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Immerhin lassen sich unsere Ergebnisse zu Algorithmen zur effektiven Abschéitzung
von s(k, m) verwenden. Dabei zeigt sich, dass Satz 1 bereits sehr oft hilfreich sein

kann.
Detlef Laugwitz, TH Darmstadt
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Eine Bemerkung iiber Stammfunktion und Zwischenwerteigenschaft

Es bezeichnen im folgenden R die Menge der reellen Zahlen und I ein beschrinktes
oder nichtbeschrinktes Intervall von R. Den Begriff der Stammfunktion verstehen
wir hier im engeren Sinne (furr eine erweiterte Fassung vgl. [1], S. 159): g:7—> R heisst
eine Stammfunktion der Funktion f:1— R auf I, wenn fiir jede Stelle x von I gilt:
g bei x differenzierbar und g’ (x)=f(x). Wir sagen, f:I— R habe die Zwischenwert-
eigenschaft auf I, wenn gilt: Sind a,b e I mit f(a)=#f(b) und d zwischen f(a) und £ (b),
so gibt es ein ¢ zwischen a und b mit f(c)=d.

Die Eigenschaft von f, auf I eine Stammfunktion zu besitzen, steht bekanntlich in
keiner einfachen Implikationsbeziehung zur Riemann-Integrierbarkeit auf den
kompakten Teilintervallen von I (vgl. [4], S.146-147). Die leider viel zu wenig
bekannte Tatsache (#) g:/— R, g auf I differenzierbar =g’ hat die Zwischenwert-
eigenschaft auf I (vgl. z.B. [3], S.25) ist nun mitbeteiligt an der Begriindung der
folgenden Aussage.

Satz. Fiir f:1— R und die Bedingungen

(i) fist auf I stetig,

(ii) f besitzt eine Stammfunktion auf I,

(iii) f hat die Zwischenwerteigenschaft auf I
gilt (i) 4= (i) 4= (iii).

[Man beachte, dass (i)=>(iii) die Aussage des Bolzanoschen Zwischenwertsatzes ist.}

Beweis: (i)=>(ii) ldsst sich in bekannter Weise mit Hilfe des Riemannschen Integrals
begriinden, und (ii)=>(ii1) folgt aus (#). Fiir (ii) =4 (i) wdhle man I=R,f(x)
=sin(1/x)(x+0),/(0)=0 (vgl. [1], S.164, Problem 6a, oder [2]). Schliesslich sei
h(x)=sin(1/x) (x+0),h (0)= 1. h hat die Zwischenwerteigenschaft auf R. Es sei nun
g eine Stammfunktion der vorhin erwihnten Funktion f auf R. Besisse auch 4 eine
Stammfunktion g, auf R, so wire g,—g; auf R differenzierbar und [g, (x)— g, (x))’
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=8;(x)—g{ (x)=h(x)—f(x)(xeR), also g;(x)—g{(x)=0(x+0) und g;(0)—g{(0)
=1, im Widerspruch zu (*). Damit ist auch (iii) = (ii) begriindet. ~ Jirg Ritz, Bern
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Inequalities of Y{f type in the triangle

Let P be a point in the interior of a triangle (7)) of vertices 4,4,,43 and of vertex
angles a;,a,,a3. Connect P to the vertices of (7) and put f,=L PA;A,
fr=L PA,A,, etc. If B1=p8,=p, then P is one of the Brocard points of (7) and
B;=w the value of the Brocard angle of (7). In this case, we have shown in this
Journal [29, 141-142 (1974)], that

8w3<aaya;. ¢y
Here we prove that w satisfies
®3< (a,— w)(a,— 0)(a;— ), )

an inequality that improves (1).
To prove (2), we use, as in the proof of (1), sinw /w > sin(n /6)/(z /6) the arithmetic-
geometric mean inequality, and the theorem of Ceva. We get

sin(7 /6)

6
sin®w =[] sinw sin(a;,— w) <[ [Jo (a,— »)] [W]

<[Ilw(@i— )] [sinw/wlf, 3)

which readily yields (2). Now (2) and o (a;,— )< (a,/2)? imply w®< ][] (a;/2)* which
gives (1). Note that strict inequality holds in (2) unless (7) is equilateral.

In general, if #; is as described above then the smaller of the two products] [ A, and
II(a;—B)) is less than or equal to J] (a;/2); and it appears probable that both
products are less than or equal to]] (a;/2). In other words, it appears that the
following inequality

max ([[B8:]1](a;i—8)) gH(ai/z) *)

is true.
In trying to establish (*), it is natural to consider first the case ;= w. In view of our
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inequality (2), this case reduces to the problem of establishing the following in-
equality:

[I(a:— o)< ]1@;/2). **)

However, we have not been able to establish either of (*) or (**).

There exist in the plane of (T) points P such that[[ B =1l(a,-p ;)- For such points,
inequality (*) is easily verified. Examples of such points are the orthocenter and the
circumcenter, when (7) is acute, and the incenter. This suggests the following
problem which appears to be of interest.

Problem: Find all points interior to (7) such that [ [ #,=]](a,— 8,), and discuss any
special properties of the set of all such points.

Finally we note that, if in (*) the values of the angles are replaced by the sines of
these angles, then the resulting inequalities are much easier. Indeed, the same
method used above gives,

[Ising;<[]sin(a;/2). @)

In particular if, in (4), P is taken to be the orthocenter, we get
IIcos(a)<]Isin(a;/2). (5)

Faruk F. Abi-Khuzam, American University of Beirut
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Reguliire Kettenbriiche und quadratische diophantische Probleme
Einleitung

Die Theorie der reguliaren Kettenbriiche, zeitweise etwas in Vergessenheit geraten,
hat doch immer wieder das Interesse der Mathematiker gefesselt und auch An-
regung zum Experimentieren geboten. Verschiedene recht einfach zu formulierende
Resultate eignen sich vorziiglich zu einer Behandlung im Rahmen der Elementar-
mathematik. Wir besprechen hier zwei Anwendungen auf quadratische diophan-
tische Probleme, nimlich 1. die Pellsche Gleichung, welche in der Theorie der
quadratischen diophantischen Gleichungen mit zwei Unbekannten eine zentrale
Rolle spielt, sowie 2. einen etwas ungewohnten Aspekt der pythagoreischen Zahlen,
d.h. der ganzen Zahlen, welche Seitenlingen von rechtwinkligen Dreiecken dar-
stellen.

Bei diesem Aufsatz handelt es sich um eine vollig umgeschriebene und stark
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