Der Schmiegkegelschnitt S in einem vom Wendepunkt W verschiedenen Punkt
P_der Einheitsklothoide C ist genau fiir 0< WP < (5/9)1/4 eine Hyperbel, fiir
WI\’=(5 [/ eine Parabel und sonst eine Ellipse. Der Punkt X, bzw. X der im Sinne
wachsender Bogenlinge WP positiven Halbgqg{len beziiglich P auf der Klothoiden-
tangente t in P mit PX,=3/2 WP bzw. PX= WP ist Urpunkt bzw. Bildpunkt in jener
Elation p zum Zentrum P, die den Kriimmungskreis S| von C in P in den Schmieg-
kegelschnitt S uberfiihrt. Die Elationsachse a von g fillt in die Polare von X, beziiglich
S

Mit Satz 1 ist die konstruktive Festlegung des Schmiegkegelschnittes S zu einem
Klothoidenpunkt prinzipiell erledigt. Die restlichen Diskussionspunkte geben unter
Beniitzung von Eigenschaften der Elation ¢ zweckmissige Konstruktionsschritte
zur direkten Ermittlung der Achsen und Scheitel von S an. So schneidet die Ver-
schwindungsgerade v; von ¢ die Klothoidentangente ¢ in P nach (10) und (6) im
Punkt ¥, =(6a,0)= (- 3u,,0), was PV, =3 WP, also

PX,:PV,=1: -2, ‘ (13)
erkennen lisst.

Satz 2. Die zur Achse a der Elation ¢ aus Satz 1 parallele Verschwindungsgerade v,
trifft die Klothoidentangente t in P im Punkt V,, der (13) erfiillt.

S. Parabelformiger Schmiegkegelschnitt
Beriihrt die Verschwindungsgerade v, der Elation ¢ den Kriimmungskreis §; der

7) Einsetzen von (6) in (8) ergibt fur die Elationsachse a die Gleichung y=6a2x,a = — ug/2 bzw. unter Be-
niitzung des historisch gemessenen Winkels 8y:=6 (up)=2a?=u§/2 der Wendetangente w von C gegen
die Kurventangente ¢ in P auch y=3dpx. Diese letzte Gleichung der gemeinsamen Sehne a des Kriim-
mungskreises S; und des Schmiegkegelschnittes S von C in P wird in [6] mit anderer Methode gefunden
und unter Verwendung des Winkels y von ¢ gegen a mit tanyo= 38y zur Konstruktion von a verwendet.
(Die Figuren in ([5], S.115) und [6] verletzen (12).)
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Einheitsklothoide C zum Punkt P, so ist der Schmiegkegelschnitt S=¢ (S,) von C
in P eine Parabel; dies tritt nach Satz 1 genau fur é=(5 /9)1/4 ein. Der Beriihr-
punkt U; von v; mit S liegt nach Abschnitt 1 auf der Affinnormalen von C in P,
welche parallel zur Achse von § ist. Den Parabelscheitel konstruieren wir nach
Abschnitt 3 (vgl. Fig. 1).

Satz 3. Beriihrt die Verschwindungsgerade v, der Elation ¢ den Kriimmungskreis S,
der Klothoide C zum Punkt P in einem Punkt U, so ist der Schmiegkegelschnitt S
von C in P eine Parabel der Achsenrichtung PU,; die direkte Scheitelkonstruktion
erfolgt nach Abschnitt 3.

4

12

Figur 2
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6. Direkte Achsenkonstruktion fiir Schmiegkegelschnitte mit Mittelpunkt

Die Verschwindungsgerade v, von ¢ beriihrt jetzt den Kriimmungskreis S nicht.
Wir zeichnen zunichst die Affinnormale n, der Einheitsklothoide C im Punkt P,
welche nach Abschnitt 1 den Mittelpunkt M des Schmiegkegelschnittes S tragt.
Nach (5) und (6) wird n, durch y= —12a2x beschrieben, was zusammen mit der
Gleichung y=6a%x von a (vgl. Fussnote 7) die folgende Konstruktion von n,
begriindet:

Satz 4. Eine zur Klothoidentangente t in P parallele Gerade g trifft die Affinnormale
ny bzw. die Kurvennormale n bzw. die Elationsachse a in einem Punkt N, bzw. N’
bzw. A mit AN’ N'N,=2:1.

Das Urbild ¢~ ! (M)=: M, des Mittelpunktes M von S wird aus der Affinnormalen
n, vom Lot auf a durch X, ausgeschnitten; einerseits ist namlich n, ein Kollinea-
tionsstrahl von ¢, trigt also mit M auch M,, und andererseits ist M; der Pol von v,
beziiglich des Kreises S, liegt also auf der nach Satz 1 zu a senkrechten Geraden
durch X, und den Mittelpunkt N, von S;. Der Punkt M ergibt sich dann als Losung
der Vervollstindigungsaufgabe der Elation ¢ (Achse a, X;~ X) aus M. Die Winkel-
symmetralen von ¢ und a bestimmen nach Abschnitt 3 die Achsen des Schmieg-
kegelschnittes S.

Satz 5. Beriihrt die Verschwindungsgerade v, von ¢ den Kriimmungskreis S, der
Klothoide C zum Punkt P nicht, so hat der Schmiegkegelschnitt S in P einen Mittel-
punkt M. Dieser liegt auf der Affinnormalen n, und ist Bildpunkt unter ¢ des Schnitt-
punktes My von n, mit dem Lot aus X, auf a. Die Achsen von S sind parallel zu den
Winkelsymmetralen der Klothoidentangente t und der Elationsachse a.

Die direkte Konstruktion der Scheitel von S fithren wir jetzt unter Beniitzung der
Vervollstindigungsaufgabe von ¢ durch (vgl. Fig.2).

7. Schlussbemerkungen

Der Schmiegkegelschnitt S der Klothoide C im Punkt P ist genau dann eine
Hyperbel, wenn die Verschwindungsgerade v; von ¢ den Kriimmungskreis S; in
zwei Punkten U,, U, trifft. Aus graphischen Griinden leisten die zu den Geraden
PU,und PU,parallelen Hyperbelasymptoten wertvolle Dienste. Die Tangenten des
Kreises S, in den Punkten U, und U, schneiden einander im Urbild M,=¢~1 (M)
des Hyperbelmittelpunktes M, was bei hyperbelformigem Schmiegkegelschnitt S
einer Klothoide neben Satz S eine weitere direkte Achsenkonstruktion von S liefert.

Die Verschwindungsgerade # jener Elation ¢ zum Zentrum P, die den Kriim-
mungskreis S; in die C in P hyperoskulierende Parabel iiberfihrt, beriithrt S; im
von P verschiedenen Schnittpunkt mit der Affinnormalen n, von C in P. Unter
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Beniitzung der zu ¥, parallelen Elationsachse durch P kann der Parabelscheitel nach
Abschnitt 3 konstruiert werden.
H.P. Paukowitsch, TU Wien
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The number of triangles in a triangulation of a set of points
in the plane!)

1. Introduction

Our terminology and notation will be standard except as indicated. A good
reference for undefined graph theoretic terms is [3].

In (1, 2] the authors discussed the question of the number of 3-cycles which could be
present in a planar graph on p points. In this paper, we want to consider essentially
the same question when the p points are in fixed positions in the plane. We will show
that this restriction does not limit the possible range of the number of 3-cycles unless
the p points are arranged in a unique, easily characterized configuration.

2. Statement of the problem and main results

Begin with a set P of p>5 points in the plane, with no three of the points collinear.
Suppose we draw straight line segments between pairs of points in P subject only to
the restriction that these segments do not intersect except at the points of P them-
selves, until it is impossible to add more segments in this manner. We call this
collection of line segments a triangulation of P (since all the finite regions into which
these segments divide the plane are triangles). We will generally use T to denote a
triangulation of P. Note in particular that the line segments comprising the
boundary of the convex hull of P will be included in every triangulation T of P.

1) This work was supported in part by the National Science Foundation under Grant ENG 79-09724.
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