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inequality (2), this case reduces to the problem of establishing the following
inequality:

Il(«-«Hl_(«,/2). (")
However, we have not been able to establish either of (*) or (**).
There exist in the plane of (T) points P such that 11/?, Ufa,— ßt). For such points,
inequahty (*) is easily verified. Examples of such points are the orthocenter and the
circumcenter, when (7) is acute, and the incenter. This suggests the following
problem which appears to be of interest.

Problem: Find all points interior to (T) such that II/?, 11(0,—/?,), anc* discuss any
special properties of the set of all such points.
Finally we note that, if in (*) the values of the angles are replaced by the sines of
these angles, then the resulting inequalities are much easier. Indeed, the same
method used above gives,

IIsin/?^IIsin(a//2). (4)

In particular if, in (4), P is taken to be the orthocenter, we get

ncos(a/)^nsin(a//2). (5)

Faruk F. Abi-Khuzam, American University of Beirut

Elementarmathematik und Didaktik

Reguläre Kettenbrüche und quadratische diophantische Probleme

Einleitung

Die Theorie der regulären Kettenbrüche, zeitweise etwas in Vergessenheit geraten,
hat doch immer wieder das Interesse der Mathematiker gefesselt und auch

Anregung zum Experimentieren geboten. Verschiedene recht einfach zu formulierende
Resultate eignen sich vorzüglich zu einer Behandlung im Rahmen der
Elementarmathematik. Wir besprechen hier zwei Anwendungen auf quadratische diophantische

Probleme, nämlich 1. die Pellsche Gleichung, welche in der Theorie der
quadratischen diophantischen Gleichungen mit zwei Unbekannten eine zentrale
Rolle spielt, sowie 2. einen etwas ungewohnten Aspekt der pythagoreischen Zahlen,
d.h. der ganzen Zahlen, welche Seitenlängen von rechtwinkligen Dreiecken
darstellen.

Bei diesem Aufsatz handelt es sich um eine völlig umgeschriebene und stark
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gekürzte Version einer früheren Arbeit des Verfassers [3], wobei auch einige neue
Gesichtspunkte hinzugekommen sind. Für Details und Beweise muss auf diese

Quelle sowie auf Perron [4] verwiesen werden, der insbesondere viele elegante
Herleitungen unter Benützung von konjugierten Zahlen bringt. Dort findet man
auch viel Material über die Pellsche Gleichung, weiteres elementar und sehr
ansprechend dargeboten bei Gelfond [1], von einem computerorientierten Standpunkt

aus betrachtet bei Kirch [2]. Die Ursprünge in der griechischen Mathematik

verfolgt ausführlich van der Waerden [5].

1. Problemstellung

Problem: Wir suchen ein gleichschenklig-rechtwinkliges Dreieck mit rationalen
Seitenverhältnissen oder, in zahlentheoretischer Formulierung, positive ganzzahlige
Lösungen des Gleichungssystems

x2+y2 z2, (*)

x=y. (**)

Offensichtlich besitzt dieses Problem keine Lösungen. Wir betrachten deshalb
Modifikationen in zwei Richtungen:

1. 2.

(*) «beinahe erfüllt», d. h. (**) «beinahe erfüllt», d. h.

x2+y2±l=z2. x±l=y.

(•*) bleibt, also: (*) bleibt, also:

_r2-2x2 ±l. jc24-(;c±1)2 z2.

Für beide Fälle existieren nun Lösungen, sogar unendlich viele:

1 3 7 X 3 21 119

y 4 20 120

z 5 29 169

1 2 5

Um etwas interessantere Fragestellungen zu erhalten, wollen wir sofort
verallgemeinern:

1. Mit geläufigeren Variablenbezeichnungen lautet die Gleichung: ;c2-2j>2=±1
oder nun allgemeiner:

x2 — Dy2=±l, D>0, ganz, kein Quadrat.
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(Falls D Quadratzahl ist, existieren nur triviale Lösungen.) Diese Gleichung wird
seit Euler Peitsche Gleichung genannt. Der Spezialfall D 2 war schon den
Pythagoreern wohlbekannt (siehe [5]): Wenn x,y die Länge der Diagonale bzw.
Seite eines Quadrates darstellen, dann auch x'=x + 2y, / x+y. Diese Tatsache
lässt vermuten, dass dieselbe Rekursion auch für die Lösungen der Pellschen
Gleichung (mit D 2) gilt, was sehr leicht zu verifizieren ist. Und im allgemeinen
Fall kommt man, wegen x2/y2 D±l /y2, bald einmal auf die Idee, es mit rationalen
Approximationen x/y für V_D zu versuchen. In 3.2 werden wir darauf
zurückkommen.

2. Hier lautet unsere Verallgemeinerung: Gesucht sind positive ganzzahlige Lösungen

der Gleichung x2+y2 z2 derart, dass das Verhältnis y/x möglichst nahe bei
einem gegebenen rationalen Verhältnis u/v liegt, d.h. pythagoreische Zahlen,
welche die Seiten eines rechtwinkligen Dreiecks mit gegebenen Winkeln (mit
rationalem Tangens) approximieren. (w2+v2 soll kein Quadrat sein, da sonst

x=v, y=u das Approximationsproblem exakt lösen.) Es zeigt sich, dass sich jedes
gegebene Seitenverhältnis durch genügend grosse pythagoreische Zahlen (p.Z.)
beliebig genau annähern lässt. (Was heisst dies, wenn man einen beliebigen
Strahl durch den Nullpunkt und das ganzzahlige Punktegitter betrachtet?)
Durch einen bekannten einfachen Kunstgriff lässt sich nun die Bedingung, wonach
unsere Lösungen p.Z. sein sollen, eliminieren: Aus den Zahlenpaaren p,q mit
p>q>0;p,q teilerfremd;p — q ungerade erhält man mit

x=p2-q2; y=2pq; z=p2+ q2

genau die Menge der irreduziblen p.Z. mit geradem y. (Bei irreduziblen p.Z.,
d.h. solchen ohne gemeinsamen Teiler, ist z immer ungerade.) Sei ferner cp ein
Winkel im gegebenen Dreieck, also etwa w/v tan^. Der entsprechende Winkel
im approximierenden Dreieck sei a: y/x tana. Mit / q/p gilt dann

tana=y/x 2pq/(p2-q2) 2t/(l-t2),

also /=tan(a/2). Entsprechend mit s=tan(cp/2): u/v=2s/(l—s2) oder durch
Auflösen der quadratischen Gleichung:

s=(-v+^u2 + v2)/u u/(v+\/u2 + v2)

(Die andere Lösung ist negativ.)

Damit drängt sich folgendes Vorgehen auf:
— Berechne s aus den gegebenen u, v.

— Approximiere das irrationale s durch ein q/p (ohne Nebenbedingung).

Es hat sich gezeigt, dass für die Lösung der beiden gestellten Aufgaben die
regulären Kettenbrüche ein äusserst elegantes Instrument liefern. Daher sollen
zunächst einige Grundlagen zusammengestellt werden.
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2. Aus der Kettenbruch-Theorie

2.1 Der reguläre Kettenbruch

Man nennt einen Ausdruck der folgenden Art einen endlichen regulären Kettenbruch

(r.Kb.) und benützt mit Vorteil gerade eine abgekürzte Schreibweise:

[b0,bx,...,bn]:=b0+ l/(bx + l/(ft2+-.. + l/bn))...),

wobei die bt ganzzahlig sind, und b0^ 0, bt > 0 (i 1,2,...).
Durch «Aufrollen» von rechts her, d.h. sukzessives Erweitern mit dem jeweils
letzten Nenner, kann der Ausdruck auf einen einzigen Bruch An/Bn reduziert
werden. Man nennt den Zähler Ak bzw. den Nenner Bk eines Anfangsstückes
[b0,...,bk] des r.Kb. den k-ten Näherungszähler bzw. -nenner und Ak/Bk den
Ä>ten Näherungsbruch. Die Ak, Bk können sehr bequem rekursiv berechnet werden,
wobei man die Verankerung zweckmässigerweise schon beim Index — 2 beginnen
lässt:

_4_2:=0; A.x:=l; B.2:=l; B.x:=0.

Für /c 0,l,...:
(2.1.1)

Ak:=bkAk_x+Ak_2;
Bk:=bkBk_x + Bk_2.

Die Folgen der Ak, Bk wachsen monoton. Ferner gilt:

Ak.xBk-AkBk_x (-l)k,

woraus folgt, dass die Ak, Bk teilerfremd sind und dass

Ak.x/Bk_x-Ak/Bk=(-l)k/(Bk.xBk).

Daraus ist wiederum ersichtlich, dass für jeden unendüchen r.Kb. [b0,bx,...] die
Folge der Werte seiner Näherungsbrüche konvergiert; den Grenzwert bezeichnet
man als Wert des unendlichen r.Kb.
Bildet man, ausgehend von einem reellen £0 > 0 für k=0,1,... die Grössen

bk:=lZkll Zk+i'.= lMk-bk)1),

dann brechen diese Folgen genau dann nicht ab, wenn ^0 irrational ist, und es

gilt dann €o=[bo,bh...]. Diese Entwicklung einer irrationalen Zahl in einen r.Kb.
ist eindeutig. Wir bemerken noch, dass für alle k gilt:

1) Wir verwenden, um Verwechslungen mit der Kb.-Notation auszuschliessen, die Bezeichnung [xj für
die grosste ganze Zahl, welche x nicht übertrifft.
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Für rationale £0 erhält man einen endlichen r.Kb. Die Entwicklung wird dann
besser als euklidischer Divisionsalgorithmus angesetzt; sie ist auch eindeutig bis auf
die triviale Umformung am Schluss: [b0,...,bn, 1] [£0,...,£„4-1].

2.2 Periodische reguläre Kettenbrüche

Für periodische r.Kb. verwenden wir, in Analogie zu den Dezimalbrüchen, eine
Notation mit offensichtlicher Bedeutung:

^0=[bo,bx,...] [b0,...,bh_x,bh,...,bh_x + r],

wobei h, r immer die kleinsten Zahlen sein sollen, so dass für alle k^h: bk+r=bk.
Euler hat festgestellt, dass f0 in diesem Falle eine irrationale Lösung einer
quadratischen Gleichung mit ganzzahligen Koeffizienten, eine sogenannte quadratische

Irrationalität, ist, sich also in der Form

i0=(P+V'D)/Q; P,Q,D ganz Q^O; D>0, kein Quadrat,

darstellen lässt. Die andere Lösung der Gleichung, 770= (_P- \/D)/Q, nennt man
die zu £0 konjugierte Zahl.
Um umgekehrt eine quadratische Irrationalität in einen r.Kb. zu entwickeln, soll
vorausgesetzt werden, dass Q\D — P2. (Dies kann nötigenfalls durch Erweitern des

£0 darstellenden Bruches mit \Q\ erzwungen werden.) Dann gibt es für k 0,1,...
ganzzahlige Ph Qk, Qk?Q, so dass

^=[^,...]=(^+V^)/ß,,
und

Pk+Pk+x=hQk\ QkQk+x=D-P2k+x.

(Beachte, dass €k=bk+ l/%k+x.) Aus der Tatsache, dass von einem gewissen Index
an immer 0<Pk<vD; 0<Qk<2\TD, folgt dann die Periodizität des r.Kb. (Satz
von Lagrange).
Weiter kann auch noch eine Verbindung zu den Ak, Bk gezogen werden: Mit
der Definition

Fk(x) (xAk_x+Ak-2)/(xBk_x + Bk_2)

gilt Fk (bk) [b0,..., bk]; und für beliebiges reelles x:

Fk(x)=[bo,...,bk_hx], also £0=Fk(£k).

Wenn man nun in
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Zk=n\to)=(^Bk_2-Ak_2)/(-Z0Bk_x+Ak_x)

für £k und £0 die entsprechenden Brüche (Pk+Vd) JQk und (P+ Vd)/Q einsetzt,
dann ergibt der Koeffizientenvergleich, dass sich die Pk, Qk folgendermassen als

quadratische bzw. bilineare Formen in den A k, Bk darstellen lassen (k 0,1,...):

Qk=(-\)k(A2k_xQ-2Ak_xBk_xP-B2„xR), (2.2.1)

mit R (D-P2)/Q.
Dazu beachte man noch, dass die Werte von Ak/Bk um £0 herumpendeln und
dass die quadratische Form (Gl. 2.2.1), wenn man statt Ak_x und Bk_x reelle
Werte A,B mit A/B=£0 einsetzt, verschwindet. Damit versteht man eher, dass die

Pk, Qk beschränkt bleiben, obwohl die Ak, Bk exponentiell anwachsen.

Schliesslich betrachten wir zum periodischen r.Kb.

£o=z[b(b'~>bh_x,bh,...,bh__x+r]

den rein periodischen Teil

^=[^,...,z>Ä_1+j=^=[^...^;-i].

Wenn man die Rekursionsformeln für die A'k, B'k (entsprechend Gl. 2.1.1) als
lineare Differenzengleichungen mit variablen Koeffizienten interpretiert, dann sind
die Folgen der Ak, B'k deren Grundlösungen mit den Anfangsbedingungen _412= 0,

_4__!=1 bzw. BL2=l, !?__! 0. Wegen der Periodizität der b'k lassen sich nun die
um r verschobenen Folgen als Lösungen derselben Differenzgleichungen, aber jetzt
mit den Anfangswerten A'r^2,A'r_x bzw. B'r_2,B'r_x aus den obigen Grundlösungen
linear kombinieren (k ^ — 2):

A'k+r=A'r_xA'k+A'r_2B'k, ]

(2.2.3)
Bk+r=Br-xA'k+Br-2B'k-

Mit derselben Überlegung lassen sich die Näherungszähler und -nenner Ak, Bk
des ursprünglichen r.Kb. £0 auf diejenigen von £6 zurückführen (k^h-2):

Ak=Ah_xA'k-h+Ah_2B'k_h, |

(2.2.4)
Bk=Bh-X^k-h+Bh-2B'k-h- ]

Unter Verwendung der beiden Gleichungspaare lässt sich das Vorwärtsspringen
um eine Periode auch im r.Kb. £0 bewerkstelligen. Alle diese Zusammenhänge
stellen sich in der vektoriellen Schreibweise etwas eleganter dar.
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2.3 Rein periodische Kettenbrüche, Symmetrien

Nach einem Satz von Galois ist der r.Kb. für die quadratische Irrationalität
£0 genau dann rein periodisch (h 0), wenn £0> 1 und — 1 <7/0<0 (wo n0 wieder
der konjugierte Wert ist).
Man erkennt leicht, dass diese «Galois-Bedingung» äquivalent ist mit:

0<Vi)-P<ß<\/Z)+P.

Ferner vererbt sich die Gültigkeit der Bedingung mit zunehmendem k, wenn sie
bei einem beliebigen r.Kb. einmal für ein Paar Pk, Qk erfüllt war.
Wir betrachten weiter den Spezialfall eines rein periodischen r.Kb. mit symmetrischer

Periode, d.h. br_x_k=bk (k 0, l,...,r— 1). Zunächst gilt: Das Anfangsstück

bo,...,bn der Koeffizientenfolge eines r.Kb. ist genau dann symmetrisch,
wenn An_x Bn. Angewendet auf die quadratische Gleichung für £0, n0 (bei rein
periodischem r.Kb.) ergibt sich: Die Periode ist genau dann symmetrisch, wenn
£o 10= ~ 1; dies ist gleichbedeutend mit: D-P2 Q2.

Diese Symmetrie hat aber weiter die interessante Konsequenz, dass auch die
Folgen der Pk, Qk symmetrisch sind, nämlich:

Pr-k^Pk (k 0,...,r); Qr-x-k=Qk (k 0,...,r-1).

Für die Untersuchung der Periodenmitte spielt offenbar die Parität von r eine
Rolle: Je nachdem, ob r ungerade oder gerade ist, sind (für r>l) entweder
zwei aufeinanderfolgende Pk oder zwei Qk gleich. Von praktischer Bedeutung
ist nun, dass diese Erscheinung auch nicht früher auftritt:
Wenn zum erstenmal

Pk=Pk+x(k>0)^ dann ist r=2k+l, wenn

Qk=Qk+x(k>l)> dannist r=2k + 2

(r=2 kommt nicht vor).
Damit ist es möglich, schon die Mitte der Periode zu erkennen.

3. Anwendung der Kettenbruch-Theorie

3.1 Entwicklung einer quadratischen Irrationalität in einen regulären Kettenbruch

Es sei deutlich festgehalten, dass für die Aufgabe, aus einer quadratischen
Irrationalität (definiert durch 3 ganze Zahlen) deren Entwicklung in einen r.Kb.
(definiert durch (h + r) ganze Zahlen) zu ermitteln, der Umweg über die Irrationalzahl

£0 selber nicht nötig ist, dass vielmehr die ganze Rechnung ganzzahlig
durchgeführt werden kann. (Auch für die Berechnung von \Vd] muss natürlich
der Bereich der ganzen Zahlen nicht verlassen werden.) Wenn man noch beachtet,
dass für a, b ganz, b+0,0< n < 1 gilt:
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1/ Wu \\ß/bl falls b>0
L(ö + ')/*>lL(fl+l)M falls b<0,

dann kommt man mit den in 2.2 angegebenen Beziehungen, und nachdem nötigenfalls

Q\D-P2 erzwungen wurde, auf die folgende Rekursion:

P0:=P; ß0:=Ö; w:=b/D\.

Für /c=0,l,...:

h .Jl(Pk+ w)/Qki
k' U(^+ w+l)/ßJ,

Pk+x'.= hQk-Pkl Qk+x-(D-P2k+x)/Qk-

falls Qk>0
falls ßit<0;

(3.1.1)

Dabei beachte man, dass es zur Erkennung der Länge von Vorperiode (h) und
Periode (r) nicht etwa nötig ist, die bk, Pk, Qk alle aufzubewahren, sondern man
benütze, dass für den Index h zum erstenmal die «Galois-Bedingung» erfüllt
ist:

0<\/D- Ph<Qh<VD+ Ph

und dass das Periodenende erreicht ist, sobald Ph+r=Ph unc* ß/n-r= ß/r
Ein Zahlenbeispiel zur Illustration:

P=l, ß=12, D 37 (w=6,h 2,r=3).

Die Bedingung ß | D- P2 ist erfüllt.

k -2 -1 0 2 3 4 5

h 0 1 2 3 1

Pk 1 — 1 4 3 5 4

Qu 12 3 7 4 3 7

Ak 0 1 0 1 3 10 13

Bk 1 0 1 2 5 17 22

Also: £o=( 14-\^37")/l2 0.59023... [0,1,1,2,3].
Approximationsfehler bei k= 5:

/_5/55-^= 13/22-0.59023. 0.00067...

3.2 Die Peitsche Gleichung

Gefragt wird nach positiven ganzzahligen Lösungen der Gleichung

x2-Dy2 =± 1, Z>>0, kein Quadrat. (3.2.1)
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Nach den Andeutungen von Abschnitt 1 wird man sich Resultate von einer r.Kb.-
Entwicklung von V_D erhoffen. In der Tat gilt für diese mit P 0, ß 1:

Ä2Ak-X DBl-v (-l)*ö*
(aus Gl. 2.2.1). Da nun aber der r.Kb. von V^D in den bk, Pk, Qk - bis auf b0 und
_P0 - mit dem rein periodischen r.Kb. von w+ Vd übereinstimmt, erhält man wegen
der Periodizität der Qk Lösungen für k v • r (v= 1,2,...). Dies sind aber auch die
einzigen; somit existieren Lösungen von Gleichung 3.2.1 mit rechter Seite 4 1 für
alle nichtquadratischen D, mit — 1 dagegen nur, falls der r.Kb. eine Periode
ungerader Länge besitzt (Beispiel: D 2: r= 1; D 3: r=2). Die Gleichungen 2.2.3
lassen uns ferner plausibel erscheinen, dass eine Rekursion, wie sie in Abschnitt 1

für D 2 angegeben wurde, auch im allgemeinen Fall existiert. Tatsächlich gelten,
wenn Xq—Dy\ + 1, die Rekursionsformeln

x'=x0x + Dy0y; /=y0x + x0y.

Die Symmetriebetrachtungen von Abschnitt 2.3 finden, in leicht modifizierter
Form, auch hier ihre Anwendung: Unter den rein periodischen r.Kb. besitzen

genau diejenigen, wo Q\2P, die Eigenschaft, dass die Sequenz b0,...,br symmetrisch

ist. Dies trifft offenbar für <_o w> +\^D zu. Es ist auch hier möglich,
mit «entsprechenden Überlegungen wie vorher, ein Kriterium für die Periodenmitte

anzugeben. Die für die Lösung der Pellschen Gleichung benötigten Ak, Bk
sind natürlich der Kb.-Entwicklung von \/~D zu entnehmen.
Übungsaufgabe: Man diskutiere die beiden Spezialfälle D a2+l und D a2— 1

(für beliebiges ganzes a).
Zwei Beispiele zum Nachrechnen:
1. D=14:

VT4=[3,1,2,1,6], w=3, r=4,

\A4" + 3=[6,1,2,1].

Erste nichttriviale Lösung: x0=A3= 15, j>0 _93 4.

Rekursion: x'= I5x + 56y,/=4x+ I5y.

X

y

15 449
4 120

13455
3596

x2-Dy2

2. Z>=13:

1 1 1

w=3,^Tf= [3, 1,1,1,1,6], r=5,

13 +3 [6,1,1,1,1]
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Erste nichttriviale Lösung: x0=A4= 18,y0 B4= 5.

Rekursion: x'= 18x + 65^,/=5jc+ ISy.

x
y
x2. Dy2

18 649 23 382
5 180 6485

-1 1 -1

3.3 Pythagoreische Zahlen

Die Problemstellung lautet hier:
Gegeben: u,v>0, ganz, teilerfremd, u2 + v2 kein Quadrat.
Gesucht: positive ganzzahlige Lösungen von x2+y2 z2, so dass y/x möglichst nahe
bei u/v liegt.
Wie in Abschnitt 1 ausgeführt, approximieren wir s=(—v+Vu2+v2)/u durch
rationale q/p und bilden dann

x=p2-q2; y=2pq; z=p2 + q2.

Jetzt hegt es nahe, die quadratische Irrationalität s in einen periodischen r.Kb.
zu entwickeln und die Ak, Bk als q und p zu nehmen. Etwas schöner wird die

Entwicklung bei l/s=(v+\/u2 + v2)/u, da dann offensichtlich die «Galois-Be-
dingung» (Abschnitt 2.3) erfüllt und damit der r.Kb. rein periodisch ist. Ferner
gilt die Symmetriebedingung, da?=v, ß w, D u2+v2. (Auch Q\D — P2 ist hier
immer erfüllt.)
Der Übergang von s auf l/s fallt nicht ins Gewicht; er bedeutet im wesentlichen
eine Vertauschung der Näherungszähler und -nenner. Man wird dann also als

' Lösungen

xk=A\-B2k, yk 2AkBk, zk=A2k + B\ (3.3.1)

bilden, sofern Ak—Bk ungerade ist, da ja sicher nur irreduzible p.Z. interessieren.
(Man überlege sich, dass nie zwei aufeinanderfolgende Paare Ak, Bk eine gerade
Differenz besitzen!) Die Frage, in welchem Sinne man mit diesem Verfahren alle
«besten» Approximationen für das Verhältnis u/v erhält, erfordert etwas subtilere
Überlegungen (siehe [3]). Hier sei nur soviel bemerkt, dass man bei Vertauschung
von u und v im allgemeinen durchaus andere p.Z. erhält.
Für die Durchführung der Rechnung benötigt man w=[_~\/~D\. Vielleicht ist es

nicht ganz selbstverständlich, dass auch im ganzzahhgen Falle die quadratisch
konvergente Newton-Methode funktioniert. Es gilt nämlich (siehe [3]) für beliebige
ganze a>0: Sei

X0:=a; Y0:=l;

*,+ iH(*<+y<)/2J; Yl+x:=la/Xl+xJ (/=0,1,...).

Dann ist Xn |_ Va~\ ,won kleinster Index i, für welchen Xl^Yl.
So kommen wir auf folgenden Algorithmus zur Bestimmung der r.Kb.-Entwicklung
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von 1/5 bis zur Periodenmitte, wobei die Pk, Qk selbstverständlich nicht aufbewahrt

werden müssen, sondern es genügt, das aktuelle Paar P, Q und die neuen
Werte P',Q' mitzuführen. (Für die ganzzahlige Division wurde die Bezeichnung
a div b :=\a/b [verwendet):

Eingabe (u,v); D:=u*u + v*v;
Quadratwurzel nach Newton:

x:=D; y:=l;
Wiederhole * :=(*+>>)div2; y:=D di\x solange bis x^y;
w:=x;

Initialisieren:

k:=-l; P':=v, ß':=w;
Rekursion:

Wiederhole

k:=k+l; P:=P'\ Q:-Q'\
b:=(P+w)divQ;
P':=b*Q-p; Q':=(D-P'*P')di\Q',
Ausgabe (k,b)

solange bis (P Pf) oder (ß=ßO;
Berechnung der Periodenlänge:

Falls (P=P'X dann r: 2 * k + 1, sonst r: 2 * k + 2; Ausgabe (r)

Wie schon früher bemerkt, bleiben die Pk, Qk (und damit natürlich auch bk), im
Gegensatz zu den Ak, Bk, beschränkt:

0<^^w; 0<ßfc, bk^2w.

Die Berechnung der xk, yk, zk hätte nach Gleichungen 2.1.1 und 3.3.1 zu geschehen.
Ein Beispiel möge das bisherige illustrieren:

w=10, v=3 (D=lÖ9,w=lO,r=7).

k -2 -1 0 1 2 3 4 5 6

h 1 2 1 9 1 2 1

Pk 3 7 5 9 9 5 7

Qk 10 6 14 2 14 6 10

Ak 0 1 1 3 4 39 43 125 168

Bk 1 0 1 2 3 29 32 93 125

Xk * 5 7 825 * 12599

yk * 12 24 * 2752 * 42000
Zk * 13 25 * 2873 * 43849

______
xk V

* -9.3_M 9.5E-2 * 2AE-3 * 2.6f>4
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Zum Schluss noch ein Hinweis auf den Spezialfall konstanter bk (d.h. r=l):
l/s=[B] [b,b,...]. Einsetzen im Kb. führt auf l/s b+ l/(l/s) und damit schliesslich

auf die beiden Möglichkeiten (da (u,v)= 1 vorausgesetzt):

m-1, vbeüebig, b 2v,

u=2, v ungerade, b=v.

In diesem Falle gilt:

yk/(xk + (-l)k)=u/v.

(Folgt aus Gl. 2.2.1; vgl. auch Einführungsbeispiel in Abschnitt 1.)

Beispiele:

m 2, v=l: b=l, l/s=(l + VT)/2.

(Die Ak, Bk bilden, um eine Position gegeneinander verschoben, je die Folge der
Fibonaccizahlen.)

u=v=l: b=2, \/s=\ + yfl

(Beispiel aus Abschnitt 1.)
Peter Läuchli, ETH Zürich
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Aufgaben

Aufgabe 825. Es sei N eine natürliche Zahl. Für n=l,l,...,lN sei f(n) definiert
durch

flN\~l "
#v x f2N \ V n-lk\(N\( N \f(nHn L~n-\{k){n-k)'
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