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Zur Behandlung des euklidischen Algorithmus bei Polynomen
mit einem programmierbaren Taschen-Rechner
(Fortsetzung)

6. Anwendungen

Die Bestimmung des grossten gemeinsamen primitiven Teilers ganzzahhger
Polynome stellt sich gelegentlich als isoliertes Problem. Daneben ist sie aber auch
als Teilproblem in manchen Anwendungen anzutreffen. Dazu gehören z. B. die in
der Einleitung erwähnten algebraischen Verfahren zur Eingrenzung der reellen
Nullstellen eines Polynoms mit rationalen Koeffizienten. Wir wollen anschliessend noch
kurz auf diese Anwendung des euklidischen Algorithmus eingehen und
insbesondere das vorliegende Programm noch mit einer entsprechenden Ergänzung
versehen.
Das anvisierte algebraische Verfahren besteht darin, dass man zunächst ein
vorgegebenes ganzzahliges Polynom a (x) von mehrfachen Nullstellen befreit und
hernach für das reduzierte Polynom ä (x) die sogenannte Sturmsche Kette bestimmt.
Beide Schritte beruhen auf dem eukhdischen Algorithmus.

a) Befreiung eines Polynoms a (x) von mehrfachen Nullstellen

Es sei co(x) ein irreduzibler Faktor von a (x) und a>r(jc) die höchste Potenz, die in
a (x) enthalten ist. Es ist dann

a (x) cor(x) - ß(x), wobei co (x) und ß (x) teilerfremd. (6.1)

Für die Ableitung von a (x) folgt aus (6.1)

a'(x) rcor-x(x) co'(x)ß(x) + cor(x) • ß'(x)
cor-x(x)(rco'(x)ß(x) + co(x)ß'(x))

Der Klammerausdruck auf der rechten Seite ist sicher nicht durch co (x) teilbar,
denn g (co')—g(co)— 1. Daher ist

a' (x) cor~l (x) - y (x), wobei oj (x) und y (x) teilerfremd. (6.2)

Ist nun

a(x)=*co[l(x)- oj%(x)'-corss(x)

die Zerfällung von a (x) in irreduzible Faktoren, dann ist

ä (x)~coj (x) • co2(x)- •• cos(x)

ein Polynom mit denselben, aber jetzt nur noch einfachen Nullstellen. Der grosste
gemeinsame Teiler von a (x) und a'(x) ist wegen (6.1) und (6.2)



M. Jeger: Zur Behandlung des eukhdischen Algorithmus bei Polynomen

p(x) corli-x(x)co?-x(x)'--cor/-x(x),

so dass also

a (x)=ju(x) ä (x).

57

(6.3)

Der Übergang von a (x) zu ä (x) - d.h. die Befreiung des Polynoms a (x) von
mehrfachen Nullstellen - erfordert also nur eine euklidische Ketten-Division und
eine einfache Division, nicht aber die Bestimmung der einzelnen irreduziblen
Faktoren. Der Prozess verläuft somit ganz im massgebenden Polynomring, im
vorliegenden Falle also in [Q[x]; +, .]5).

Der Prozess der Befreiung eines Polynoms von mehrfachen Nullstellen legt nun
nahe, das vorliegende Programm noch so zu ergänzen, dass nach Eingabe von
a(x) ins Polynom-Register I vorerst a'(x) berechnet und ins Polynom-Register II
eingespeichert wird.
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Der Start der Rechnung erfolgt über die Taste D.

Figur 6

b) Die Sturmsche Kette

Von dem aus Genf stammenden Mathematiker Charles Sturm (1803-1855) stammt

ein bemerkenswertes Verfahren zur Eingrenzung der reellen Nullstellen des

Polynoms

a(x)=amxm+an
5) Vgl. etwa [4].

.xxm~x+"-+axx + a0 mit akeR
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in einem vorgegebenen Intervall [cx,c2]. Dazu ist vorerst das zugehörige Polynom
ä (x) zu bestimmen und hernach mit

k0(x) d(x) und kx(x) ä'(x)

gemäss

kk-.x(x) kk(x)ok(x)-kk+x(x); kk+x(x) 0 oder g(kk+x)<g(kk)

die Polynom-Kette

k0(x), kx(x), k2(x), ks(x) (6.4)

zu berechnen. Bezeichnet nun w(c) die Anzahl der Vorzeichenwechsel in der Folge
der Funktionswerte an der Stelle c

^oW» h(c)> h(c)> •••> A5W.

dann ist für cx<c2 die Zahl

w(cx)-w(ci)

gleich der Anzahl reeller Nullstellen von a (x) im Intervall [cbc2].
Bei der Berechnung von w(c) sind allenfalls verschwindende Glieder in der Folge
der Funktionswerte zu streichen.
Die Polynomfolge (6.4) wird die Sturmsche Kette zum Polynom d (jc) genannt. Für
den Beweis des eben zitierten Satzes von Sturm sei der Leser auf die entsprechende
Spezialliteratur verwiesen6).
Im Falle eines Polynoms d (x) mit ganzzahligen Koeffizienten kann man nun für
die Bestimmung der Sturmschen Kette auf unsern Algorithmus zurückgreifen.
Da nur die Vorzeichen der Funktionswerte benötigt werden, kann man namhch
die Polynomfolge (6.4) ersetzen durch die Folge der zugehörigen assoziierten

primitiven Polynome

cp0(x), (P\(x), (p2(x), <ps(x),

wobei sich cpk(x) und kk(x) jeweils durch einen positiven Faktor unterscheiden.
Diese modifizierte Sturmsche Kette liefert aber gerade der im Abschnitt 4
beschriebene Algorithmus.
Da d (x) und a'(x) teilerfremd sind, endet diese Kette stets mit cps(x)= ± 1.

Beispiel 3

Es sollen die reellen Nullstellen des Polynoms

a(x)=8x6+12x5-h22jc4-15^3-48jc2-28jc-5

durch Angabe geeigneter Intervalle eingegrenzt werden.

6) Vgl. etwa [4] und [5].



M. Jeger: Zur Behandlung des eukhdischen Algorithmus bei Polynomen 59

Zunächst erhält man zu cp0(x)~a (x) eine Sturmsche Kette, die mit dem Polynom

(x)=-4x2-4x-l
schhesst. a (x) besitzt demnach mehrfache Nullstellen. Die Division von a (x) durch
das Polynom

p(x)=4x2+4x+l

ergibt den Quotienten

d(x) lx4+x3+4x2-Sx-5.

Die Koeffizienten von ä(x) leuchten bei der Durchführung des eukhdischen
Algorithmus mit a (x) und p (x) nacheinander kurz auf (Bemerkung 4 auf Seite 40,
1. Teil). Für d (x) erhält man schliesslich die Sturmsche Kette

ä(x)~<p0(x)~lx4+ x3+ 4x2- 8x- 5

<px(x)= 8x3+ 3x2+ Sx- 8

f2W- -61x24- 200x4- 152

(p3(x)= -2056jc-1077
<p4(x)= - 1.

Daraus liest man die folgende Vorzeichenverteilung ab:

c_ <Po(c) 9\(c) (p2(c) cp3(c) cp4(c) w(c)
3

3

2
2
1

1

Sie lässt darauf schhessen, dass a (x) total 2 reelle Nullstellen hat; eine davon liegt
im Intervall [—1,0], die andere im Intervall [1,2].
Die Figur 7 zeigt den Ausdruck des Rechners zum Beispiel 3. Die Rechenzeiten
betragen für die drei Bestandteile der Rechnung der Reihe nach 290, HO und 230
Sekunden.

7. Polynome mit reellen Koeffizienten

Wie das Beispiel 2 deutlich belegt, ist der obere Plafond der Ganzzahhgkeit bei
einem Taschen-Rechner sehr rasch erreicht. Es hegt daher nahe, den euklidischen
Algorithmus auch noch auf Polynome mit reellen Koeffizienten auszudehnen. Dies
ist ohne weiteres durch eine geeignete Modifikation des vorhegenden Programmes

— oo 4- — — +
-1 4- - - +

0 — — 4- -
4-1 — + 4- -
+ 1 4- + + -
4-oo 4- 4- __- -
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-4. 2
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1

4

ENDE -8
-.¦•-•- — 5 Figur 7

ENDE

möglich. Man kann etwa an die Stelle der bis jetzt verwendeten primitiven
Polynome sogenannte normierte Polynome treten lassen, deren Leitgliedkoeffizient
+ 1 oder — 1 ist. Dazu ist im wesentlichen nur das Unterprogramm B' entsprechend
abzuändern.
Die letzten Bemerkungen sind primär als Anregung für den interessierten Leser
gedacht. Wir verzichten auf eine vollständige Beschreibung des neuen Programmes
und führen nur zwei Rechenbeispiele an. Die Figur 8 zeigt in der linken Spalte
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Figur 8

die Sturmsche Kette zum Polynom a (x) 3x5+5x4-3x3+x2+lx-5 aus dem
Beispiel 2. Sie lässt sich jetzt zu Ende führen. In der rechten Spalte ist nochmals der
erste Teil der Rechnung zum Beispiel 3 durchgeführt. Um ein möglichst
übersichtliches Protokoll zu erhalten, wurde der Rechner im Zustand Fix 4 betrieben.

M. Jeger, Mathematisches Seminar, ETH Zürich
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Kleine Mitteilungen

Der Wolstenholmesche Satz

Sei/? eine Primzahl > 3. Definiert man

f(x)=(x-l)(x-l)--(x-p+l),
so istf(Q)—(p— 1 )!==/(/?). Durch elementare Multiplikation hat man

f(x)~xP-x-Axxr-2+A2xP-> Ap_2x + (p-l)\ (1)

Da l,l,...,p—l genau die Wurzeln der Kongruenz xP~x 1 (modp) sind, so folgt
aus(l)

xP~x-l xP-x-AxxP-2+A2xP-3 Ap_2x + (p-l)\ (modp). (2)

Man erhält sofort den Wilsonschen Satz (p—1)!= —1 (modp) und ferner
(für jedes x)

-AxxP~2+A2xP~3 Ap_2x 0 (modp).

Deshalb ist

p \AhA2,...,Ap„2. (3)

Weiterhin hat man durch Differentiation

f (x)~(x-iy • • (x-p+ 1)4- • • • +(x- 1)- • • (x-p+1)

und daraus

f'(0)~-f'(p)=-{l.l>-.(p-l)+.-+1.3..(p-l)}.
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