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Naturwissenschafter und sprach vortrefflich ihre Sprache. Sehr augenfällig wurde
dies auch in seinem Beratungsdienst, den er uneigennützig und stets hilfsbereit für
die Kollegen aus den Naturwissenschaften unterhielt.» - Und diese intensive,
freundliche Hilfsbereitschaft dürfte wohl allen jenen, die ihm je näherkommen
konnten - neben seinem reichen wissenschaftlichen Lebenswerk - unvergesslich
bleiben. Die Kraft zu diesem Einsatz mag er nicht zuletzt auch immer wieder in
seiner verständnisvollen Familie gefunden haben. Ihr sei auch an dieser Stelle zum
jähen Tode von Professor Batschelet herzliches Beileid ausgedrückt. - Kurz vor
seinem plötzlichen Hinschied hat er übrigens das Manuskript seines letzten Buches
«Circular Statistics with apphcations to biology» dem Verlag Academie Press

eingereicht; ein weiteres Werk, das für den weitgespannten Kreis seiner Interessen
und seine Darstellungsgabe zeugen wird! Robert Ineichen

Gleichungen vom Dehn-Sommervilleschen Typ für nicht
beschränkte konvexe Polytope und für Raumzerlegungen
durch Hyperebenen

1. Einleitung

In seiner 1968 erschienenen Arbeit [4] hat H. Hadwiger gezeigt, dass die Eulersche
Charakteristik für Polyeder im n-dimensionalen Raum Rn als reellwertige Funktion
X mit den Eigenschaften

x(PvQ)+x(PnQ)=X(P)+x(Q) 0)

und

X((f>) 0 und *(P)=1, falls P^cj), konvex und kompakt ist, (2)

definiert werden kann. Der Nachweis der Eindeutigkeit ist aufgrund dieser
Postulate naheliegend. Der Existenzbeweis beruht auf der Idee der Schnittrekursion,
die Hadwiger schon 1955 in [2] verwendet hatte.
In der Folge werden in [4] mehrere Anwendungen der Eulerschen Charakteristik
gezeigt, unter anderem die von Hadwiger in diesem Zusammenhang unabhängig
gefundenen Dehn-Sommervilleschen Gleichungen abgeleitet ([4], Formel (8.5)).
In [16] habe ich, ausgehend von Problemen der Computergraphik, einen allgemeineren

als den üblichen Polyederbegriff eingeführt, nach dem ein Polyeder weder

abgeschlossen noch beschränkt zu sein braucht (die Polyeder im üblichen Sinn sind
die kompakten unter diesen allgemeineren). In [17] wurde sodann gezeigt, dass die
Eulersche Charakteristik auf die Menge dieser allgemeineren Polyeder fortgesetzt
werden kann. Damit stellt sich die Frage, ob frühere, sich auf kompakte Polyeder



108 W Nef Gleichungen vom Dehn-Sommervilleschen Typ fur nicht beschrankte konvexe Polytope

beziehende Anwendungen auf den allgemeineren Fall übertragen werden können.
Dies für die Dehn-Sommervilleschen Gleichungen zu tun, ist der erste Gegenstand
des vorliegenden Beitrages, indem diese Gleichungen auf nicht notwendig
beschränkte, abgeschlossene konvexe Polyeder übertragen werden. Dass es sich dabei
nicht um die übliche, sich auf simpliziale Polyeder beziehende Formulierung
handeln kann, hegt auf der Hand. Vielmehr stellen wir nach Hadwigers Vorbild
an die betreffenden Polyeder die untenstehende Forderung (10). Auch sonst halten
wir uns an Hadwigers Gedankengang, müssen aber die Bezeichnungen und gewisse
Einzelheiten der allgemeineren Situation anpassen. Vgl. im übrigen die Fussnote in
[4],S.128.
Anschüessend werden wir analoge Überlegungen auf Raumzerlegungen durch
endlich viele Hyperebenen («in allgemeiner Lage») anwenden und gewisse
Relationen zwischen den Anzahlen px, ct und b, der Ebenen, Zellen bzw.
beschränkten Zellen der verschiedenen Dimensionen ie{0, ...,n} finden.

2. Grundbegriffe

Als Polyeder im Rn bezeichnen wir jede Menge PczRn, die aus endlich vielen
offenen (oder auch: abgeschlossenen) Halbräumen durch Bildung von
Durchschnitten und Komplementärmengen, und damit auch von Vereinigungen und
Differenzen, erzeugt werden kann. Endliche Durchschnitte und Vereinigungen,
Komplementärmengen und Differenzen von Polyedern sind wieder Polyeder.
Beispiele von Polyedern sind alle offenen und alle abgeschlossenen Halbräume,
alle ((n — 1 )-dimensionalen) Hyperebenen, alle Ebenen (d.h. nichtleeren
Durchschnitte von Hyperebenen), alle endlichen Vereinigungen von solchen, der ganze
Rn und die leere Menge <f>, sowie alle (kompakten) Polyeder im üblichen Sinn.
Wie in [17] gezeigt worden ist, existiert auf der Menge dieser allgemeineren Polyeder

eine Eulersche Charakteristik, die durch (1) und, anstelle von (2), die
Forderung

#(<£)=0 und
X (P)=(— l)dimP, wenn P^</>, relativ offen und konvex ist, (3)

eindeutig bestimmt ist.
Sei nun P^cß ein abgeschlossenes konvexes Polyeder, T(P)={teRn: P+t P] der
Unterraum der Decktranslationen von P (vgl. [13], S.24, Ziffer 4), M ein zu T(P)
komplementärer Unterraum und Q PnM. Wir nennen P beschränktartig, wenn Q
beschränkt, wenn also P «prismatisch» mit beschränktem «Querschnitt» ist. Nach
[17], Satz 4, gilt dann

/pw R-l)dimr(p), wenn P beschränktartig ist,
x( } 10, wenn P nicht beschränktartig ist. (4)

Insbesondere ist also x (P)= 1 für beschränkte, abgeschlossene und konvexe P^</>,
woraus übrigens folgt, dass x wirklich eine Fortsetzung von Eulers Charakteristik
kompakter Polyeder ist.
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Jedes abgeschlossene konvexe Polyeder Pj= cj> kann in der Form

P=MnclosF+n--nclosF+, wo P^F^ (pe{l, ...,s}), (5)

dargestellt werden ([16], Satz 7;2). Hier bedeutet M eine Ebene, die F+ sind offene
Halbräume, _F£ ist die begrenzende Halbebene von jF+, und «clos» bezeichnet die
abgeschlossene Hülle. Aus (5) folgt für die affine Hülle von P

äffP=M (6)

([16], Satz 7;2). Die Seiten des Polyeders (5) sind die nichtleeren unter den
Durchschnitten

S=MnF^n --ni^, wo alle ope{0, +} (7)

sind. Sie sind also relativ offene konvexe Polyeder ([16], Sätze 7;4 und 7;8). Aus
(7) folgt

affS=Mn p| F*. (8)
op 0

Als Dimension von S bezeichnen wir die Dimension dieser Ebene. Nach [16], Satz
6;3 (und im konvexen Fall leicht direkt einzusehen) ist P die disjunkte Vereinigung
aller seiner Seiten. Bezeichnen wir mit fk die Anzahl der /c-dimensionalen Seiten,
so wird also nach (1) und (3)

x(P)=ti-Wk- (9)
k 0

Ist P beschränkt und ^c/>, also nach (4) /(_?)= 1, so ist dies der Satz von Euler-
Schläfli.

3. Dehn-Sommervillesche Gleichungen

Das abgeschlossene konvexe Polyeder P gemäss (5) soll nun in dem Sinne nicht
singulär sein, dass es die beiden folgenden Bedingungen erfüllt:

Zu jeder /-dimensionalen Seite S von P existieren genau (n — i) Indizes/?,
für die Sc F°p gilt (/e{0,..., «}). (10)

PisX geradenfrei (d.h. es existiert keine (1-dimensionale) Gerade,
die ci>wäre,vgl.[13],S.24,Ziffer3ff.). (11)

Aus (11) folgt, dass auch die abgeschlossene Hülle clos S jeder Seite S von _P



110 W. Nef: Gleichungen vom Dehn-Sommervilleschen Typ für nicht beschrankte konvexe Polytope

geradenfrei und damit r(closS)={0} ist. closS ist also entweder beschränkt oder
nicht beschränktartig, und nach (4) gilt

x(closS)= {*; wenn S beschränkt,
wenn S unbeschränkt ist, (12)

für jede Seite S von P.
Aus (10) folgt vorerst M=affP=Rn, d.h. dass P ein eigentliches Polyeder in R" ist.
Sodann hat (10), falls 0^ z^y^ n ist, zur Folge:

Zu jeder /-dimensionalen Seite S von P existieren genau j Seiten S*
der Dimensiony, für die Sc clos S* ist. ^n"^ (13)

Dies wird im Anhang bewiesen.

Die Summe Ysdims*=jX(cl°sS*) *st einerseits nach (12) gleich der Anzahl bj der
beschränkten unter deny-dimensionalen Seiten von P, anderseits nach Hadwiger [4],
Formel (6.1)1) gleich J\,r^xX(KX wo H^ie Vereinigung aller Durchschnitte zu je r
der Mengen clos 5* (mit dimS* =j) ist (nur endlich viele von den J#rsind ^ cß). Wir
haben also:

t>j=Zx(K) Qe{0,...,n}). (14)
r>X

Nach [16], Sätze 7;4 und 7;8, ist V>r die Vereinigung gewisser Seiten von P. Ist S

eine Seite und dim S=i, so gilt Sc Frnach (13) genau dann, wenn r^( ist.
\n-jj

Setzen wir I(r,j)= li:r^l >, so folgt also aus (1), (3) und (14) (die Seiten von P

sind relativ offene konvexe Polyeder, sowie paarweise disjunkt)

V=Z E (-i)'/„
r^X iel(rj)

wo/f die Anzahl der /-dimensionalen Seiten von P ist. Nach einfacher Umformung
erhalten wir

*,= I(-l)'(W~'.y<> </e{0,...,n}). (15)

Dies ist die gesuchte Verallgemeinerung des Dehn-Sommervilleschen Gleichungssystems.

Es gestattet, aus den Anzahlen/ der dimensionsweise zusammengefassten
Seiten von P die entsprechenden Anzahlen bj der beschränkten Seiten zu berechnen.
Dabei sei daran erinnert, dass sich die Gültigkeit von (15) auf die abgeschlossenen

1) Diese gilt auch in unserem allgemeineren Fall, was in Analogie zu [4] mit Hilfe der Schnittrekursion
leicht zu beweisen ist.
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konvexen Polyeder erstreckt, die (10) und (11) erfüllen (und damit insbesondere
eigentlich sind).
Mit Hilfe elementarer kombinatorischer Relationen rechnet man leicht nach, dass
die Matrix der Koeffizienten in (15) zu sich selber invers ist. Es gilt also auch

/;=S(-iy(W '.W (J'e{0,...,n
j_=o \n—j/

})• 06)

4. Raumzerlegungen durch Hyperebenen

Seien F°x, ...,FQmcRn Hyperebenen. Das von ihnen erzeugte Netz sJl ist die Menge
aller Ebenen, die Durchschnitte gewisser von den F** sind, also in der Form

#/=(!*?. wo /c{l,...,w}, (17)
pe!

dargestellt werden können. Insbesondere ist (mit I=(ß) R"es#. Wir nehmen an, dass
sich die m Hyperebenen «in allgemeiner Lage» befinden, d.h. dimNf=n — card/,
wenn card I^n, und Nj=cß, wenn card/>« ist. Aus dieser Annahme folgt
offensichtlich:

Sei Ne)ft, dimN=i und i^j^n. Dann existieren genau!
\n-jj

Netzebenen N* der Dimensiony, für die NeN* gilt. (18)

Mit F£ und Fp~ (in beliebiger Zuordnung) bezeichnen wir die beiden durch F°p

bestimmten offenen Halbräume. Elementarpolyeder oder Zellen des Netzes sft

nennen wir die nichtleeren unter den Durchschnitten

m

£=f|^^ wo alle ope{-,0, + } sind. (19)
p=X

Sie sind relativ offene konvexe Polyeder, und aus (19) folgt

aff£= p| F°p, also affEeft, (20)
ap 0

und

m
cios£= n d°s ^ (2i>

p=X

([16], Abschnitt 2.5 und Satz 7;4).
Die Zellen, die Teilmengen einer Netzebene _V sind, bilden eine Partition von N;
insbesondere bilden alle Zellen eine Partition des Rn.
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Dass Gleichungen vom Dehn-Sommervilleschen Typ auch für Netze der hier
betrachteten Art bestehen, ist von verschiedenen Autoren gezeigt worden; vgl.
dazu [13], Abschnitt 18.1. Unseres Wissens neue Relationen dieser Art erhalten wir,
indem wir die Methode von Abschnitt 3 in zwei Varianten auf ein Netz s#

anwenden.

4.1. Sei O^j^n, 9?. die Menge dery-dimensionalen Netzebenen und
t:=Y,N*eKjX(N*)- Da Jede Ebene ein relativ offenes konvexes Polyeder ist, wird
nach (3) mit py.=card SJ^ (insbesondere pn= 1)

/=(-iy_y (22)

Nach der bereits verwendeten Formel (6.1) in [4] ist anderseits

'-S*(*9, (23)
r^X

wo V?r diesmal die Vereinigung aller Durchschnitte zu je r der Netzebenen aus s#y

bedeutet. Ist /<y und Ne 9?„ so ist nach (18) genau dann NcV3,., wenn r^l ist.

Somit ist Vr die (disjunkte) Vereinigung aller Zellen E, für die

dimi_e/(r,y):=</:r^f \\ gilt. Bezeichnen wir mit ct die Anzahl der /-dimensionalen

Zellen, so wird also nach (1), (3) und (23):

>=E X (-l)^n und mit (22):
r^X iel(r,j)

(-iyft-t <-!)'(:;>„ »4)

oder

Pj-ti-W+'i""')^ Qe{0,...,n}). (25)

Die Koeffizienten der rechten Seite von (24) sind dieselben wie in (15). Schon an
jener Stelle wurde bemerkt, dass die von ihnen gebildete Matrix zu sich selber invers
ist. Es gilt also auch

Cj-t(a~')p,, 0s{O,...,»}). (26)
,=0 vi —JJ
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4.2. Wir setzen jetzt voraus, dass die Anzahl m der Netzhyperebenen ^ n ist, womit
wir erreichen, dass (12) (mit E anstelle von S) für alle Zellen E gilt.
Mit G? bezeichnen wir die Menge aller Zellen E* des Netzes s# mit dim E* =j und
setzen /:=_>],^^./(closis*). Nach (12) ist einerseits

t bf=Anzahl der beschränkten unter den E* e&j, (27)

anderseits gilt wieder (23), wo aber jetzt J# die Vereinigung aller Durchschnitte zu
je r der Mengen closis* (mit E* e©y) bedeutet. Aus (19), (20) und (21) folgt, dass
V>r die Vereinigung gewisser Zellen E mit dim E^j ist. Im Anhang werden wir
beweisen:

Zu jeder Zelle E e (5, existieren genau 2J~l Zellen E* e QJ9 für die
EcclosE* gilt (O^i^j^n). \n-jJ ^8)

In Analogie zu (24) folgt deshalb mit (27)

brY.(-\)l(n~l)2J-lCl, (je{0,...,«}). (29)
,-0 \n-jj

Auch dieses Gleichungssystem hat, wie man leicht verifiziert, die Eigenschaft,
dass seine Koeffizientenmatrix zu sich selber invers ist, weshalb auch gilt

crti-V^1)*-*^, (je{0,...,n}). (30)

Ergänzt man den Rw mittels einer «uneigentlichen» Hyperebene zum projektiven
Raum Pn, so verschmelzen je zwei unbeschränkte Zellen des R" zu einer einzigen
Zelle des Pn. Die Anzahl d% der /-dimensionalen Zellen im Pn ist deshalb (bt + ct)/2.
Durch Addition von (29) und (30) erhält man somit

dJ=i(-lY(n~l)v-tdn (je{0,...,n}), (31)
3 ,-0 \n-jj

eine Gleichung, die bei Grünbaum [13], S. 392, zu finden ist.

4.3. Aus (25), (26) und (29), (30) können direkte Beziehungen zwischen denpl und
den bj gewonnen werden. Die einfach abzuleitenden Resultate sind

bj=i(-iy(nnZl)p>> Qe{0,...,n}), (32)

Prt(-lY(l~Jj)bn (/e{0,...,«}). (33)
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5. Anhang

Wir haben noch (13) und (28) zu beweisen. Da die Beweise fast wörtlich
übereinstimmen, führen wir denjenigen für (28) aus, unter Hinweis auf die wesentlichen
Unterschiede im Beweis von (13).

5.1. Sei Ec: clos E* (also auch affEc äffE*), dim E=i und dim E*=j. Es folgt, dass
die der Form (19) entsprechende Darstellung von E* aus derjenigen von E dadurch
hervorgeht, dass gewisse op, die =0 sind, durch «+» bzw. «—» (für (13): nur «+»!)
ersetzt werden. Deren Anzahl ist (j—i).

5.2. Sei

eine /-dimensionale Zelle. Es entstehe E*, indem in (34) von den Vorzeichen

ox,...,on_l (die alle =0 sind) deren (j—i) beliebige nach Belieben in «+» oder «-»
(für (13): nur «+»!) verwandelt werden. In 5.3 werden wir zeigen, dass E* ^ cf>, also
eine Zelle der Dimensiony ist. Ferner ist (vgl. (21)) Zscclosis*. Zusammen mit 5.1

folgt daraus (28) (bzw. (13)) unmittelbar.

5.3. Es genügt zu beweisen, dass

^^••¦n^^n^n^Vn-n^^ (35)

ist für ö-n_,= «+» und für on_j= «—» (für (13): nur «+»). Wir setzen

G:=^n...n^_z_1n^.7^in-..ni^. (36)

Wegen EcG ist G^cß. Wir haben zu zeigen:

E* GnF%n_-<?cf> für on_t=«+» und =«-» (für (13): nur«+») (37)

Vorerst ist G<£F°n_l. Andernfalls wäre nämlich E=G, im Widerspruch zu dim_E=i,
dimG=/+ 1. Da"(? relativ offen und GnF°n_=E^<ß ist, folgt (37) nach [16], Satz
1.3;6.

Walter Nef, Universität Bern
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Kleine Mitteilungen

Remarks on the differences between consecutive primes

In problem 654, Journal of Recreational Mathematics, Harry Nelson asks: "What
is the most likely difference between consecutive primes?" Here a difference is
'most likely* for primes <* n if it occurs at least as often as any other difference.
For a discussion see J. Rec. Math. 11,231.
We first show that a well-known conjeeture of Hardy and Littlewood implies
that the most likely difference tends to infinity with n, so that there is no most
probable difference independent of n.


	Gleichungen vom Dehn-Sommervilleschen Typ für nicht beschränkte konvexe Polytope und für Raumzerlegungen durch Hyperebenen

