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Kleine Mitteilungen

Remarks on the differences between consecutive primes

In problem 654, Journal of Recreational Mathematics, Harry Nelson asks: “What
is the most likely difference between consecutive primes?” Here a difference is
‘most likely’ for primes <n if it occurs at least as often as any other difference.
For a discussion see J. Rec. Math. 11, 231.

We first show that a well-known conjecture of Hardy and Littlewood implies
that the most likely difference tends to infinity with n, so that there is no most
probable difference independent of n.
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In Hardy and Littlewood: On the expression of a number as a sum of primes.
Collected Papers of G.H. Hardy, VI, p. 682; they conjecture that the number of
solutions of

pi—pj=2k, pisn, (D
equals
p—1
+o(1
podd

where c is an absolute constant.
Let p; denote the ith prime; then (2) implies that the number of solutions of

Pi+1—Pi=2k,  pis1<n (3)

also is of the form (2). Since every solution of (3) is a solution of (1) it is clear
that the number cannot be greater than (2). On the other hand if we have a
solution p;—p;=2k of (1) which is not a solution of (3), that is i>;+1, then
we get a triple of primes

pj>» pji+t2u, pi+2k; 1<u<k. @)

From Brun’s method it follows that the number of such triples with p;<n is less
than

3
cen 1] (1_~)<c;‘10;3n (e>0) 5)

for each fixed u, and hence <c{n /log®n for all triples in (4). Inequality (5) follows
from the fact that the primes satisfying (4) exclude three residue classes (mod p) for
p>k. Since the bound (5) is small compared to the estimate (2) it follows that
(2) is also an estimate for the number of solutions in (3).

Now (2) implies that the most likely difference between consecutive primes goes
to infinity with n. Denote the number of solutions of (3) by f(n,k) and let k, be
the minimum value of k for which f(n, k) is maximal.

Brun’s method gives the well-known relation

f(n,k)<cinflogin ©)

In view of the divergence of [ [ (p — 1)/(p — 2) estimates (2) and (6) imply that
kn) / o @)
-
f(n’ n logzn @

and (6), (7) imply k,— oo with n.
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Of course the prime number theorem implies
n
f(n, k) Eg2—n>c>0 ®)

for some fixed constant ¢, but this is not sufficient to prove that k,, »o0.
Next we ask: How fast does &, go to infinity? We conjecture that

k,/(logn)!~¢—w forevery &>0, 9)
but

k,/logn—0. (10)
Conjecture (2) is not strong enough to deduce (9) or (10). Perhaps they can be

deduced from stronger plausible conjectures.
Let /, be the largest integer for which

fnk)=f(n,1,) (11)
then we still expect that

I,/logn—0. (12)
Finally we conjecture that

f(n,k,)log?n/(nloglogn)—c>0. (13)
Without unproven conjectures we cannot even improve (8) to

f(n,k,)log?n/n—oo. (14

Let F(n,k) denote the number of solutions of

pi—pi=2k,  pi<n. (15)
Let K, be the least integer k for which F(n, k) is maximal.
Then
nloglogn
F(n,Kn)>CMI6‘g“2-;l—"—' (16)

In order to prove (16) choose A=p,---p,<\ n. The primes p with Pm<pPs<n
are divided into ¢ (4) residue classes (modA) with A,n/logn in each class
s=1,...,p (4). Here 4, + --- + 4, )= 1+0(1). Thus the differences p;— p; where p;, p;
belong to the same residue class (mod 4) number
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2 1 n2
Bt e+ A2 1)) — ( ) :
(41 swrtoM) sz o) 51 (17)

Since the number of integers < n which are divisible by 4 is <n/4 it follows from
(17) that one of these integers has at least

A n
I+o(1 -
(1+o(D) ¢ () 2logn (18)
representations (15). Now
A 1
= H (1+——-“)> logl . 19
@A) i<d/2)10gn pi—1 cloglogn (19)

By a more careful application of this method we can prove that for any
monotonically increasing f(n), with f(n)—oco as slowly as we please, there is a
sequence /,<f(n)logn for which

F(n,1)log’n/n—ow . (20)

We cannot prove (20) if we only assume /, < clogn for some fixed c.
P. Erdés and E. G. Straus, University of California, Los Angeles

Eine Bemerkung zum gleichseitigen hyperbolischen Paraboloid als Bewegfliche bei
Zylinderschrotungen

1. Die kinematische Beschreibung der i.a. co? vorhandenen (euklidischen) Zwang-
laufe, vermoge deren sich eine Quadrik als Bewegfliche eines Kegelschnitts
erzeugen lisst, ist fiir den allgemeinen Fall offen [1]. Fiir das gleichseitige hyper-
bolische Paraboloid @ gab Brauner [2] eine Zylinderschrotung an, bei der @ durch
eine gleichseitige Hyperbel erzeugt wird. Dies ist bereits die einzige (euklidische)
Zylinderschrotung, bei der sich @ als Bewegfliache eines Kegelschnitts erzeugen lasst
[5]

Natiirlich lassen sich solche Fragen auch fiir andere Transformationsscharen
behandeln. In der Projektivkinematik kann dieser Problemkreis weitgehendst als
gelost gelten [4].

Ein neuer Gesichtspunkt ergibt sich durch Heranziehen nicht euklidischer Zwang-
ldaufe, wie etwa bei der Braunerschen Erzeugung der windschiefen (euklidischen)
Boschungsflidchen als c-Kanalfldchen [3].

2. In diesem Sinne sollen fiir @ zwei pseudoeuklidische Erzeugungsweisen ange-
geben werden. Wir zeigen: Das gleichseitige hyperbolische Paraboloid ldsst sich als
pseudoeuklidische Bewegfliche bei Zylinderschrotungen erzeugen. Der erzeugende
Kegelschnitt ist entweder eine Parabel oder eine gleichseitige Hyperbel.
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Der Beweis ergibt sich durch «Ubertragung» der entsprechenden euklidischen
Resultate, was fiir die Erzeugung durch eine Parabel insofern nicht verwunderlich
ist, als @ ein pseudoeuklidisches Drehparaboloid ist.

Das gleichseitige hyperbolische Paraboloid &

a(X-j)=1z M
wird durch die pseudoeuklidischen Zylinderschrotungen
x=xcosht+(y+pu)sinht,  y=xsinht+(y+pu)cosht, z=—au’+z ()
als Bewegfliche der Parabel
2

z=ax-, y=0

erzeugt. Dabei ist u = u (¢) eine willkiirliche, nicht konstante Parameterfunktion.
Auch die Braunersche Erzeugung [2] ldsst sich iibertragen. Offenbar wird die Fliche
(1) durch die pseudoeuklidische Zylinderschrotung

1 xX—y x+y z
X= — ———— tght — ht+ —— si
x rav2 ghr+ ) > oS t+\/751nht
1 - +
= _thht+ xzy 4 x2y cosht—~\/—27— sinht
+
2= —ap® cosht+ )i/_ZZ sinhz— z cosht 3)

als Bewegfliache der gleichseitigen Hyperbel
xX2—yP=p2  z=0
erzeugt.

3. Es bereitet keine prinzipiellen Schwierigkeiten, die Resultate hinsichtlich der
Bahnkurven, linearen Hiillgebilde usw. aus [2, 5] zu ibertragen. Wir erwidhnen:
a) Die Achsenzylinder der Schrotung (2) sind genau dann kongruent, wenn die
pseudoeuklidische Grundrissbewegung eine symmetrische Parabelrollung ist. Die Dar-
stellung kann so gewihlt werden, dass

t

5 mit O0#aeR

u=a tgh

gilt. ) Die Zylinderschrotung (2) hat genau dann pseudoeuklidische Drehzylinder
als Achsenflichen, wenn die Grundrissbewegung invers zur Hyperbelbewegung - dem
pseudoeuklidischen Analogon der Ellipsenbewegung - ist. y) Die Grundrissbewegung
der Zylinderschrotung (3) ist invers zur Hyperbelbewegung.

Jurgen Tolke, Salvador
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On the commutativity of two projections
The purpose of this note is the proof of the

Proposition. For any two projections P and Q in a Hilbert space H, the commuta-
tivity relation PQ = QP is equivalent to PQP= QPQ.

Before we enter into the proof, let us make a few remarks. Obviously, the first
equality implies the second. The reverse implication means that for PQ= QP it
is sufficient that PQ has the same value for Px as QP has for Qx, for any x e H.
In other words, it permits an implication from the equality of positive, self-adjoint
operators PQP and QPQ to prima facie more general operators PQ and QP. Putt-
ing A=PQ, A*=QP, the proposition may be restated as: A=A4* is equivalent to
AA*=A*A,i.e. for A= PQ self-adjointness and normality are the same.

Finally, we remark that for one-dimensional projections P and Q, PQP=QPQ
even implies P= Q (unless PQ=0).

We need the following

Lemma. Let A and B be bounded linear operators in H such that
(1) AB=BA, (2) A’=B? and (3) (A—B)=—(4— B)*.

Then (4) E commutes with any transformation that commutes with 4 —B, and
(5) A=QRE-I)B, where E is the orthogonal projection onto the null-space
M=N(A—-B)ofA—B.

Proof of the lemma (cf. [1], p.424, theorem 23.3; note that in our proof A and B
need not be self-adjoint!): Suppose that C commutes with 4 — B. This implies
CM)cM.

From

CA—B)=(A—-B)C=A—-B)*C*=C*(A4—-B)*
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and (3), we have
(A—B)C*=C*(4—B),

which implies C* (M) < M. Therefore C reduces M, i.e. CE= EC, proving (4).
From (1) and (2) we have

(A— B)(A+ B)=A2— B?=0,

i.e. (6) E(A+B)=A+B.
For any vector z € H write z=x+ y, where x € M and ye M+ It follows

E(A—B)z=E(A-B)x+EA—B)y.

The first term on the right is zero, because xe M = N (4 — B) and the second is zero,
because E commutes with 4 — B, according to (4).
Hence

(7) E(A—B)=0.

Combining (6) and (7), gives E(A+B)—E(A—-B)=A+B or A=2EB—B
= (2 E—I) B, which proves (5).

We wish to apply the lemma for 4 = PQ, B= QP.

Assumption (1) is the same as PQP= QPQ: Using this, and observing

(8) (PQ)=PQPQ=PPQP=PQP=QPQ=(QP),

we note that (2) is fulfilled.

Moreover, (PQ— QP)*=QP—PQ=—(PQ— QP), which is assumption (3) of our
lemma.

Proof of the proposition: From (PQP)*=PQPPQP=PQPQP=PQQPQ=(PQ)*
and (8), we see that PQP= QPQ must be a projection. Writing Mp and M, for the
ranges of P and Q, and denoting by v and A the closed span and the intersection
of subspaces in H, we claim that PQP is the projection onto MpA M,

This may be seen from

PQP=(PQPY?=(PQy, ie. PQP=(POP*, k=>1,

and from the fact that the projection onto Mp A M, is given by the limit of (PQ)",
n—oo.

A more direct proof proceeds as follows:

a) forze Mp A M obviously PQPz=z;

b) for ze (MpAMy)*-=M¢v M} write z=lim,(x,+y,), where x,eMp and
yn€My, so that PQPz=lim,(PQPx,+ PQPy,)=lim,(0+ QPQy,)=0, using con-
tinuity of PQP.

We prove now PQ=QP.
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Ifze MpA M, trivially PQPz=QPz=z—2z=0.
Ifze Mp v Mg, write z=lim (x, + y,), as above.
Using (5) of our lemma gives

PQ=QRE-DNQP and QP=QRE-IPQ
where E is the orthogonal projection onto

N(PQ—QP)=N(QP-PQ)

(note that the assumptions of the lemma are symmetrical in 4, B).
Therefore, using continuity,

PQz=1im, (PQx,+ PQy,)=lim, PQx,=lim,(2E—I)QPx,=0,
similarly QPz=0. Hence, PQ and QP coincide on H.

Remarks:

a) We note that the above proof of PQ= QP did not explicitly make use of the
fact that PQP is the projection onto MpA M, (see first half of the proof); indeed,
this follows immediately from PQ= QP. We have given a slightly redundant proof
in order to show where the lemma enters the argument.

b) It should be noted that the proposition is a special case of a rather deep theorem
by Fuglede-Putnam-Rosenblum (cf. [3], p.300, theorem 12.16, for Rosenblum’s
proof):

Assume that 4, B, T are bounded transformations on H,4 and B are normal, and
AT=TB. Then A*T=TB*.

' Taking A= PQ, B= QP, T= P yields our proposition.

c) This note was suggested by Mittelstaedt’s work on quantum probability theory
([2], see esp. p.210-218), where the probability of a yes-no-event represented by
P occurring after the event given by Q is defined by w, (P,Q)={¢,PQP¢p), ¢ de-
noting the state of the physical system. The proposition says that if w,(P,Q)
=w, (Q, P) for all states, then there can be no interference, i.e. P and Q commute.

Waulf Rehder, TU Berlin
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