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Zeitschrift zur Pflege der Mathematik
und zur Förderung des mathematisch-physikalischen Unterrichts

El. Math. Band 35 Heft 4 Seiten 73-104 Basel, 10. Juli 1980

Quadratsummen in Restklassenringen

Herrn Curt Schmieden zu seinem 75. Geburtstag am 22. Juni 1980.

Bekanntlich ist jede natürliche Zahl als Summe von höchstens vier Quadratzahlen
darstellbar, und jede Primzahl p= 1 (mod 4) ist gleich der Summe von zwei Quadratzahlen.

Die Theorie der quadratischen Reste hat dann geklärt, wann ein Rest k
modulo m gleich einem Quadrat ist, wann es also x gibt mit x2= k (mod m).
Die Frage nach Quadratsummendarstellungen modulo m ist naheliegend, die Antwort

scheint aber nicht allgemein bekannt zu sein. So ist kürzlich die Aufgabe [1]
behandelt worden, wie viele Quadrate zur Darstellung von — 1 modulo m erforderlich

sind; da diese Aufgabe von mehreren Zahlentheoretikern bearbeitet wurde und
keine Hinweise auf ältere Literatur angegeben sind, erscheint die Behandlung der
folgenden ganz allgemeinen Fragestellung gerechtfertigt:

Bei gegebenem keZ,meN bezeichne s (k, m) das kleinste s,für welches

s

X x2=k(modm)
7-1

Lösungen (xx,...,xs) besitzt. Man berechne s (k, m)\

(Wir betrachten ohne Beschränkung der Allgemeinheit nur k= 0.)
Offenbar gilt s(k,m)^4, da k ja sogar gleich einer Summe von höchstens vier
Quadraten ist. Man überzeugt sich, dass s(- 1,8) s(7,8) =4. Die Fälle s(k,m)= 1 sind
durch die Theorie der quadratischen Reste geklärt. lstp= 1 (mod 4) eine Primzahl,
so gilt _?(/?,m)___2. In [1] ist s(- l,m) für alle m berechnet: s(- l,m)=4 für 8|m;
s(-l,m)=3 für 22\\mx); s(- l,m)=2, falls 4Jfm undp\m für wenigstens einp=3
(mod4); s(- l,m)= 1, falls 4Jfm und ausp\m folgtp l oderp= 1 (mod4).
Wann s(k,m)= 1 gilt, ergibt sich aus der Theorie der quadratischen Reste. Wir sind
daher mit Aussagen wie s (k, m)_ü 2 zufrieden.
Wir beweisen der Vollständigkeit halber eine einfache Hilfsbemerkung, die wir später

auf die Polynome P(x,y)=x2+y2—k und P(x,y,z)=x2+y2+z2-k bei festem
k anwenden werden:

Hilfssatz. Es sei P(x,y,...,z) ein Polynom mit ganzen Koeffizienten in N ganzzahligen
Variablen. Dann ist

P(x,y,...,z)=0 (modm)
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genau dann lösbar, wenn

P(x,y,...,z)=0(modp/j)

für allej=l,...,n lösbar istx).

Beweis: Sei P(xq,y^...,z0)=0 (mod m); dann gilt dieselbe Kongruenz offenbar auch
nach den Moduln/?^. - Umgekehrt sei für/= l,...,n

P (xpyp..., Zj)=0 (modpp).

Es ist zu zeigen, dass dann x0,j0,..., z0 existieren mit

P(xo,yo,...,z0)EzO (modm).

Dazu bestimmen wir nach dem chinesischen Restsatz die x^y$,...,z0 als Lösungen
der simultanen linearen Kongruenzen

x0 Xj (modpp)
y0=yj(modpjaj) j=l,2,...,n.
z0 Zj (modpp)

Damit gilt P(x^y^ ...,z0)=0 (modpp) für alley und damit auch

^(*o,.Vo'---^o)=0 (modm). D

Wichtig ist, dass man sich somit auf Primpotenzmoduln beschränken kann.
Für einen ersten, schon ziemlich weitreichenden Satz werden hier zwei Beweise
angegeben. Der erste verallgemeinert das Verfahren von R.L. McFarland für k= — 1

aus [1] und ist zwar kurz, aber wegen der Verwendung des Dirichletschen Primzahlsatzes

für arithmetische Folgen nicht elementar. Der zweite, etwas längere Beweis
ist elementar; er liefert sogar etwas mehr.

Satz 1. Es sei d ungerade und m 2d oder m d, ferner (k,d)=l. Dann ist s(k,m)__i 2.

Erster Beweis: Wir setzen zunächst sogar (k,2d)= 1 voraus und machen eine
Fallunterscheidung.
Sei /c= 1 (mod 4). Wir betrachten die arithmetische Folge

k+4dn, « 0,1,2,3,...;

sie enthält nach dem Satz von Dirichlet eine Primzahl q, weil (k,4d)= 1, und wegen
q=/c== 1 (mod 4) gibt es eine Darstellung von q als Summe zweier Quadrate. Also ist

s(k,m)^2.

1) <f\m heisst q°\m (|für «teilt»), aber qa+lJfm; p bezeichnet stets eine Primzahl, m^pxax p*n
die kanonische Primzerlegung. Der grosste gemeinsame Teiler von m und n wird (m,n) geschrieben.
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Sei k 3 (mod 4). Hier nehmen wir die arithmetische Folge

k + 2d+4dn, n 0,1,2,3,...

Für eine in ihr enthaltene, wegen (k + 2d,4d)= 1 sicher existierende Primzahl q gilt
wegen d= ± 1 (mod 4), also 2d= +2 (mod 4), wieder q= 1 (mod 4), also q x2+y2.
Wieder haben wir k=x2+y2 (modm), also s(k, m)_ü 2.
Es ist nun noch der Fall eines geraden k zu behandeln. (Bei ungeraden m d wäre
das nicht nötig, weil dann statt k die ungerade Zahl k'=k+m herangezogen werden
könnte.) Wir benutzen die Identität 2 (a2+b2) (a + b)2+(a- b)2:
Da k 2s • u mit einer ungeraden Zahl u= a2+b2 gilt, ist mit u auch k eine Summe
zweier Quadrate. (Ist s gerade, so ist 2S ein Quadrat, sonst kommt ein Faktor 2

dazu.) D

Zweiter Beweis: Nach dem Hilfssatz genügt es, Primpotenzmoduln m=pa zu
betrachten.

Fall 1. a=l, also m=p. Für p 2 haben wir s(k,2)= 1. Bei ungeradem p gibt es

genau (p—l)/2 teilerfremde quadratische Restklassen (QR) und ebenso viele
quadratische Nichtreste (NR). Wir betrachten für x 0,1,2,...,/?- 1 und gegebenes k
die Zahlen k — x2. Darunter müssen (p+ l)J2 paarweise inkongruente sein, weil aus
k-x2x k — x\ folgt xx x2 oder xx=p — x2. Unter den (p+ l)/2 verschiedenen
Restklassen muss sicher die Klasse der 0=02 oder ein QR sein, da es nur (p—l)/2 NR
gibt. Damit hat aber k—x2=y2 (modp) eine Lösung, es ist also s (£,/?)=__ 2.

Fall2. a 2,p ungerade, also m=p2. Es sei k0 irgendeine Summe von zwei Quadraten,

k0 xl+yl. Für alle ganzen Zahlen g werde definiert kg=(x0+gp)2+yl=k0
+ 2pgx0 (mod/?2). Falls (x0,/0= 1, gibt es zu jedem r=0, l,...,p— 1 ein g, so dass

lgx0=r (modp), und damit wird kg=(x0+gp)2+yl=k0+rp (mod/?2). Also ist
s(k0+rp,p2)^l, falls (x0,/?)= 1 bei gegebenem k0 erreicht werden kann. Da XQ,y0
vertauschbar sind, musste im anderen Fall x0=y0=0 (modp) gelten. Aber dann
folgt k0=xl+yl=0 (mod/?2), und hier sind alle fcg=A:0==0 (mod/?2). Alle k0 mit
(&o/0= 1 sind aber als Summen von höchstens zwei Quadraten modulo/? darstellbar,

und k0+rp durchlaufen alle teilerfremden Restklassen modulo p2, also gilt
s(k,p2)=2für(k,p)=l.
Zusatz: Wir erledigen hier gleich noch, innerhalb des Beweises, den Fall k—gp\
ist /?= 1 (mod 4), so gibt es eine Darstellung /? x\+y\ mit (xo,/?)= 1, und unsere
Überlegung ist wieder anwendbar, d.h. s(gp,p2)^l für p= 1 (mod4). Sei nun/? =3
(mod4); wäre x2+y2=gp=0 (modp), so folgte —x2= +y2 (modp). Falls (*,/?)= 1,

existierte z mit zx=l (modp), also - 1= — (zx)2=(zy)2 (modp). Es ist aber hier - 1

ein NR, also bleibt nur (x,p)=p, d.h. x ap, y=bp, g=(a2+b2)p, also kann gp für
(g,/?)=l nicht Summe von höchstens zwei Quadraten sein: s(jgp,p2)=3 für p 3

(mod 4) und (g,/?)= 1. Damit ist der Zusatz beendet, und wir fahren mit dem Beweis
von Satz 1 fort.
Fall 3. 0i__ 3. Wir werden vollständige Induktion nach a durchführen, um zu zeigen:
«?(&,/?*)___ 2 für alle k mit (k,p) 1 undp+2. Für a= 1,2 ist die Aussage bewiesen.
Wir setzen sie jetzt für ein a voraus und zeigen ihre Richtigkeit für a+ 1. Sei k ge-
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geben. Dann gibt es nach Induktionsvoraussetzung x0,y0 mit xl+yl=k0=k
(modpa). Wir erhalten jetzt für ganze g

kg-(xQ+g'Pa)2+yl
k0+2gx0pa(modpa+x).

Bei (xq,p)= 1 [was bei (k,p)= 1 erreichbar ist] lässt sich 2g*0 wieder so einrichten,
dass/c04-2gjc0/?fl=Ä: (modpa+x). D
An den Beweis zu Fall 3 können wir sogleich einen Zusatz anschliessen, für den Fall
p= 1 (mod 4). Hier behaupten wir, dass die Voraussetzung (x0,/?)= 1 immer erfüllbar
ist. Für a=2 wurde das im Zusatz benutzt. Dann benutzt man für a 3 stattdessen

xo+8P2:=x$\ allgemein bei a+ 1 xtf+x>>=x$)+gpa, und alle diese Zahlen sind mit
x0 teilerfremd zu/?. Es ist also x2+y2=k(pa) auch für (k,pa)> 1 stets lösbar, wenn
p= 1 (mod 4).
Ist hingegen p=3 (mod4), so zeigte der Zusatz, dass x2+y2=gp (mod/?2) für
(g,/?)=l unlösbar ist. Dann ist x2+y2=gp (modpa) für a>2 erst recht unlösbar,
wenn (g,p)= 1. [Man beachte aber, dass bei/?Ig durchaus Lösungen existieren können,

z.B. bei g—p, g 2/?, g=5/?, nämlich etwap2+02,p2+p2,p2+ (2p)2.] Wir fassen

die Zusätze zusammen:

Satz 2. Bei /? 1 (mod 4) gilt s (/c,/?ö)_g 2 für alle k und a=2. Bei /?= 3 (mod 4) und
(g,p) 1 giltfür alle a i__ 2: s (g • p,pa) i__ 3.

Im Hinbück auf den Hilfssatz haben wir nun

Satz 3. Aus p2\m folge /?= 1 (mod 4). Dann gilt für alle k: s(k,m)^2. Ist umgekehrt
s (k, m) _s 2für alle k, so ist m von dieser Gestalt.

Die ausgesagte Umkehrung ergibt sich daraus, dass s (3,4)=3 ist und dass

s (p,p2)= 3 fürp=3 (mod 4).
Bei Moduln, welche keine dritten Potenzen enthalten, ist jetzt lediglich noch
s(gp,p2) zu untersuchen, wenn/? =3 (mod4). Wir behaupten sogleich etwas mehr.

Satz4.Bei(g,p)= 1 undp=3 (mod4)gilts(gp,pN) 3, wennN=2.

Beweis: Es geht nur noch darum, s(gp,pN)=4 auszuschliessen. Dazu müssen wir bei
gegebenem g irgendein a finden, so dass die natürliche Zahl gp + apN (_Vi__2)

durch weniger als vier - und dann, wie wir wissen, durch genau drei - Quadrate
darstellbar ist. Dazu benutzen wir die Tatsache, dass die Zahlen, welche vier Quadrate
erfordern, von der Form 4*(8L4-7), k,L^0, sein müssen, also sicher kongruent 0

modulo 4 oder (bei /c=0) kongruent — 1 modulo 4 (und sogar modulo 8). Wir
betrachten N—2M und unterscheiden (bei gegebenen g undp 4j-l):
Fall 1. gp ist nicht von der Form 4* (8 L +1), dann sind wir fertig.
Fall 2. gp=4k(SL + l)mitk^l. Wir betrachten:

gp+p2^=4k(SL + l)+ (4j- l)2M
l(mod4),
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also nicht =0,-1 (mod 4), so dass eine Summe von drei Quadraten erhalten wird.
Fall 3.gp=SL + 7. Wir betrachten

g/?4-2/?2M=8L4-74-2(4/-l)2M
-14-2=1 (mod 4).

Seinun_V=2Af+ l,M= 1. Wir unterscheiden wieder:
Fall 1. Wie oben.

Fall2.gp 4k(8L + l),k=l.
Dann ist

gp + ap2M+x 0 + ap p2M
a - p • 1 — a (mod 4).

Bei a 2 sind also nur drei Quadrate erforderlich.
Fall3. gp=%L + l. Hier ist gp + ap2M+x= - l-a (mod4), also können wir a=l
wählen. D
Man beachte, dass im Beweis nicht von (g,/?)= 1 Gebrauch gemacht wurde. Das
gibt:

Satz 5. Beip= 3 (mod 4) gilt s (k,pN) 3 für alle k.

Wann ist nun eigentlich mit s(k,m) 4 zu rechnen? Wendet man die Vorüberlegung
auf das Polynom x2+y2+z2—k an, so lässt sich dieses genau dann nicht zu Null
machen, wenn für eine Primpotenzpp\m gilt s(k,pp) 4. Bei ungeraden/?, kann
das aber nach unseren Sätzen nicht eintreten. Daher ist nur noch übrig /? 2. Da
s(/c,22)___3 und s(k,23)=4 genau für k= — 1 (mod8), brauchen wir nur m 2a bei
fli__3 zu betrachten. Sei etwas allgemeiner m 8L, dann untersuchen wir auf
Lösbarkeit

x2+y2+z2= -14-8/ (mod 8 L);

falls eine Lösung existiert, gälte

x2+y2+z2=-l + Sj+%Lq,

also a;24-j>24-_.2== — 1 (mod 8), aber das ist unlösbar. Also ist _$*(—• 1,8L)=4.
Von jetzt an sei k beüebig und m 2N, _Vi__3; dann wird s(k,m)=4 genau dann
eintreten, wenn k und alle k+qm von der Form (F) 4K(SL + 7) sind. Ist k=%L + l, so

folgt

k+q. 2N=%(L + q- 2N~3)+1,

und das ist wieder von der Form (F), also

s(%L + l,2N)=4 für _Vi*3. (1)
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Ist aber k=4K(SL + 7) mit K= 1, so kann s alle Werte von 1 bis 4 annehmen. Wir
erörtern das genauer. Dazu setzen wir N=2K+J, wobei J>0 vorausgesetzt werden
soll, weil sonst /c 0 (mod 2^) wäre. Dann ist

k+q 2N=4K(&L + l)+ q 22K+J

4K(SL + q-2J+l).

Falls /_* 3, ist das wieder von der Form (F), also

s(4K(%L + l),lN)=4 für N^lK+3. (2)

Es bleiben noch die Fälle /= 1, /= 2, mit

fc4-<7-2Ar=4*[8L4-2_/4-7] bei /= 1 (3)

und

k + qlN=4K[SL + 4q + l] bei J=2 (4)

mit _7=0,1,2,3,...
Im Falle (3) betrachten wir q 2 r+ 1 und haben

k + (2r+ l)2N=4K[%(L+ l) + 4r+ 1].

Der Ausdruck in eckigen Klammern stellt eine arithmetische Folge dar, auf die der
Satz von Dirichlet anwendbar ist. Für geeignetes r wird der Ausdruck zu einer
Primzahl/?= 1 (mod4), alsop x2+y2, so dass also gilt

k= (lK)2(x2+y2)= (2Kx)2+ (2Ky)2 (mod 2*),

es ist also im Falle /= 1

^,2*)*» 2.

Im Falle (4) liegt für q= 1 nicht die Form (F) vor, also ist _? (ä:, 2iv)__i 3.

Wir fassen die Ergebnisse zu (1), (2), (3), (4) zusammen und haben insbesondere
eine Kennzeichnung der Fälle s (k, m)=4:

Satz6. Es gilt s(k,m)=4 genau dann, wenn S\m und bei 2N\\m, k>0 gilt:
fc=4*(8L+7), wobei K** (N- 3)/2.
Ist k=4K(SL + 7) bei m lN>S und N=2K+l, so gilt s(k,m)=l; bei N=2K+2
gilts(k,m)^3.

Unsere Resultate sind für s(k,m)=4 optimal, und für s(k,m)=l kann man, wie
eingangs erwähnt, die Theorie der quadratischen Reste heranziehen. Damit sind
Aussagen s(k,m)^l entscheidbar. In einigen Fällen haben wir lediglich s(k,m)^3
erhalten, so dass dann noch zwischen 2 und 3 zu unterscheiden ist.



Kleine Mitteilungen 79

Immerhin lassen sich unsere Ergebnisse zu Algorithmen zur effektiven Abschätzung
von s(k,m) verwenden. Dabei zeigt sich, dass Satz 1 bereits sehr oft hilfreich sein
kann.

Detlef Laugwitz, TH Darmstadt
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Kleine Mitteilungen

Eine Bemerkung über Stammfunktion und Zwischenwerteigenschaft

Es bezeichnen im folgenden R die Menge der reellen Zahlen und I ein beschränktes
oder nichtbeschränktes Intervall von R. Den Begriff der Stammfunktion verstehen
wir hier im engeren Sinne (für eine erweiterte Fassung vgl. [1], S. 159): g:I-+R heisst
eine Stammfunktion der Funktion f. I-^ R auf I, wenn für jede Stelle x von / gilt:
g bei x differenzierbar und g'(x)=f(x). Wir sagen,/:I-+R habe die Zwischenwerteigenschaft

aufl, wenn gilt: Sind a,bel mitf(a) +f(b) und d zwischen/(a) undf(b),
so gibt es ein c zwischen a und b mitf(c) d.
Die Eigenschaft von/, auf I eine Stammfunktion zu besitzen, steht bekanntlich in
keiner einfachen Implikationsbeziehung zur Riemann-Integrierbarkeit auf den
kompakten Teilintervallen von / (vgl. [4], S. 146-147). Die leider viel zu wenig
bekannte Tatsache (*) g:J->_R, g auf I differenzierbar =>g' hat die Zwischenwerteigenschaft

auf I (vgl. z.B. [3], S.25) ist nun mitbeteiligt an der Begründung der
folgenden Aussage.

Satz. Fürfll-* R und die Bedingungen
(i) fist aufl stetig,
(ii) fbesitzt eine Stammfunktion aufl,
(iii) fhat die Zwischenwerteigenschaft aufl
gilt(i)^(ii)^>(iii).

[Man beachte, dass (i)=> (iii) die Aussage des Bolzanoschen Zwischenwertsatzes ist.]

Beweis: (i)=>(ii) lässt sich in bekannter Weise mit Hilfe des Riemannschen Integrals
begründen, und (ii)=>(iii) folgt aus (*). Für (ii)=#(i) wähle man I=R,f(x)

sin(l/x)(x+0),f(0)=0 (vgl. [1], S.164, Problem 6a, oder [2]). Schliesslich sei

h(x)=sin(l/x)(x^0),h(0)= 1. h hat die Zwischenwerteigenschaft auf R. Es sei nun
gx eine Stammfunktion der vorhin erwähnten Funktion/auf R. Besässe auch h eine
Stammfunktion g2 auf R, so wäre g2-gi auf R differenzierbar und \g2(x)-gx (x)]'
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