Zeitschrift: Elemente der Mathematik
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 35 (1980)

Heft: 4

Artikel: Regulare Kettenbriiche und quadratische diophantische Probleme
Autor: Lauchli, Peter

DOl: https://doi.org/10.5169/seals-34683

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 13.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-34683
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Elementarmathematik und Didaktik 81

inequality (2), this case reduces to the problem of establishing the following in-
equality:

[I(a:— o)< ]1@;/2). **)

However, we have not been able to establish either of (*) or (**).

There exist in the plane of (T) points P such that[[ B =1l(a,-p ;)- For such points,
inequality (*) is easily verified. Examples of such points are the orthocenter and the
circumcenter, when (7) is acute, and the incenter. This suggests the following
problem which appears to be of interest.

Problem: Find all points interior to (7) such that [ [ #,=]](a,— 8,), and discuss any
special properties of the set of all such points.

Finally we note that, if in (*) the values of the angles are replaced by the sines of
these angles, then the resulting inequalities are much easier. Indeed, the same
method used above gives,

[Ising;<[]sin(a;/2). @)

In particular if, in (4), P is taken to be the orthocenter, we get
IIcos(a)<]Isin(a;/2). (5)

Faruk F. Abi-Khuzam, American University of Beirut

Elementarmathematik und Didaktik

Reguliire Kettenbriiche und quadratische diophantische Probleme
Einleitung

Die Theorie der reguliaren Kettenbriiche, zeitweise etwas in Vergessenheit geraten,
hat doch immer wieder das Interesse der Mathematiker gefesselt und auch An-
regung zum Experimentieren geboten. Verschiedene recht einfach zu formulierende
Resultate eignen sich vorziiglich zu einer Behandlung im Rahmen der Elementar-
mathematik. Wir besprechen hier zwei Anwendungen auf quadratische diophan-
tische Probleme, nimlich 1. die Pellsche Gleichung, welche in der Theorie der
quadratischen diophantischen Gleichungen mit zwei Unbekannten eine zentrale
Rolle spielt, sowie 2. einen etwas ungewohnten Aspekt der pythagoreischen Zahlen,
d.h. der ganzen Zahlen, welche Seitenlingen von rechtwinkligen Dreiecken dar-
stellen.

Bei diesem Aufsatz handelt es sich um eine vollig umgeschriebene und stark
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gekiirzte Version einer fritheren Arbeit des Verfassers [3], wobei auch einige neue
Gesichtspunkte hinzugekommen sind. Fiir Details und Beweise muss auf diese
Quelle sowie auf Perron [4] verwiesen werden, der insbesondere viele elegante
Herleitungen unter Beniitzung von konjugierten Zahlen bringt. Dort findet man
auch viel Material iiber die Pellsche Gleichung, weiteres elementar und sehr
ansprechend dargeboten bei Gelfond [1], von einem computerorientierten Stand-
punkt aus betrachtet bei Kirch [2]. Die Urspriinge in der griechischen Mathe-
matik verfolgt ausfiihrlich van der Waerden [5].

1. Problemstellung
Problem: Wir suchen ein gleichschenklig-rechtwinkliges Dreieck mit rationalen

Seitenverhéltnissen oder, in zahlentheoretischer Formulierung, positive ganzzahlige
Losungen des Gleichungssystems

x2+y2=22, *)
X=y. (**)

Offensichtlich besitzt dieses Problem keine Losungen. Wir betrachten deshalb
Modifikationen in zwei Richtungen:

(1*;) «beinahe erfullt», d.h. ?*;*) «beinahe erfillt», d. h.
| x4y +1=22, xtl=y.
(**) bleibt, also: (*) bleibt, also:
22—2x?=+1. X2+ (x+1)2=22.

Fiir beide Fille existieren nun Lésungen, sogar unendlich viele:

z |13 7 .. x | 3 21 119
x| 125 .. y | 4 20 120
z | 5 29 169

Um etwas interessantere Fragestellungen zu erhalten, wollen wir sofort verallige-
meinern:

1. Mit gelidufigeren Variablenbezeichnungen lautet die Gleichung: x?>—2y*=+1
oder nun allgemeiner:

x2—Dy*=+1, D>0,  ganz, kein Quadrat.
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(Falls D Quadratzahl ist, existieren nur triviale Losungen.) Diese Gleichung wird
seit Euler Pellsche Gleichung genannt. Der Spezialfall D=2 war schon den
Pythagoreern wohlbekannt (siche [5]): Wenn x,y die Linge der Diagonale bzw.
Seite eines Quadrates darstellen, dann auch x’=x+2y, y=x+y. Diese Tatsache
lasst vermuten, dass dieselbe Rekursion auch fiir die Losungen der Pellschen
Gleichung (mit D=2) gilt, was sehr leicht zu verifizieren ist. Und im allgemeinen
Fall kommt man, wegen x?/)?= D+ 1/y?, bald einmal auf die Idee, es mit rationalen
Approximationen x/y fir /D zu versuchen. In 3.2 werden wir darauf zuriick-
kommen.

2. Hier lautet unsere Verallgemeinerung: Gesucht sind positive ganzzahlige Losun-
gen der Gleichung x?+y*=22 derart, dass das Verhiltnis y/x moglichst nahe bei
einem gegebenen rationalen Verhiltnis u/v liegt, d.h. pythagoreische Zahlen,
welche die Seiten eines rechtwinkligen Dreiecks mit gegebenen Winkeln (mit
rationalem Tangens) approximieren. (u?+1? soll kein Quadrat sein, da sonst
x=v, y=u das Approximationsproblem exakt 16sen.) Es zeigt sich, dass sich jedes
gegebene Seitenverhiltnis durch geniigend grosse pythagoreische Zahlen (p.Z.)
beliebig genau annidhern ldsst. (Was heisst dies, wenn man einen beliebigen
Strahl durch den Nullpunkt und das ganzzahlige Punktegitter betrachtet?)

Durch einen bekannten einfachen Kunstgriff ldsst sich nun die Bedingung, wonach
unsere Losungen p.Z. sein sollen, eliminieren: Aus den Zahlenpaaren p,q mit
p>q>0; p,q teilerfremd; p— g ungerade erhélt man mit

x=p’=q*;  y=2pq; z=p*+¢’

genau die Menge der irreduziblen p.Z. mit geradem y. (Bei irreduziblen p.Z.,
d.h. solchen ohne gemeinsamen Teiler, ist z immer ungerade.) Sei ferner ¢ ein
Winkel im gegebenen Dreieck, also etwa u/v=tang. Der entsprechende Winkel
im approximierenden Dreieck sei a: y/x=tana. Mit t=gq/p gilt dann

tana=y/x=2pq/(p’—gH=2t/(1-1),

also t=tan(a/2). Entsprechend mit s=tan(p/2): u/v=2s/(1—s?) oder durch Auf-
16sen der quadratischen Gleichung:

s=(=v+ViZ+?) fu=u/(v+Vi2+¥?).

(Die andere Losung ist negativ.)

Damit driangt sich folgendes Vorgehen auf:
— Berechne s aus den gegebenen u, v.
— Approximiere das irrationale s durch ein ¢/p (ohne Nebenbedingung).

. Es hat sich gezeigt, dass fiir die Losung der beiden gestellten Aufgaben die
regulidren Kettenbriiche ein dusserst elegantes Instrument liefern. Daher sollen zu-
nichst einige Grundlagen zusammengestellt werden.
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2. Aus der Kettenbruch-Theorie

2.1 Der regulire Kettenbruch

Man nennt einen Ausdruck der folgenden Art einen endlichen reguldren Ketten-
bruch (r Kb.) und beniitzt mit Vorteil gerade eine abgekiirzte Schreibweise:

[bo, by, ... b :=bo+1/(by+1/(by+ --- +1/b)) ..),

wobei die b; ganzzahlig sind, und b,>0, b;>0 (i=1,2,...).

Durch «Aufrollen» von rechts her, d.h. sukzessives Erweitern mit dem jeweils
letzten Nenner, kann der Ausdruck auf einen einzigen Bruch A,/B, reduziert
werden. Man nennt den Zihler 4, bzw. den Nenner B, eines Anfangsstiickes
(bo,...,b;] des r.Kb. den k-ten Niherungszihler bzw. -nenner und A4,/B, den

k-ten Ndherungsbruch. Die 4;, B; konnen sehr bequem rekursiv berechnet werden,
wobei man die Verankerung zweckmissigerweise schon beim Index —2 beginnen

lasst:

A_5:=0; A_;:=1; B_,:=1; B_,;:=0.
Fir k=0,1,...
(2.1.1)

Ap:=brAy_+Ay_>;
Bk:=kak-—l+Bk—2'

+ Die Folgen der A, B; wachsen monoton. Ferner gilt:
Ap_1Br—Ai B =(— D,
woraus folgt, dass die 4, By, teilerfremd sind und dass

Ag-1/Bi—1—Ar/B,=(—1)*/(By_1 By).

Daraus ist wiederum ersichtlich, dass fiir jeden unendlichen r.Kb. [bgy,b,,...] die
Folge der Werte seiner Niherungsbriiche konvergiert; den Grenzwert bezeichnet
man als Wert des unendlichen r.Kb.

Bildet man, ausgehend von einem reellen £,>0 fiir k=0, 1,... die Grossen

bei=|&);  Ereri=1/(E— b)Y,

dann brechen diese Folgen genau dann nicht ab, wenn &, irrational ist, und es
gilt dann &y=[bg,by,...]. Diese Entwicklung einer irrationalen Zahl in einen r.Kb.
ist eindeutig. Wir bemerken noch, dass fur alle k gilt:

1) Wir verwenden, um Verwechslungen mit der Kb.-Notation auszuschliessen, die Bezeichnung | x| fur
die grosste ganze Zahl, welche x nicht tibertrifft.
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Eo=[bgs.-, bk—1, &kl $e=[bpsb+15-..]-

Fiir rationale &, erhdlt man einen endlichen r.Kb. Die Entwicklung wird dann
besser als euklidischer Divisionsalgorithmus angesetzt; sie ist auch eindeutig bis auf
die triviale Umformung am Schluss: [by,...,b,, 11=[bq, ..., b,+ 1].

2.2 Periodische regulire Kettenbriiche

Fir periodische r.Kb. verwenden wir, in Analogie zu den Dezimalbriichen, eine
Notation mit offensichtlicher Bedeutung:

€0=[b09b17"']=[b0’""bh—labh9°"9bh—l+r]s

wobei h, r immer die kleinsten Zahlen sein sollen, so dass fiir alle k> h: by, ,=by.
Euler hat festgestellt, dass &, in diesem Falle eine irrationale Lésung einer
quadratischen Gleichung mit ganzzahligen Koeffizienten, eine sogenannte guadra-
tische Irrationalitdt, ist, sich also in der Form

éo=(P+V3) /0; P,0,D ganz Q#0; D>0, kein Quadrat,

darstellen ldsst. Die andere Losung der Gleichung, 7o=(P—V'D)/Q, nennt man
die zu &, konjugierte Zahl.

Um umgekehrt eine quadratische Irrationalitidt in einen r.Kb. zu entwickeln, soll
vorausgesetzt werden, dass Q| D — P2, (Dies kann nétigenfalls durch Erweitern des
o darstellenden Bruches mit | Q| erzwungen werden.) Dann gibt es fir k=0,1,...
ganzzahlige Py, Qy; Qr#0, so dass

Ex=[bgs--.1=(Pr+VD) /O,
und
Py+ Py 1=bi Q; 0k Qx+1=D—P%_,.

(Beachte, dass £, =b,+ 1/£,.,.) Aus der Tatsache, dass von einem gewissen Index
an immer O< Py < \/’55; 0< Q,<2VD, folgt dann die Periodizitit des r.Kb. (Satz
von Lagrange).
Weiter kann auch noch eine Verbindung zu den A,, B, gezogen werden: Mit
der Definition

Fr(x)=(xAg_1+Ar_2)/(xBy_1+By_2)
gilt Fi (by)=1by, ..., b;]; und fiir beliebiges reelles x:
Fy(x)=[bg,...,bx_1,x], also  E=Fi(&p).

Wenn man nun in
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&=Fr' (Co)=(CoBk—2—Ak—2)/(— Eo By_1+Ax_1)

fir &, und &, die entsprechenden Briiche (P¢+V D) /Q, und (P+V/'D) /Q einsetzt,
dann ergibt der Koeffizientenvergleich, dass sich die P, Q, folgendermassen als
quadratische bzw. bilineare Formen in den 4;, B, darstellen lassen (k=0,1,...):

Qk=(—1D¥(4;_,Q0—24,_,B;_P—-B;_|R), (22.1)
Pr=(—1D*(—A_1Ax_2Q+(Ag_By_r+Bx_1Ax_2) P+ By_1 By _1R), (2.2.2)
mit R=(D— P?)/Q.
Dazu beachte man noch, dass die Werte von A,/B; um ¢, herumpendeln und
dass die quadratische Form (Gl 2.2.1), wenn man statt 4;,_; und Bj_; reelle

Werte A, B mit 4 /B= &, einsetzt, verschwindet. Damit versteht man eher, dass die
P,, O, beschrinkt bleiben, obwohl die 4,, B, exponentiell anwachsen.

Schliesslich betrachten wir zum periodischen r.Kb.

Eo=I[bo,-.,Da—1,bp, ..., Dy 14,]

den rein periodischen Teil

éh=[bh’""bh——l+r]=é(’)=[b(,)""sb;~1]'

Wenn man die Rekursionsformeln fiir die A}, Bj (entsprechend GIl. 2.1.1) als
+ lineare Differenzengleichungen mit variablen Koeffizienten interpretiert, dann sind
die Folgen der A}, B} deren Grundldsungen mit den Anfangsbedingungen 47 ,=0,
ALy=1 bzw. B’ ,=1, B.;=0. Wegen der Periodizitit der b} lassen sich nun die
um r verschobenen Folgen als Losungen derselben Differenzgleichungen, aber jetzt
mit den Anfangswerten A,_,,A,_, bzw. B]_,, B/_, aus den obigen Grundlésungen
linear kombinieren (k > —2):

Apy,=A,_ 1A%+ A4,_, By,
(2.2.3)

Bi+r=B;_ 1A%+ B, _, B;.

Mit derselben Uberlegung lassen sich die Nédherungszihler und -nenner A4;, B,
des urspriinglichen r.Kb. &, auf diejenigen von & zuriickfiithren (k> h—2):

Ap=Ap_1Al_p+Ap_2Bj_p,
224

By=By_Ay_p+By_3Bi_.

Unter Verwendung der beiden Gleichungspaare ldsst sich das Vorwirtsspringen
um eine Periode auch im r.Kb. &, bewerkstelligen. Alle diese Zusammenhinge
stellen sich in der vektoriellen Schreibweise etwas eleganter dar.
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2.3 Rein periodische Kettenbriiche, Symmetrien

Nach einem Satz von Galois ist der r.Kb. fir die quadratische Irrationalitit
&o genau dann rein periodisch (h=0), wenn £;>1 und —1<#7y<0 (Wo 5, wieder
der konjugierte Wert ist).

Man erkennt leicht, dass diese «Galois-Bedingung» dquivalent ist mit:

O<\/7)——P<Q<\/_D—+P.

Ferner vererbt sich die Giiltigkeit der Bedingung mit zunehmendem k&, wenn sie
bei einem beliebigen r.Kb. einmal fiir ein Paar P, Q; erfiillt war.

Wir betrachten weiter den Spezialfall eines rein periodischen r.Kb. mit symme-
trischer Periode, d.h. b,_,_,=b; (k=0,1,...,r—1). Zunichst gilt: Das Anfangs-
stiick by,...,b, der Koeffizientenfolge eines r.Kb. ist genau dann symmetrisch,
wenn A4,_;= B,. Angewendet auf die quadratische Gleichung fur &, », (bei rein
periodischem r.Kb.) ergibt sich: Die Periode ist genau dann symmetrisch, wenn
Eono=— 1; dies ist gleichbedeutend mit: D— P*= Q2.

Diese Symmetrie hat aber weiter die interessante Konsequenz, dass auch die
Folgen der P, Q, symmetrisch sind, nimlich:

P,_ =P, (k=0,...,r); O, 1-x=0r (k=0,...,r—1).

Fiir die Untersuchung der Periodenmitte spielt offenbar die Paritit von r eine
Rolle: Je nachdem, ob r ungerade oder gerade ist, sind (fiir »>1) entweder
zwei aufeinanderfolgende P, oder zwei Q, gleich. Von praktischer Bedeutung
ist nun, dass diese Erscheinung auch nicht frither auftritt:

Wenn zum erstenmal

P,=P;, (k=0), dannist r=2k+1, wenn
0vr=0k+1k=1), dannist r=2k+2

(r=2 kommt nicht vor).
Damit ist es moglich, schon die Mitte der Periode zu erkennen.

3. Anwendung der Kettenbruch-Theorie

3.1 Emtwicklung einer quadratischen Irrationalitdt in einen reguldren Kettenbruch

Es sei deutlich festgehalten, dass fiir die Aufgabe, aus einer quadratischen Irra-
tionalitéit (definiert durch 3 ganze Zahlen) deren Entwicklung in einen r.Kb.
(definiert durch (h+ r) ganze Zahlen) zu ermitteln, der Umweg iiber die Irrational-
zahl &, selber nicht nétig ist, dass vielmehr die ganze Rechnung ganzzahlig
durchgefiihrt werden kann. (Auch fiir die Berechnung von |V D | muss natiirlich
der Bereich der ganzen Zahlen nicht verlassen werden.) Wenn man noch beachtet,
dass fiir a,b ganz, b#0,0<n <1 gilt:
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{la/b). fals  5>0
I_(a+’7)/bj—{[_(a+1)/b_|, falls b<0,

dann kommt man mit den in 2.2 angegebenen Beziehungen, und nachdem nétigen-
falls Q| D — P? erzwungen wurde, auf die folgende Rekursion:

Py:=P; Qp=0Q; w:=|VD ]

Fur k=0,1,....

bk-={ L(Pe+w)/Qul. falls Q>0 3.1.1)

|(P,+w+1)/Q,]. falls Q,<O0;

Piy1:=bi Qr— Py; Qk+1:=(D—P2, /0.

Dabei beachte man, dass es zur Erkennung der Linge von Vorperiode (k) und
Periode (r) nicht etwa noétig ist, die by, P, Q; alle aufzubewahren, sondern man
beniitze, dass fiir den Index & zum erstenmal die «Galois-Bedingung» erfiillt
ist:

O<ﬁ—Ph<Qh<ﬁ+Ph

und dass das Periodenende erreicht ist, sobald P, ,= P, und Q,,, ,= Q).
Ein Zahlenbeispiel zur Illustration:

P=1, Q=12, D=31 (w=6h=2,r=3).
Die Bedingung Q| D — P2 ist erfiillt.

k -3 =] 0 1 2 3 4 5
by 0 1 1 2 3 1
Py 1 -1 4 3 5 4
Q. 12 3 7 4 3 7
A, 1 0 1 1 3 10 13
B, 1 0 1 1 2 5 17 22

Also: &= (1+V37) /12=0.59023...=[0,1,1,2,3].
Approximationsfehler bei k=35:

As/Bs—&,=13/22—-0.59023...=0.00067 ...

3.2 Die Pelische Gleichung

Gefragt wird nach positiven ganzzahligen Losungen der Gleichung

x*—Dy*=+41, D>0, kein Quadrat. (3.2.1)
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Nach den Andeutungen von Abschnitt 1 wird man sich Resultate von einer r.Kb.-
Entwicklung von V D erhoffen. In der Tat gilt fiir diese mit P=0, Q=1:

A}_\—DB}_\=(—1FQ,

(aus GL. 2.2.1). Da nun aber der r.Kb. von VD in den b;, P,, Q, - bis auf b, und
P, - mit dem rein periodischen r.Kb. von w+ /D iibereinstimmt, erhilt man wegen
der Periodizitit der Q, Losungen fiir k=v-r (v=1,2,...). Dies sind aber auch die
einzigen; somit existieren Losungen von Gleichung 3.2.1 mit rechter Seite + 1 fur
alle nichtquadratischen D, mit —1 dagegen nur, falls der rKb. eine Periode
ungerader Lange besitzt (Beispiel: D=2: r=1; D=3: r=2). Die Gleichungen 2.2.3
lassen uns ferner plausibel erscheinen, dass eine Rekursion, wie sie in Abschnitt 1
fir D=2 angegeben wurde, auch im allgemeinen Fall existiert. Tatsdchlich gelten,
wenn x3— D y3=+ 1, die Rekursionsformeln

x'=xgx+Dyoy;  Y=yox+xpy.

Die Symmetriebetrachtungen von Abschnitt 2.3 finden, in leicht modifizierter
Form, auch hier ithre Anwendung: Unter den rein periodischen r.Kb. besitzen
genau diejenigen, wo Q|2 P, die Eigenschaft, dass die Sequenz by,...,b, symme-
trisch ist. Dies trifft offenbar fir ¢=w +VD zu. Es ist auch hier moglich,
mit entsprechenden Uberlegungen wie vorher, ein Kriterium fiir die Perioden-
mitte anzugeben. Die fir die Losung der Pellschen Gleichung bendétigten A, By
sind natiirlich der Kb.-Entwicklung von /D zu entnehmen.

Ubungsaufgabe: Man diskutiere die beiden Spezialfille D=a?+1 und D=a%—1
(fur beliebiges ganzes a).

Zwei Beispiele zum Nachrechnen:

1. D=14:

V14 =[3,1,2,1,6], w=3, r=4,

V14 +3=[6,1,2,1].

Erste nichttriviale Losung: xo=A;= 15, yo= B;=4.
Rekursion: x’=15x+56y,y=4x+15y.

x 15 449 13455

y 4 120 359

x2=Dy? | 1 1 1
2. D=13:

V13 =[3,1,1,1,1,6], w
V13 +3=[6,1,1,1,1].

3, r=>5,
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Erste nichttriviale Losung: xo=A4,= 18, yo=B,=>5.
Rekursion: x’=18x+65y, y=5x+ 18 y.

X 18 649 23382
y 5 180 6485
x2=Dy | —1 1 ]

3.3 Pythagoreische Zahlen

Die Problemstellung lautet hier:

Gegeben: u,v>0, ganz, teilerfremd, u?>+ v? kein Quadrat.

Gesucht: positive ganzzahlige Losungen von x2+ y?=z2, so dass y /x moglichst nahe
bei u/v liegt.

Wie in Abschnitt 1 ausgefithrt, approximieren wir s=(—v+Vu2+12) /u durch
rationale ¢ /p und bilden dann

x=p’—¢*;  y=2pq; z=p’+q.

Jetzt liegt es nahe, die quadratische Irrationalitdt s in einen periodischen r.Kb.
zu entwickeln und die A4, B, als ¢ und p zu nehmen. Etwas schoner wird die
Entwicklung bei 1/s=(v+Vu?++?) /u, da dann offensichtlich die «Galois-Be-
dingung» (Abschnitt 2.3) erfilllt und damit der r.Kb. rein periodisch ist. Ferner
gilt die Symmetriebedingung, da P=v, Q=u, D=u*+v2. (Auch Q|D— P? ist hier
immer erfiillt.)

Der Ubergang von s auf 1/s fillt nicht ins Gewicht; er bedeutet im wesentlichen
eine Vertauschung der Nidherungszihler und -nenner. Man wird dann also als
» Losungen

bilden, sofern A, — B, ungerade ist, da ja sicher nur irreduzible p.Z. interessieren.
(Man iiberlege sich, dass nie zwei aufeinanderfolgende Paare A4, B, eine gerade
Differenz besitzen!) Die Frage, in welchem Sinne man mit diesem Verfahren alle
«besten» Approximationen fiir das Verhiltnis u /v erhilt, erfordert etwas subtilere
Uberlegungen (siehe [3]). Hier sei nur soviel bemerkt, dass man bei Vertauschung
von ¥ und v im allgemeinen durchaus andere p.Z. erhélt.

Fiir die Durchfithrung der Rechnung benétigt man w= | VD |. Vielleicht ist es
nicht ganz selbstverstindlich, dass auch im ganzzahligen Falle die quadratisch
konvergente Newton-Methode funktioniert. Es gilt ndmlich (siehe [3]) fur beliebige
ganze a>0: Sei

Xo:=a; Yo:=1;

Xipr =X+ Y)2);  Yip=la/Xini]  @=0,1,..).

Dann ist X,,= L\/_a_ |, wo n=Xkleinster Index i, fiir welchen X;<Y,.
So kommen wir auf folgenden Algorithmus zur Bestimmung der r.Kb.-Entwicklung
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von 1/s bis zur Periodenmitte, wobei die P,, Q, selbstverstindlich nicht aufbe-
wahrt werden miissen, sondern es geniigt, das aktuelle Paar P,Q und die neuen
Werte P’,Q’ mitzufithren. (Fiir die ganzzahlige Division wurde die Bezeichnung
adivb:=|a/b| verwendet):

Eingabe (u,v); D:=u*xu+v*v,
Quadratwurzel nach Newton:
x:=D; yi=1;
Wiederhole x:=(x+y)div2; y:=Ddivx solangebis x<y;
wi=x;
Initialisieren:
ki=—1; P :=v,; Q':=u;
Rekursion:
Wiederhole
Ik:=k+1; P:=P; Q:=0Q’;
b:=(P+w)divQ;
P:=b+xQ—p; Q''=(D—P'*P)divQ;
I Ausgabe (k,b)
solange bis (P=P’) oder (Q=Q;
Berechnung der Periodenldnge:
Falls (P=P’),dann r:=2+*k+ 1, sonst r:=2 * k+2; Ausgabe (r)

Wie schon frither bemerkt, bleiben die P, Q, (und damit natiirlich auch b;), im
Gegensatz zu den 4, B, beschrinkt:

O<Pk<W, 0<Qk’ bk<2W

Die Berechnung der x,, y;, z; hitte nach Gleichungen 2.1.1 und 3.3.1 zu geschehen.
Ein Beispiel moge das bisherige illustrieren:

u=10, v=3 (D=109,w=10,r=7).

k -2 -1 0 1 2 3 4 5 6

b, 1 2 1 9 1 2 1

P, 3 7 5 9 9 5 7
Qs 10 6 14 2 14 6 10
A, 1 1 3 4 39 43 125 168
B, 1 1 2 3 29 32 93 125
Xy * 5 7 * 825 * 12599
Vi i 12 24 * 2752 * 42000
Z; * 13 25 * 2873 * 43849
Vi u

= - * —93E-1 95E-2 * 24E-3 * 2.6E-4
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Zum Schluss noch ein Hinweis auf den Spezialfall konstanter b, (d.h. r=1):
1/s=[b)=[b,b,...]. Einsetzen im Kb. fithrt auf 1/s=b+1/(1/s) und damit schliess-
lich auf die beiden Moglichkeiten (da (u,v)= 1 vorausgesetzt) :

u=1, v beliebig, b=2v,
u=2, vungerade, b=v.

In diesem Falle gilt:

Vil (xi+ (= 1F) =u/v.

(Folgt aus Gl. 2.2.1; vgl. auch Einfithrungsbeispiel in Abschnitt 1.)
Beispiele:

u=2, v=1I: b=1, 1/s=(1+V5)/2.

(Die A4, B, bilden, um eine Position gegeneinander verschoben, je die Folge der
Fibonaccizahlen.)

u=v=1: b=2, 1/s=1+V2 .

(Beispiel aus Abschnitt 1.)
Peter Lauchli, ETH Ziirich
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Aufgaben

Aufgabe 825. Es sei N eine natiirliche Zahl. Fiir n=1,2,...,2 N sei f(n) definiert

durch
n—-2kl<N)( N )
n k)\n—k)

o-(2Y' 8,



	Reguläre Kettenbrüche und quadratische diophantische Probleme

