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Kleine Mitteilungen

Der Wolstenholmesche Satz

Sei/? eine Primzahl > 3. Definiert man

f(x)=(x-l)(x-l)--(x-p+l),
so istf(Q)—(p— 1 )!==/(/?). Durch elementare Multiplikation hat man

f(x)~xP-x-Axxr-2+A2xP-> Ap_2x + (p-l)\ (1)

Da l,l,...,p—l genau die Wurzeln der Kongruenz xP~x 1 (modp) sind, so folgt
aus(l)

xP~x-l xP-x-AxxP-2+A2xP-3 Ap_2x + (p-l)\ (modp). (2)

Man erhält sofort den Wilsonschen Satz (p—1)!= —1 (modp) und ferner
(für jedes x)

-AxxP~2+A2xP~3 Ap_2x 0 (modp).

Deshalb ist

p \AhA2,...,Ap„2. (3)

Weiterhin hat man durch Differentiation

f (x)~(x-iy • • (x-p+ 1)4- • • • +(x- 1)- • • (x-p+1)

und daraus

f'(0)~-f'(p)=-{l.l>-.(p-l)+.-+1.3..(p-l)}.
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Der Taylorsche Satz gibt:

/(*)-/(<>)+ ~fl(on~fl'(o)+ • • • + -^-^-/^-^(o).

Wegen/(/?)=/(0) ergibt sich

0=/'(0) + £-f» (0)+ - - - + -^—-/(P-i)(0). (4)
2 (P-l)'

Nun ist/'(0)/2 =Ap_3, und wegen (3) gilt deshalb/? \f" (0).
Unter Benutzung von (4) findet man jetzt

P2\f'(0). (5)

Weiter hat man

-/'(0) 1 1

/
' =—r + —r-+---4-i. (6)

(p-1)! /?-l p-2
Der Zähler der auf der rechten Seite von (6) stehenden Summe ist also wegen (5)
durch/?2 teilbar, und das ist der Satz von Wolstenholm.

Bemerkung 1: Dieser Beweis des Wolstenholmeschen Satzes ist verschieden von
allen von mir in der Literatur gefundenen Beweisen.

Bemerkung 2: Ist/? eine Primzahl >5, so gilt der folgende Satz: Addiert man die
reziproken 3-Kombinationen von 1, 2,...,/?— 1

111 1

+ —-——4-———¦ +1-2-3 1-2-4 1-2-5 (p-3)(p-l)(p-lY

so ist der Zähler der Summe durch/?2 teilbar.

Beweis: Benutzt man die Taylorsche Formel

/"(*)=/''(0)4-x/'"(0)+^
2 (p-3)!

so erhält man, da/" (p) =/" (0),

0 =/'"(0)+ ^-/<4>(0)+ - - - + -^T^/(p" 1}(0). (7)

Da/<4)(0)/4!=^.5, hat man wegen (3)/?|/<4>(0) und wegen (1) p2\f"'(0). Weiterhin

ist /'"(0) -2 • 3 • X * 2 • • • (p- 4), wo die Summe über alle (/?-^-Kombina¬
tionen von 1,2,...,/?- 1 erstreckt ist. Hieraus folgt
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¦+••• + z zrz rr; rr 0 (mod/?2).
2-3(p-1)! 1-2-3 (p-3)(p-l)(p-l)

L. Kuipers, Mollens

Aufgaben

Aufgabe 822. Es sei a 2(mod3) and a+l genau durch 35(s^l) teilbar. Man
bestimme für beliebiges A:eN0 die Ordnung der Restklasse von a in der primen
Restklassengruppe mod 3s+k. L. Kuipers, Mollens

Lösung: Es ist die kleinste der natürlichen Zahlen m gesucht, für die

am=l(mod3s+k)

gilt. Bezeichnen wir sie mit b(k), so ist sicher b(k) ein Teiler von cp(3s+k)
2- 3s~x+k. Wäre b(k) ungerade, so ergäbe sich aus a= — l(mod3) der Widerspruch

l fl>(*>s-l(mod3).

Also hat b (k) die Form

b(k)=l-3c^ mit c(k)^0.

Schreibt man nun

a=-l + 3su mit 3Jfu.

so behaupten wir, dass für jedes k^O

a23k=l-lu-3s+k+v(k)'3s+k+x mit v(k)eZ (*)

gilt. Für A;=0 ist dies evident; wird (*) für ein /c^O als richtig angenommen, so

bestätigt man ihre Gültigkeit für k+l durch Erheben in die dritte Potenz und
Berechnung der wesentlichen Summanden rechts. Aus (*) liest man unmittelbar
c (k)^ k für alle k ^0 ab. Wir zeigen nun c (k)=k für alle k ^ 0 und haben damit die
Aufgabe gelöst. Aus

a*'*eik)=l+A-y+k mit AeZ

folgt

a2-3k (l+A-3s+kyk~c(k)=l + B'3^2k-c^ mit BeZ.
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