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Quadratsummen in Restklassenringen

Herrn Curt Schmieden zu seinem 75. Geburtstag am 22. Juni 1980.

Bekanntlich ist jede natiirliche Zahl als Summe von hochstens vier Quadratzahlen
darstellbar, und jede Primzahl p=1 (mod 4) ist gleich der Summe von zwei Quadrat-
zahlen. Die Theorie der quadratischen Reste hat dann gekliart, wann ein Rest k
modulo m gleich einem Quadrat ist, wann es also x gibt mit x2=k (mod m).

Die Frage nach Quadratsummendarstellungen modulo m ist naheliegend, die Ant-
wort scheint aber nicht allgemein bekannt zu sein. So ist kiirzlich die Aufgabe [1]
behandelt worden, wie viele Quadrate zur Darstellung von — 1 modulo m erforder-
lich sind; da diese Aufgabe von mehreren Zahlentheoretikern bearbeitet wurde und
keine Hinweise auf dltere Literatur angegeben sind, erscheint die Behandlung der
folgenden ganz allgemeinen Fragestellung gerechtfertigt:

Bei gegebenem ke Z, me N bezeichne s (k,m) das kleinste s, fiir welches
s
2., x}=k (mod m)
j=1
Lisungen (x,,...,x,) besitzt. Man berechne s (k, m)!

(Wir betrachten ohne Beschriankung der Allgemeinheit nur k= 0.)

Offenbar gilt s (k,m)=4, da k ja sogar gleich einer Summe von hochstens vier Qua-
draten ist. Man iiberzeugt sich, dass s(— 1,8)=s(7,8)=4. Die Fille s(k,m)=1 sind
durch die Theorie der quadratischen Reste geklirt. Ist p=1 (mod 4) eine Primzahl,
so gilt s(p,m)=2. In [1] ist s(—1,m) fur alle m berechnet: s(—1,m)=4 fir 8|m;
s(—1,m)=3 fir 22| m'"); s(—1,m)=2, falls 4/ m und p|m fir wenigstens ein p=3
(mod4); s(— 1,m)=1, falls 4f m und aus p|m folgt p=2 oder p=1 (mod4).

Wann s(k,m)=1 gilt, ergibt sich aus der Theorie der quadratischen Reste. Wir sind
daher mit Aussagen wie s (k,m)= 2 zufrieden.

Wir beweisen der Vollstindigkeit halber eine einfache Hilfsbemerkung, die wir spé-
ter auf die Polynome P (x,y)=x2+y?—k und P(x,y,z)=x%+y*+ 22—k bei festem
k anwenden werden:

Hilfssatz. Es sei P(x,y,...,z) ein Polynom mit ganzen Koeffizienten in N ganzzahligen
Variablen. Dann ist

P(x,y,...,z2)=0 (modm)
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genau dann losbar, wenn

P(x,y,...,2)=0 (mod p%)
fiirallej=1,...,n losbar ist").

Beweis: Sei P (xg,)g,...,2¢)=0 (mod m); dann gilt dieselbe Kongruenz offenbar auch
nach den Moduln p;%. - Umgekehrt sei furj=1,...,n

P(xj’.y_p .o .,Zj)E O (modpjaj) )
Es ist zu zeigen, dass dann x, y,, ..., z, existieren mit
P(Xo,_)/o, N ANE 0 (modm).

Dazu bestimmen wir nach dem chinesischen Restsatz die x,,yq,...,2, als Losungen
der simultanen linearen Kongruenzen

Xo=x; (mod p;%)
Yo=y;(modpd)  j=1,2,...,n.
29=z; (modp%)

Damit gilt P (xq, g, ...,29)=0 (mod p;%) fiir alle j und damit auch
P(xq, y9+-2,20)=0 (modm). 0O

Wichtig ist, dass man sich somit auf Primpotenzmoduln beschrinken kann.

Fiir einen ersten, schon ziemlich weitreichenden Satz werden hier zwei Beweise an-
gegeben. Der erste verallgemeinert das Verfahren von R.L. McFarland fur k= —1
aus [1] und ist zwar kurz, aber wegen der Verwendung des Dirichletschen Primzahl-
satzes fiir arithmetische Folgen nicht elementar. Der zweite, etwas lingere Beweis
ist elementar; er liefert sogar etwas mehr.

Satz 1. Es sei d ungerade und m=2d oder m=d, ferner (k,d)=1. Dann ist s (k,m)=2.

Erster Beweis: Wir setzen zunéchst sogar (k,2d)=1 voraus und machen eine Fall-
unterscheidung.
Sei k=1 (mod 4). Wir betrachten die arithmetische Folge

k+4dn, n=0,1,2,3,...;

sie enthilt nach dem Satz von Dirichlet eine Primzahl ¢, weil (k,4d)=1, und wegen
g=k=1 (mod4) gibt es eine Darstellung von ¢ als Summe zweier Quadrate. Also ist
s(k,m)=2.

1) g%l m heisst g%|m (|fur «teilt»), aber g+ 1/ m; p bezeichnet stets eine Primzahl, m=pai. ... .pan
die kanonische Primzerlegung. Der grésste gemeinsame Teiler von m und n wird (m,n) geschrieben.
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Sei k=3 (mod 4). Hier nehmen wir die arithmetische Folge
k+2d+4dn, n=0,1,2,3,...

Fiir eine in ihr enthaltene, wegen (k+2d,4d)=1 sicher existierende Primzahl ¢ gilt
wegen d= * 1 (mod4), also 2d= +2 (mod4), wieder g=1 (mod4), also g= x2+ y2.
Wieder haben wir k=x2+ y? (mod m), also s (k, m)= 2.

Es ist nun noch der Fall eines geraden k zu behandeln. (Bei ungeraden m=d wiire
das nicht nétig, weil dann statt k die ungerade Zahl k’=k + m herangezogen werden
konnte.) Wir benutzen die Identitit 2 (a2+ b2 = (a + b)*+ (a— b)%:

Da k =2°- u mit einer ungeraden Zahl u= a2+ b? gilt, ist mit u auch k eine Summe
zweier Quadrate. (Ist s gerade, so ist 2° ein Quadrat, sonst kommt ein Faktor 2
dazu.) O

Zweiter Beweis: Nach dem Hilfssatz geniigt es, Primpotenzmoduln m=p? zu be-
trachten.

Fall 1. a=1, also m=p. Fir p=2 haben wir s(k,2)=1. Bei ungeradem p gibt es
genau (p—1)/2 teilerfremde quadratische Restklassen (QR) und ebenso viele qua-
dratische Nichtreste (NR). Wir betrachten fir x=0,1,2,...,p— 1 und gegebenes k
die Zahlen k— x2. Darunter miissen (» + 1)/2 paarweise inkongruente sein, weil aus
k—x%=k—x3 folgt x,=x, oder x,=p— x,. Unter den (p+ 1)/2 verschiedenen Rest-
klassen muss sicher die Klasse der 0=02 oder ein QR sein, da es nur (p—1)/2 NR
gibt. Damit hat aber k — x2= y? (mod p) eine Losung, es ist also s (k,p)= 2.

Fall 2. a=2, p ungerade, also m=p2. Es sei k, irgendeine Summe von zwei Quadra-
ten, ko=x}+y3. Fiir alle ganzen Zahlen g werde definiert k= (xo+gp)*+ y3=k,
+2pg xo (mod p?). Falls (xq,p)=1, gibt es zu jedem r=0,1,...,p—1 ein g, so dass
2gxo=r (modp), und damit wird k,=(xo+gp)*+yj=ko+rp (modp?). Also ist
s(ko+rp,p?)=2, falls (xo,p)=1 bei gegebenem k, erreicht werden kann. Da xg,y,
vertauschbar sind, miisste im anderen Fall xo=y,=0 (modp) gelten. Aber dann
folgt ko=x3+y3=0 (modp?), und hier sind alle k,=k,=0 (modp?). Alle k, mit
(ke,p)=1 sind aber als Summen von hochstens zwei Quadraten modulo p darstell-
bar, und ky+rp durchlaufen alle teilerfremden Restklassen modulo p?, also gilt
s(k,p?)=2 fur (k,p)=1.

Zusatz: Wir erledigen hier gleich noch, innerhalb des Beweises, den Fall k=g - p;
ist p=1 (mod4), so gibt es eine Darstellung p=x3+y3 mit (xo,p)=1, und unsere
Uberlegung ist wieder anwendbar, d.h. s(gp,p?)=2 fir p=1 (mod4). Sei nun p=3
(mod4); wire x2+ y?=gp=0 (mod p), so folgte — x2= + y? (mod p). Falls (x,p)=1,
existierte z mit zx=1 (modp), also — 1=— (2x)?=(zy)? (mod p). Es ist aber hier —1
ein NR, also bleibt nur (x, p)=p, d.h. x=ap, y="bp, g=(a*+ b?)p, also kann gp fiir
(g,p)=1 nicht Summe von hochstens zwei Quadraten sein: s(gp,p*)=3 fiir p=3
(mod4) und (g,p)= 1. Damit ist der Zusatz beendet, und wir fahren mit dem Beweis
von Satz 1 fort.

Fall 3. a= 3. Wir werden vollstindige Induktion nach a durchfithren, um zu zeigen:
s(k,p®=2 fir alle k mit (k,p)=1 und p+2. Fir a=1,2 ist die Aussage bewiesen.
Wir setzen sie jetzt fiir ein a voraus und zeigen ihre Richtigkeit fiir a+ 1. Sei k ge-
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geben. Dann gibt es nach Induktionsvoraussetzung xg,y, mit x3+y3=k,=k
(mod p9). Wir erhalten jetzt fiir ganze g

kg=(xo+g " PV’ +¥j
=ko+2gx,p? (mod pa+1),

Bei (xg,p)=1 [was bei (k,p)=1 erreichbar ist] ldsst sich 2 gx, wieder so einrichten,
dass kg+2g xop®=k (modp®*!). O

An den Beweis zu Fall 3 konnen wir sogleich einen Zusatz anschliessen, fiir den Fall
p=1 (mod4). Hier behaupten wir, dass die Voraussetzung (x,, p)= 1 immer erfiillbar
ist. Fiir a=2 wurde das im Zusatz benutzt. Dann benutzt man fiir a=3 stattdessen
xo+gp?=x{), allgemein bei a+ 1 x{f+D=x@+gp? und alle diese Zahlen sind mit
X, teilerfremd zu p. Es ist also x2+ y?=k (p?) auch fiir (k,p%)> 1 stets losbar, wenn
p=1 (mod4).

Ist hingegen p=3 (mod4), so zeigte der Zusatz, dass x2+y?=gp (modp?) fiir
(g,p)=1 unldsbar ist. Dann ist x2+y?=gp (modp?) fiir a>2 erst recht unldsbar,
wenn (g,p)=1. [Man beachte aber, dass bei p|g durchaus Lésungen existieren kon-
nen, z.B. bei g=p, g=2p, g=5p, nimlich etwa p?+ 02 p2+p? p*+ (2 p)%] Wir fas-
sen die Zusédtze zusammen:

Satz 2. Bei p=1 (mod4) gilt s(k,p®)=2 fiir alle k und a=2. Bei p=3 (mod4) und
(g,p)=1gilt firalleaz2: s(g - p,p*)=3.

Im Hinblick auf den Hilfssatz haben wir nun

Satz 3. Aus p?|m folge p=1 (mod4). Dann gilt fiir alle k: s(k,m)=2. Ist umgekehrt
s(k,m)=2 fir alle k, so ist m von dieser Gestalt.

Die ausgesagte Umkehrung ergibt sich daraus, dass s(3,4)=3 ist und dass
s(p,pH= 3 fur p=3 (mod 4).

Bei Moduln, welche keine dritten Potenzen enthalten, ist jetzt lediglich noch
s(gp,p? zu untersuchen, wenn p=3 (mod4). Wir behaupten sogleich etwas mehr.

Satz 4. Bei (g,p)=1 und p= 3 (mod4) gilt s (gp,pV)=3, wenn N=2.

Beweis: Es geht nur noch darum, s(gp, p")=4 auszuschliessen. Dazu miissen wir bei
gegebenem g irgendein a finden, so dass die natiirliche Zahl gp+a-pV¥ (N=2)
durch weniger als vier - und dann, wie wir wissen, durch genau drei - Quadrate dar-
stellbar ist. Dazu benutzen wir die Tatsache, dass die Zahlen, welche vier Quadrate
erfordern, von der Form 4*(8 L+7), k, L= 0, sein miissen, also sicher kongruent 0
modulo 4 oder (bei k=0) kongruent — 1 modulo 4 (und sogar modulo 8). Wir be-
trachten N =2 M und unterscheiden (bei gegebenen g und p=4;—1):

Fall 1. gp ist nicht von der Form 4% (8 L + 7), dann sind wir fertig.

Fall 2. gp=4%(8 L+ 7) mit k= 1. Wir betrachten:

gp+p*M=4*@BL+T)+4j—1)*M
=1 (mod4),
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also nicht =0, — 1 (mod4), so dass eine Summe von drei Quadraten erhalten wird.
Fall 3. gp=8 L+ 7. Wir betrachten

gp+2p*M=8L+T7+2(4j—1)*M
= _1+2=1 (mod4).

Seinun N=2M+ 1, M= 1. Wir unterscheiden wieder:
Fall 1. Wie oben.

Fall 2.gp=4*BL+7),k=1.

Dann ist

gp+apM+1=0+qa-p. p2M
=a-p-l1=-a(mod4).

Bei a=2 sind also nur drei Quadrate erforderlich.

Fall 3. gp=8L+7. Hier ist gp+ap**!=—1—a (mod4), also kénnen wir a=1
wiahlen. [

Man beachte, dass im Beweis nicht von (g,p)=1 Gebrauch gemacht wurde. Das
gibt:

Satz 5. Bei p=3 (mod 4) gilt s (k,pN)=3 fiir alle k.

Wann ist nun eigentlich mit s (k, m)= 4 zu rechnen? Wendet man die Voriiberlegung
auf das Polynom x2+ y?+z2—k an, so lésst sich dieses genau dann nicht zu Null
machen, wenn fiir eine Primpotenz p;/%|m gilt s (k,p%)=4. Bei ungeraden p; kann
das aber nach unseren Sitzen nicht eintreten. Daher ist nur noch iibrig p=2. Da
s(k,2%)=3 und s(k,2%=4 genau fiir k= — 1 (mod 8), brauchen wir nur m=2% bei
a=3 zu betrachten. Sei etwas allgemeiner m=8 L, dann untersuchen wir auf Los-
barkeit

x2+y*+z2=—-1+8j(mod8 L);
falls eine Losung existiert, gélte -

x2+y?+2z22=—1+8j+8Lq,
also x2+ y%+ z2= — 1 (mod 8), aber das ist unldsbar. Also ist s (— 1,8 L)=4.
Von jetzt an sei k beliebig und m=2%, N= 3; dann wird s (k,m)=4 genau dann ein-
treten, wenn k und alle k+ gm von der Form (F) 4X(8 L+ 7) sind. Ist k=8 L+ 7, so
folgt

k+q-2V=8(L+q-2V"3)+7,

und das ist wieder von der Form (F), also

s@L+7,2¥=4 fur N=3. (1)
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Ist aber k=4X(8 L+ 7) mit K= 1, so kann s alle Werte von 1 bis 4 annehmen. Wir
erortern das genauer. Dazu setzen wir N=2 K+ J, wobei J > 0 vorausgesetzt werden
soll, weil sonst k=0 (mod 2%) wire. Dann ist

k+q-2N=4K@L+7)+q- 22K+
=4K@BL+q-27+7).

Falls J= 3, ist das wieder von der Form (F), also

s(4K(BL+7),2)=4 fur N=2K+3. @)

Es bleiben noch die Fille J=1, /=2, mit

k+q-2N=4K[8L+2g+7] bei J=1 G)
und

k+q-2N=4K[8L+4g+7] bei J=2 “4)
mit¢g=0,1,2,3,...

Im Falle (3) betrachten wir g=2r+ 1 und haben

k+Qr+1)2¥=4X[8(L+1)+4r+1].

Der Ausdruck in eckigen Klammern stellt eine arithmetische Folge dar, auf die der
Satz von Dirichlet anwendbar ist. Fiir geeignetes r wird der Ausdruck zu einer
Primzahl p=1 (mod4), also p=x2+ y?, so dass also gilt

k= (252 (x2+ y%) = 2%x)2+ (25y)? (mod 2M),
es ist also im Falle J=1
sk,2M=2.

Im Falle (4) liegt fiir g= 1 nicht die Form(F)vor, also ist s (k,2V)=3.
Wir fassen die Ergebnisse zu (1), (2), (3), (4) zusammen und haben insbesondere
eine Kennzeichnung der Fille s (k,m)=4:

Satz6. Es gilt s(k,m)=4 genau dann, wenn 8|m und bei 2N|\m, k>0 gilt:
k=4X(8 L+7), wobei K= (N—3)/2.

Ist k=4X(8 L+7) bei m=2N>8 und N=2K+1, so gilt s(k,m)=2; bei N=2K+2
gilt s(k,m)=3.

Unsere Resultate sind fiir s(k,m)=4 optimal, und fur s(k,m)=1 kann man, wie
eingangs erwidhnt, die Theorie der quadratischen Reste heranziehen. Damit sind
Aussagen s(k,m)=2 entscheidbar. In einigen Fillen haben wir lediglich s(k,m)=3
erhalten, so dass dann noch zwischen 2 und 3 zu unterscheiden ist.
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Immerhin lassen sich unsere Ergebnisse zu Algorithmen zur effektiven Abschéitzung
von s(k, m) verwenden. Dabei zeigt sich, dass Satz 1 bereits sehr oft hilfreich sein

kann.
Detlef Laugwitz, TH Darmstadt
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Kleine Mitteilungen

Eine Bemerkung iiber Stammfunktion und Zwischenwerteigenschaft

Es bezeichnen im folgenden R die Menge der reellen Zahlen und I ein beschrinktes
oder nichtbeschrinktes Intervall von R. Den Begriff der Stammfunktion verstehen
wir hier im engeren Sinne (furr eine erweiterte Fassung vgl. [1], S. 159): g:7—> R heisst
eine Stammfunktion der Funktion f:1— R auf I, wenn fiir jede Stelle x von I gilt:
g bei x differenzierbar und g’ (x)=f(x). Wir sagen, f:I— R habe die Zwischenwert-
eigenschaft auf I, wenn gilt: Sind a,b e I mit f(a)=#f(b) und d zwischen f(a) und £ (b),
so gibt es ein ¢ zwischen a und b mit f(c)=d.

Die Eigenschaft von f, auf I eine Stammfunktion zu besitzen, steht bekanntlich in
keiner einfachen Implikationsbeziehung zur Riemann-Integrierbarkeit auf den
kompakten Teilintervallen von I (vgl. [4], S.146-147). Die leider viel zu wenig
bekannte Tatsache (#) g:/— R, g auf I differenzierbar =g’ hat die Zwischenwert-
eigenschaft auf I (vgl. z.B. [3], S.25) ist nun mitbeteiligt an der Begriindung der
folgenden Aussage.

Satz. Fiir f:1— R und die Bedingungen

(i) fist auf I stetig,

(ii) f besitzt eine Stammfunktion auf I,

(iii) f hat die Zwischenwerteigenschaft auf I
gilt (i) 4= (i) 4= (iii).

[Man beachte, dass (i)=>(iii) die Aussage des Bolzanoschen Zwischenwertsatzes ist.}

Beweis: (i)=>(ii) ldsst sich in bekannter Weise mit Hilfe des Riemannschen Integrals
begriinden, und (ii)=>(ii1) folgt aus (#). Fiir (ii) =4 (i) wdhle man I=R,f(x)
=sin(1/x)(x+0),/(0)=0 (vgl. [1], S.164, Problem 6a, oder [2]). Schliesslich sei
h(x)=sin(1/x) (x+0),h (0)= 1. h hat die Zwischenwerteigenschaft auf R. Es sei nun
g eine Stammfunktion der vorhin erwihnten Funktion f auf R. Besisse auch 4 eine
Stammfunktion g, auf R, so wire g,—g; auf R differenzierbar und [g, (x)— g, (x))’
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