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Kleine Mitteilungen

Remarks on the differences between consecutive primes

In problem 654, Journal of Recreational Mathematics, Harry Nelson asks: "What
is the most likely difference between consecutive primes?" Here a difference is
'most likely* for primes <* n if it occurs at least as often as any other difference.
For a discussion see J. Rec. Math. 11,231.
We first show that a well-known conjeeture of Hardy and Littlewood implies
that the most likely difference tends to infinity with n, so that there is no most
probable difference independent of n.
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In Hardy and Littlewood: On the expression of a number as a sum of primes.
Collected Papers of G.H. Hardy, VI, p. 682; they conjeeture that the number of
Solutions of

p-p=lk, pt<>n, (1)

equals

/>odd

where c is an absolute constant.
Let/?, denote the /th prime; then (2) implies that the number ofSolutions of

pl+x-pl 2k, pl+i^n (3)

also is of the form (2). Since every Solution of (3) is a Solution of (1) it is clear
that the number cannot be greater than (2). On the other hand if we have a
Solution pl—p] 2k of (1) which is not a Solution of (3), that is />y+l, then
we get a triple of primes

Pj, pj + 2u, pj + 2k; l<u<k. (4)

From Brun's method it follows that the number of such triples with p}<n is less

than

ckn ü(l--)<4rV (fi>°) (5>
k<p<n£\ pJ log*n

for each fixed u, and hence <, ckn/log3n for all triples in (4). Inequality (5) follows
from the fact that the primes satisfying (4) exelude three residue classes (modp) for
p>k. Since the bound (5) is small compared to the estimate (2) it follows that
(2) is also an estimate for the number of Solutions in (3).
Now (2) implies that the most likely difference between consecutive primes goes
to infinity with n. Denote the number of Solutions of (3) by f(n,k) and let kn be
the minimum value ofk for whichf(n,k) is maximal.
Brun's method gives the well-known relation

f(n,k)<ckn/log2n (6)

In view of the divergence ofÜO*— l)/(p~~l) estimates (2) and (6) imply that

'Wi^r00 (7)

and (6), (7) imply kn-+co with n.
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Of course the prime number theorem implies

/("'fcVbk>c>0 (8)

for some fixed constant c, but this is not sufficient to prove that kn-*co.
Next we ask: How fast does kn go to infinity? We conjeeture that

kjQogn)1 ~E -*oo for every e > 0, (9)

but

kn/logn-+0. (10)

Conjeeture (2) is not strong enough to deduce (9) or (10). Perhaps they can be
deduced from stronger plausible conjeetures.
Let /„ be the largest integer for which

f(n,K)=f(n,ln) (11)

then we still expect that

/Jlog/i-0. (12)

Finally we conjeeture that

f(n, kn)log2n/(n log logn) -> c> 0. (13)

Without unproven conjeetures we cannot even improve (8) to

f(n,kn)log2n/n-^cc. (14

Let F(n,k) denote the number of Solutions of

p-p=2k, pt<n. (15)

Let Kn be the least integer k for which F(n, k) is maximal.
Then

F(n,KJ>c?^. (16)
logz«

In order to prove (16) choose A=px-pm<>\l' n The primes p with pm<p<>n
are divided into cp(A) residue classes (mod_4) with Xsn/logn in each class

s=l,...,cp(A). Herein— +A^)= l-ho(l). Thus the differencespt—pj wherep^pj
belong to the same residue class (mod^f) number
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(^••¦+«W+o(l))^_,(^iy +o(l))^. (17)

Since the number of integers r_; n which are divisible by A as <, n/A it follows from
(17) that one of these integers has at least

<1 +0(1)>^-21^ (,8)

representations (15). Now

——= II fl + -)>cloglog«. (19)
(P(Ä) ,<(l/2)logn\ P-U

By a more careful application of this method we can prove that for any
monotonically increasing f(n), with/(«)-> oo as slowly as we please, there is a

sequence ln<f(n)logn for which

F(n,ln)log2n/n-*oo. (20)

We cannot prove (20) ifwe only assume /„< clogw for some fixed c.
P. Erdös and E. G. Straus, University of California, Los Angeles

Eine Bemerkung zum gleichseitigen hyperbolischen Paraboloid als Bewegfläche bei
Zylinderschrotungen

1. Die kinematische Beschreibung der i.a. oo2 vorhandenen (euklidischen) Zwangläufe,

vermöge deren sich eine Quadrik als Bewegfläche eines Kegelschnitts
erzeugen lässt, ist für den allgemeinen Fall offen [1]. Für das gleichseitige
hyperbolische Paraboloid 0 gab Brauner [2] eine Zylinderschrotung an, bei der 0 durch
eine gleichseitige Hyperbel erzeugt wird. Dies ist bereits die einzige (euklidische)
Zyünderschrotung, bei der sich 0 als Bewegfläche eines Kegelschnitts erzeugen lässt
[5].
Natürlich lassen sich solche Fragen auch für andere Transformationsscharen
behandeln. In der Projektivkinematik kann dieser Problemkreis weitgehendst als

gelöst gelten [4].
Ein neuer Gesichtspunkt ergibt sich durch Heranziehen nicht euklidischer Zwangläufe,

wie etwa bei der Braunerschen Erzeugung der windschiefen (euklidischen)
Böschungsflächen als c-Kanalflächen [3].

2. In diesem Sinne sollen für 0 zwei pseudoeuklidische Erzeugungsweisen
angegeben werden. Wir zeigen: Das gleichseitige hyperbolische Paraboloid lässt sich als
pseudoeuklidische Bewegfläche bei Zylinderschrotungen erzeugen. Der erzeugende
Kegelschnitt ist entweder eine Parabel oder eine gleichseitige Hyperbel.
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Der Beweis ergibt sich durch «Übertragung» der entsprechenden euklidischen
Resultate, was für die Erzeugung durch eine Parabel insofern nicht verwunderlich
ist, als 0 ein pseudoeuklidisches Drehparaboloid ist.
Das gleichseitige hyperbolische Paraboloid 0

a(x2-f) z (1)

wird durch die pseudoeuklidischen Zylinderschrotungen

x x cosht + (y+p) sinht, y xsinht + (y+p)cosht, z= —ap2 + z (2)

als Bewegfläche der Parabel

z ax2, y=0

erzeugt. Dabei ist p p (t) eine willkürliche, nicht konstante Parameterfunktion.
Auch die Braunersche Erzeugung [2] lässt sich übertragen. Offenbar wird die Fläche
(1) durch die pseudoeuklidische Zylinderschrotung

1 x-y x+y z

X=-2WTl^t+-~2 ^-cosh,+ 7rsinh,
1 x-y x+y z

y~ ~ TWT tgh'+—+ —cosh'- VTsmh'

z= —ap2 coshrH t=- sinhr—z coshr (3)
V2

als Bewegfläche der gleichseitigen Hyperbel

x2-y2=p2, z 0

erzeugt.

3. Es bereitet keine prinzipiellen Schwierigkeiten, die Resultate hinsichtlich der
Bahnkurven, linearen Hüllgebilde usw. aus [2, 5] zu übertragen. Wir erwähnen:
a) Die Achsenzylinder der Schrotung (2) sind genau dann kongruent, wenn die
pseudoeuklidische Grundrissbewegung eine symmetrische Parabelrollung ist. Die
Darstellung kann so gewählt werden, dass

p atgh— mit O^aeR

gilt, ß) Die Zylinderschrotung (2) hat genau dann pseudoeuklidische Drehzylinder
als Achsenflächen, wenn die Grundrissbewegung invers zur Hyperbelbewegung - dem
pseudoeuklidischen Analogon der Ellipsenbewegung - ist. y) Die Grundrissbewegung
der Zylinderschrotung (3) ist invers zur Hyperbelbewegung.

Jürgen Tölke, Salvador
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On the commutativity of two projections

The purpose of this note is the proof of the

Proposition. For any two projections P and Q in a Hilbert space H, the commutativity

relation PQ=QP is equivalent to PQP= QPQ.

Before we enter into the proof, let us make a few remarks. Obviously, the first
equality implies the second. The reverse implication means that for PQ=QP it
is sufficient that PQ has the same value for Px as QP has for Qx, for any xeH
In other words, it permits an implication from the equality of positive, self-adjoint
Operators PQP and QPQ to prima facie more general Operators PQ and QP. Putt-
ing A=PQ, A* QP, the proposition may be restated as: A=A* is equivalent to
AA*=A*A, i.e. for A PQ self-adjointness and normality are the same.
Finally, we remark that for one-dimensional projections P and Q, PQP'= QPQ
even implies P= Q (unless PQ 0).
We need the following

Lemma. Let A and B be bounded linear Operators in H such that

(l)AB BA, (2) A2 B2 and (3) (A-B)=-(A-B)*.

Then (4) E commutes with any transformation that commutes with A — B, and
(5) A — (2E—I)B, where E is the orthogonal projection onto the null-space
M=N(A-B)ofA-B.

Proof of the lemma (cf. [1], p.424, theorem 23.3; note that in our proof A and B
need not be self-adjoint!): Suppose that C commutes with A — B. This implies
C(M)cM.
From

C(A-B)=(A-B)C=>(A-B)*C* C*(A-B)*
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and (3), we have

(A-B)C* C*(A-B),

which implies C* (M) c M. Therefore C reduces M, i.e. CE=EC, proving (4).
From (1) and (2) we have

(A-B)(A + B)=A2-B2 0,

i.e.(6)E(A + B)=A + B.
For any vector z e H write z x+y, where x eM and y e M1. It follows

E(A-B)z E(A-B)x + E(A-B)y.

The first term on the right is zero, because xeM=N(A — B) and the second is zero,
because E commutes with A — B, according to (4).
Hence

(7) E(A-B) Q.

Combining (6) and (7), gives E(A + B)-E(A-B) A + B or A 2EB-B
(2E-I)B, which proves (5).

We wish to apply the lemma for A PQ, B QP.
Assumption (1) is the same as PQP= QPQ: Using this, and observing

(8) (PQ)2 PQPQ PPQP=PQP=QPQ (QP)2,

we note that (2) is fulfilled.
Moreover, (PQ- QP)* QP-PQ -(PQ- QP), which is assumption (3) of our
lemma.
Proof of the proposition: From (PQP)2 PQPPQP= PQPQP PQQPQ (PQ)2
and (8), we see that PQP= QPQ must be a projection. Writing MP and MQ for the

ranges of P and Q, and denoting by v and A the closed span and the intersection
of subspaces in H, we claim that PQP is the projection onto MP/\MQ.
This may be seen from

PQP=(PQP)2 (PQ)2, i.e. PQP=(PQ)2k, k>l,
and from the fact that the projection onto MpaMq is given by the limit of(PQ)n,
«-? oo.

A more direct proof proceeds as follows:
a) for z e MP A Mq obviously PQPz=z;
b) for ze (MpaMq)±=Mp- vAf£ write z limn(xn+yn), where xneMj> and

yneM%, so that PQPz=limn(PQPxn + PQPyn)=limn(0+QPQyn)=0, using con-
tinuityofPßP.
We prove now PQ QP.
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IfzeMPA MQ, trivially PQPz QPz z-z 0.

Ifz e Mp1 v M^, write z lim (xn +yn), as above.

Using (5) of our lemma gives

PQ=(2E-I)QP and QP=(2E-I)PQ

where E is the orthogonal projection onto

N(PQ-QP)=N(QP-PQ)

(note that the assumptions of the lemma are symmetrical in A,B).
Therefore, using continuity,

PQz limn(PQxn + PQyn)=limnPQxn limn(2E-I)QPxn 0,

similarly QPz 0. Hence, PQ and QP coincide on H.

Remarks:
a) We note that the above proof of PQ QP did not explicitly make use of the
fact that PQP is the projection onto MpaMq (see first half of the proof); indeed,
this follows immediately from PQ= QP. We have given a slightly redundant proof
in order to show where the lemma enters the argument.

b) It should be noted that the proposition is a special case of a rather deep theorem
by Fuglede-Putnam-Rosenblum (cf. [3], p.300, theorem 12.16, for Rosenblum's
proof):
Assume that A,B,T are bounded transformations on H,A and B are normal, and
AT= TB. Then_4*r= TB*.
Taking A PQ, B QP, T= P yields our proposition.

c) This note was suggested by Mittelstaedfs work on quantum probabihty theory
([2], see esp. p. 210-218), where the probabihty of a yes-no-event represented by
P occurring after the event given by Q is defined by w9 (P,Q)= (<p,PQP<p}, cp de-
noting the State of the physical system. The proposition says that if w(p(P,Q)

w(p(Q,P) for all states, then there can be no interference, i.e. P and Q commute.
Wulf Rehder, TU Berlin
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