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Kleine Mitteilungen

Der WOlsteMOMmche Satz

Sei p eine Primzahl > 3. Definiert man
fX)=(x—=1)(x—=2)---(x—p+1),

so ist f(0)=(p— 1)! =f(p). Durch elementare Multiplikation hat man
f)=xP"1=A\xP72+ Ay xP~3— - — A, _,x+(p—1)! ¢))

Da 1,2,...,p— 1 genau die Wurzeln der Kongruenz x?~'=1 (mod p) sind, so folgt
aus (1)

WP 1= 1=xP 1= A xP~ 24+ Ay xP 33— - — A, _rx+(p—1)! (modp). (2

Man erhilt sofort den Wilsonschen Satz (p—1)!=—1 (modp) und ferner
(fuir jedes x)

— A xP" 4+ AyxP3~ - —A4, ,x=0  (modp).
Deshalb ist
D |A19A2:---3Ap-—-2' (3)

Weiterhin hat man durch Differentiation
fD=(x=2) (x=p+ D+ +x =D (x—p+2)
und daraus

FO=—f@)==(1-2:@=2+ - +2- 3=},
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Der Taylorsche Satz gibt:

p—1

x x? x
SEY=f Q)+ [ O+ 3117 O+ -+ f0D(0).
Wegen f(p)=/(0) ergibt sich
0=F O+ 2 O+ - + L fo-1(q) “)
2 -1 '

Nun ist f”(0)/2=A,_;, und wegen (3) gilt deshalb p|f” (0).
Unter Benutzung von (4) findet man jetzt

P21f0). ()
Weiter hat man

o 11
-0 p=1 p=2°"

Der Zihler der auf der rechten Seite von (6) stehenden Summe ist also wegen (5)
durch p? teilbar, und das ist der Satz von Wolstenholm.

=1, ©6)

Bemerkung 1: Dieser Beweis des Wolstenholmeschen Satzes ist verschieden von
allen von mir in der Literatur gefundenen Beweisen.

Bemerkung 2: Ist p eine Primzahl > 5, so gilt der folgende Satz: Addiert man die
reziproken 3-Kombinationenvon 1,2, ..., p—1

1
T e e-2p-1)’

so ist der Zihler der Summe durch p? teilbar.

+ + + -

1 1 1
1-2-.3 1-2-4 1-2-5

Beweis: Benutzt man die Taylorsche Formel

2 -
P Q=f" @+ O+ 3 fOQO)+ -+ T ),
so erhilt man, da f” (p)=f" (0),
0=fm O+ £.f(4)(0)+ cee pp—4 f(P—l)(()) @)
2 (- 3)! ‘

Da f®(0)/4!=A4 p—5 hat man wegen (3) p|f®(0) und wegen (7) p?|f” (0). Weiter-
hin ist 7 (0)=—=2-3-),1-2---(p—4), wo die Summe iiber alle (p — 4)-Kombina-
tionenvon 1, 2, ..., p— 1 erstreckt ist. Hieraus folgt
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_ flll(o) _ 1 + + I
2-3p=-1! 1-2:3 T @p=-3)@-2)@-1)

0  (modp?).

1f

L. Kuipers, Mollens

Aufgaben
Aufgabe 822. Es sei a=2(mod3) and a+1 genau durch 3°(s>1) teilbar. Man
bestimme fiir beliebiges k€N, die Ordnung der Restklasse von a¢ in der primen
Restklassengruppe mod 35+, L. Kuipers, Mollens
Losung: Es ist die kleinste der natiirlichen Zahlen m gesucht, fur die

a”=1(mod 3 %)
gilt. Bezeichnen wir sie mit b(k), so ist sicher b(k) ein Teiler von ¢ (3*+%)
=2- 3~ 1+k Wire b(k) ungerade, so ergibe sich aus a= — 1 (mod3) der Wider-
spruch

1=a?® = —1(mod3).
Also hat b (k) die Form

bk)=2-3® mit c(k)=0.

Schreibt man nun
=—1+3u mit 3fu.

so behaupten wir, dass fiir jedes k>0

a2 F¥=1-2u-3+kty(k)- 3¥+k+1 mit v(k)eZ (%)
gilt. Fiir k=0 ist dies evident; wird () fir ein k>0 als richtig angenommen, so
bestitigt man ihre Giiltigkeit fir k+ 1 durch Erheben in die dritte Potenz und
Berechnung der wesentlichen Summanden rechts. Aus (*) liest man unmittelbar
c (k)< k fur alle k>0 ab. Wir zeigen nun ¢ (k)= k fiir alle k>0 und haben damit die
Aufgabe gelost. Aus

231443 mit AeZ

folgt

@ F=(1+4- 3+ WL p.3s+2%k-c®0 mit BeZ.
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