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Naturwissenschafter und sprach vortrefflich ihre Sprache. Sehr augenfillig wurde
dies auch in seinem Beratungsdienst, den er uneigenniitzig und stets hilfsbereit fiir
die Kollegen aus den Naturwissenschaften unterhielt.» - Und diese intensive,
freundliche Hilfsbereitschaft diirfte wohl allen jenen, die ihm je nidherkommen
konnten - neben seinem reichen wissenschaftlichen Lebenswerk - unvergesslich
bleiben. Die Kraft zu diesem Einsatz mag er nicht zuletzt auch immer wieder in
seiner verstindnisvollen Familie gefunden haben. Ihr sei auch an dieser Stelle zum
jdhen Tode von Professor Batschelet herzliches Beileid ausgedriickt. - Kurz vor
seinem plotzlichen Hinschied hat er iibrigens das Manuskript seines letzten Buches
«Circular Statistics with applications to biology» dem Verlag Academic Press
eingereicht; ein weiteres Werk, das fiir den weitgespannten Kreis seiner Interessen
und seine Darstellungsgabe zeugen wird! Robert Ineichen

Gleichungen vom Dehn-Sommervilleschen Typ fiir nicht
beschrinkte konvexe Polytope und fiir Raumzerlegungen
durch Hyperebenen

1. Einleitung

In seiner 1968 erschienenen Arbeit [4] hat H. Hadwiger gezeigt, dass die Eulersche
Charakteristik fiir Polyeder im n-dimensionalen Raum R” als reellwertige Funktion
x mit den Eigenschaften

xPUQ)+x(PnQ)=x(P)+x(Q) (1)
und
x(@)=0 und y(P)=1, falls P#¢, konvex und kompakt ist, )

definiert werden kann. Der Nachweis der Eindeutigkeit ist aufgrund dieser
Postulate naheliegend. Der Existenzbeweis beruht auf der Idee der Schnittrekursion,
die Hadwiger schon 1955 in [2] verwendet hatte.

In der Folge werden in [4] mehrere Anwendungen der Eulerschen Charakteristik
gezeigt, unter anderem die von Hadwiger in diesem Zusammenhang unabhingig
gefundenen Dehn-Sommervilleschen Gleichungen abgeleitet ([4], Formel (8.5)).

In [16] habe ich, ausgehend von Problemen der Computergraphik, einen allgemei-
neren als den iiblichen Polyederbegriff eingefithrt, nach dem ein Polyeder weder
abgeschlossen noch beschrinkt zu sein braucht (die Polyeder im iiblichen Sinn sind
die kompakten unter diesen allgemeineren). In [17] wurde sodann gezeigt, dass die
Eulersche Charakteristik auf die Menge dieser allgemeineren Polyeder fortgesetzt
werden kann. Damit stellt sich die Frage, ob frithere, sich auf kompakte Polyeder
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beziechende Anwendungen auf den allgemeineren Fall iibertragen werden konnen.
Dies fiir die Dehn-Sommervilleschen Gleichungen zu tun, ist der erste Gegenstand
des vorliegenden Beitrages, indem diese Gleichungen auf nicht notwendig be-
schrinkte, abgeschlossene konvexe Polyeder iibertragen werden. Dass es sich dabei
nicht um die fiibliche, sich auf simpliziale Polyeder beziehende Formulierung
handeln kann, liegt auf der Hand. Vielmehr stellen wir nach Hadwigers Vorbild
an die betreffenden Polyeder die untenstehende Forderung (10). Auch sonst halten
wir uns an Hadwigers Gedankengang, miissen aber die Bezeichnungen und gewisse
Einzelheiten der allgemeineren Situation anpassen. Vgl. im iibrigen die Fussnote in
[4], S.128.

Anschliessend werden wir analoge Uberlegungen auf Raumzerlegungen durch
endlich viele Hyperebenen («in allgemeiner Lage») anwenden und gewisse
Relationen zwischen: den Anzahlen p, c¢; und b; der Ebenen, Zellen bzw. be-
schrankten Zellen der verschiedenen Dimensionen i€ {0, ..., n} finden.

2. Grundbegriffe

Als Polyeder im R” bezeichnen wir jede Menge PcR” die aus endlich vielen
offenen (oder auch: abgeschlossenen) Halbriumen durch Bildung von Durch-
schnitten und Komplementirmengen, und damit auch von Vereinigungen und
Differenzen, erzeugt werden kann. Endliche Durchschnitte und Vereinigungen,
Komplementirmengen und Differenzen von Polyedern sind wieder Polyeder.
Beispiele von Polyedern sind alle offenen und alle abgeschlossenen Halbriume,
alle ((n—1)-dimensionalen) Hyperebenen, alle Ebenen (d.h. nichtleeren Durch-
schnitte von Hyperebenen), alle endlichen Vereinigungen von solchen, der ganze
R”und die leere Menge ¢, sowie alle (kompakten) Polyeder im iiblichen Sinn.

Wie in [17] gezeigt worden ist, existiert auf der Menge dieser allgemeineren Poly-
eder eine Eulersche Charakteristik, die durch (1) und, anstelle von (2), die
Forderung

x(@#)=0 und
x (P)=(—1)dimP wenn P# ¢, relativ offen und konvex ist, 3)

eindeutig bestimmt ist.

Sei nun P# ¢ ein abgeschlossenes konvexes Polyeder, T(P)={teR". P+t= P} der
Unterraum der Decktranslationen von P (vgl. [13], S.24, Ziffer 4), M ein zu T(P)
komplementédrer Unterraum und Q= P~ M. Wir nennen P beschrinktartig, wenn Q
beschriankt, wenn also P «prismatisch» mit beschrinktem «Querschnitty ist. Nach
[17], Satz 4, gilt dann

(P)= { (= 1)4mT®)  wenn P beschrinktartig ist,
X 0, wenn P nicht beschrinktartig ist. 4

Insbesondere ist also y (P)=1 fiir beschrinkte, abgeschlossene und konvexe P# ¢,
woraus iibrigens folgt, dass y wirklich eine Fortsetzung von Eulers Charakteristik
kompakter Polyeder ist.
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Jedes abgeschlossene konvexe Polyeder P# ¢ kann in der Form
P=MnclosFfn---nclosFf, wo P#F) (pell,...,s}), %)

dargestellt werden ([16], Satz 7;2). Hier bedeutet M eine Ebene, die F sind offene
Halbraume, F" ist die begrenzende Halbebene von F;,“ und «clos» bezelchnet die
abgeschlossene Hiille. Aus (5) folgt fiir die affine Hiille von P

aff P=M (6)

([16], Satz 7;2). Die Seiten des Polyeders (5) sind die nichtleeren unter den Durch-
schnitten

S=MnF{ln---NF%, woalle ¢,e{0, +} ™)

sind. Sie sind also relativ offene konvexe Polyeder ([16], Sitze 7;4 und 7;8). Aus
(7) folgt

affS=Mn [ FY. (®)

Jp=0

Als Dimension von S bezeichnen wir die Dimension dieser Ebene. Nach [16], Satz
6;3 (und im konvexen Fall leicht direkt einzusehen) ist P die disjunkte Vereinigung
aller seiner Seiten. Bezeichnen wir mit f, die Anzahl der k-dimensionalen Seiten,
so wird also nach (1) und (3)

1 (P)= Y (= Dkfy. ©)
k=0

Ist P beschrinkt und # ¢, also nach (4) y (P)=1, so ist dies der Satz von Euler-
Schldfli.

3. Dehn-Sommervillesche Gleichungen

Das abgeschlossene konvexe Polyeder P gemiss (5) soll nun in dem Sinne nicht
singuldr sein, dass es die beiden folgenden Bedingungen erfullt:

Zu jeder i-dimensionalen Seite S von P existieren genau (n— i) Indizes p,
fur die S< F) gilt (i {0, ..., n}). (10)

P ist geradenfrei (d.h. es existiert keine (1-dimensionale) Gerade,
die = P wire, vgl. [13], S. 24, Ziffer 3ff.). (11

Aus (11) folgt, dass auch die abgeschlossene Hiille closS jeder Seite S von P
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geradenfrei und damit 7'(clos S)={0} ist. clos.S ist also entweder beschrinkt oder
nicht beschréinktartig, und nach (4) gilt

(clos §)= { 1, wenn S beschrinkt,
X 10, wenn S unbeschrinkt ist, (12)
firr jede Seite S von P.

Aus (10) folgt vorerst M =aff P=R" d.h. dass P ein eigentliches Polyeder in R” ist.
Sodann hat (10), falls 0 <i<j< nist, zur Folge:
n—i

Zu jeder i-dimensionalen Seite S von P existieren genau (
n—j

) Seiten S$*
der Dimension j, fiir die S < clos S* ist.

(13)

Dies wird im Anhang bewiesen.

Die Summe ) 4 s*=jX (clos S*) ist einerseits nach (12) gleich der Anzahl b; der
beschrinkten unter den j-dimensionalen Seiten von P, anderseits nach Hadwiger [4],
Formel (6.1)!) gleich Z,Zl x (V]), wo Vi die Vereinigung aller Durchschnitte zu je r
der Mengen clos S* (mit dim $* =) ist (nur endlich viele von den V.sind # ¢). Wir
haben also:

bj=;x(w}) (€{0,...,n}). (14)

Nach [16], Sitze 7;4 und 7;8, ist V. die Vereinigung gewisser Seiten von P. Ist S

eine Seite und dim S=1, so gilt S< V7 nach (13) genau dann, wenn r< (n—l,> ist.
n—j

Setzen wir I (r,j)= {i r< (::;) } , so folgt also aus (1), (3) und (14) (die Seiten von P
sind relativ offene konvexe Polyeder, sowie paarweise disjunkt)
bi=72, 2 (=Dif,
rz1 iel(ry)

wo f; die Anzahl der i-dimensionalen Seiten von P ist. Nach einfacher Umformung
erhalten wir

j 3
b, i§=jo(—1)"<:_1',)ﬁ, Gel0, ..., n}). (15)

Dies ist die gesuchte Verallgemeinerung des Dehn-Sommervilleschen Gleichungs-
systems. Es gestattet, aus den Anzahlen f; der dimensionsweise zusammengefassten
Seiten von P die entsprechenden Anzahlen b; der beschrinkten Seiten zu berechnen.
Dabei sei daran erinnert, dass sich die Giiltigkeit von (15) auf die abgeschlossenen

1) Diese gilt auch in unserem allgemeineren Fall, was in Analogie zu [4] mit Hilfe der Schnittrekursion
leicht zu beweisen ist.
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konvexen Polyeder erstreckt, die (10) und (11) erfiillen (und damit insbesondere
eigentlich sind).

Mit Hilfe elementarer kombinatorischer Relationen rechnet man leicht nach, dass
die Matrix der Koeffizienten in (15) zu sich selber invers ist. Es gilt also auch

" J _ it .
jj—'_g,o( 1)(n_j)b,-, (Gefo0,...,n}). (16)

4. Raumzerlegungen durch Hyperebenen

Seien FY, ..., FO = R” Hyperebenen. Das von ihnen erzeugte Netz % ist die Menge
aller Ebenen, die Durchschnitte gewisser von den Fg sind, also in der Form

N=[F, wolc{l,.., m}, (17)
pel

dargestellt werden kénnen. Insbesondere ist (mit /= ¢) R"e . Wir nehmen an, dass
sich die m Hyperebenen «in allgemeiner Lage» befinden, d.h. dim N;=n—card /,
wenn card /<n, und N,=¢, wenn card I>n ist. Aus dieser Annahme folgt offen-
sichtlich:

Sei Ne R, dim N=iund i<j<n. Dann existieren genau (n B l,)
n—j
Netzebenen N* der Dimension j, fiir die N = N* gilt. (18)

Mit F; und F, (in beliebiger Zuordnung) bezeichnen wir die beiden durch Fg
bestimmten offenen Halbriume. Elementarpolyeder oder Zellen des Netzes N
nennen wir die nichtleeren unter den Durchschnitten

E=DF},’P, woalle o,e{—,0,+} sind. (19)

Sie sind relativ offene konvexe Polyeder, und aus (19) folgt

affE= (] F),  also affEeR, (20)
g,=0
und ’
clos E= () clos Fgr @1
p=1

([16], Abschnitt 2.5 und Satz 7;4).
Die Zellen, die Teilmengen einer Netzebene N sind, bilden eine Partition von N;
insbesondere bilden alle Zellen eine Partition des R”.
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Dass Gleichungen vom Dehn-Sommervilleschen Typ auch fiir Netze der hier
betrachteten Art bestehen, ist von verschiedenen Autoren gezeigt worden; vgl.
dazu [13], Abschnitt 18.1. Unseres Wissens neue Relationen dieser Art erhalten wir,
indem wir die Methode von Abschnitt 3 in zwei Varianten auf ein Netz Nt an-
wenden.

4 1. Sei0<j<n, N; die Menge der j-dimensionalen Netzebenen und

=) e e X (N*). Da jede Ebene ein relativ offenes konvexes Polyeder ist, wird
nach (3) mit p;:=card N; (insbesondere p,=1)

t=(~1yp;. (22)

Nach der bereits verwendeten Formel (6.1) in [4] ist anderseits

1= x (¥, (23)

r=1

wo VJ diesmal die Vereinigung aller Durchschnitte zu je r der Netzebenen aus %;
bedeutet. Ist i<j und Ne N, so ist nach (18) genau dann N < V7, wenn rg(z:;) ist.
Somit ist 7/, die (disjunkte) Vereinigung aller Zellen E, fiir die

dimEel(r,)):= {z r< (n :;)} gilt. Bezeichnen wir mit ¢; die Anzahl der i-dimen-

sionalen Zellen, so wird also nach (1), (3) und (23):

t=3 Y (=1)¢;,  undmit(22):

r>1 iel(ry)

- l)lpj Z (_ 1)l< l>cu (24)
oder
J . n—i
= — 1Y+ . ;
PGV I(n-—j)c" Gel0, ... n)). 25)

Die Koeffizienten der rechten Seite von (24) sind dieselben wie in (15). Schon an
jener Stelle wurde bemerkt, dass die von ihnen gebildete Matrix zu sich selber invers
ist. Es gilt also auch

=i ( ),,,, Gel0, ..}, (26)
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4.2. Wir setzen jetzt voraus, dass die Anzahl m der Netzhyperebenen > rn ist, womit
wir erreichen, dass (12) (mit £ anstelle von S) fiir alle Zellen E gilt.

Mit G; bezeichnen wir die Menge aller Zellen E* des Netzes # mit dim E* =; und
setzen =y E*cG; x(clos E*). Nach (12) ist einerseits

t=b;=Anzahl der beschrinkten unter den E* € ;, 27
anderseits gilt wieder (23), wo aber jetzt V. die Vereinigung aller Durchschnitte zu
je r der Mengen clos E* (mit E* € €)) bedeutet. Aus (19), (20) und (21) folgt, dass

VI, die Vereinigung gewisser Zellen E mit dim E<j ist. Im Anhang werden wir
beweisen:

Zu jeder Zelle E € G, existieren genau 2/~° (n _J) Zellen E* € G, fur die

Ecclos E* gilt (0<i<j<n). (28)
In Analogie zu (24) folgt deshalb mit (27)
b=3 (- 1y (07 )ote, et 29)
o= — . , ey })
J =0 n—j Cis (/ €

Auch dieses Gleichungssystem hat, wie man leicht verifiziert, die Eigenschaft,
dass seine Koeffizientenmatrix zu sich selber invers ist, weshalb auch gilt

c—z (—1)'( j) Y-ib;,  (jel0,...,n}). (30)

Ergénzt man den R” mittels einer «uneigentlichen» Hyperebene zum projektiven
Raum P”, so verschmelzen je zwei unbeschrinkte Zellen des R” zu einer einzigen
Zelle des P". Die Anzahl d; der i-dimensionalen Zellen im P” ist deshalb (b;+c;) /2.
Durch Addition von (29) und (30) erhilt man somit

J (n—i\ .. .
=3 (—1)'( ’,)21—'(1,., Gelo, ... n}), 31)
i=0 n—j
eine Gleichung, die bei Griinbaum [13], S.392, zu finden ist.

4.3. Aus (25), (26) und (29), (30) konnen direkte Beziehungen zwischen den p; und
den b; gewonnen werden. Die einfach abzuleitenden Resultate sind

J

-3 (_1),(::]{) i Gel0,..m), (32)

~.

=3 —1)'( Jl:)b,-, G0, ..., n)). (33)
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5. Anhang

Wir haben noch (13) und (28) zu beweisen. Da die Beweise fast wortlich {iberein-
stimmen, fithren wir denjenigen fiir (28) aus, unter Hinweis auf die wesentlichen
Unterschiede im Beweis von (13).

5.1. Sei Ecclos E* (also auch aff E c aff E*),dim E=i und dim E* =j. Es folgt, dass
die der Form (19) entsprechende Darstellung von E* aus derjenigen von E dadurch
hervorgeht, dass gewisse g, die =0 sind, durch «+» bzw. «—» (fir (13): nur «+»!)
ersetzt werden. Deren Anzahl ist (j—i).

5.2. Sei

E=Fn--nF,_ i inFy inFirgifln - n Fym (34)

m

eine i-dimensionale Zelle. Es entstehe E*, indem in (34) von den Vorzeichen
oy, ..., 0,—; (die alle =0 sind) deren (j—i) beliebige nach Belieben in «+» oder «—»
(fiir (13): nur «+»!) verwandelt werden. In 5.3 werden wir zeigen, dass E* # ¢, also
eine Zelle der Dimension j ist. Ferner ist (vgl. (21)) E < clos E¥*. Zusammen mit 5.1
folgt daraus (28) (bzw. (13)) unmittelbar.
5.3. Es geniigt zu beweisen, dass

E*=F?n---mf‘,’,_,-_1rwf‘;'17"nf';'i7i In---nFim# g (35)
ist fiir g,,_;= «+» und fir 6,,_;= «—» (fiir (13): nur «+»). Wir setzen

G=Rn---nF_,_nFnsi In...nFom (36)
Wegen E < G ist G# ¢. Wir haben zu zeigen:

E*=GnFinsi#t¢ fir o, ;=«+» und = «—» (fir(13): nur «+») . (37
Vorerst ist G¢ F°_.. Andernfallswire ndmlich E=G, im Widerspruch zu dim E=i,
dimG=i+1. Da G relativ offen und Gn F%_,=E+ ¢ ist, folgt (37) nach [16], Satz

1.3;6.
Walter Nef, Universitidt Bern
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Kleine Mitteilungen

Remarks on the differences between consecutive primes

In problem 654, Journal of Recreational Mathematics, Harry Nelson asks: “What
is the most likely difference between consecutive primes?” Here a difference is
‘most likely’ for primes <n if it occurs at least as often as any other difference.
For a discussion see J. Rec. Math. 11, 231.

We first show that a well-known conjecture of Hardy and Littlewood implies
that the most likely difference tends to infinity with n, so that there is no most
probable difference independent of n.
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