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42 Kleine Mitteilungen

daran, dass der Rechner auf Exponentialanzeige umstellt. Dies trifft beim folgenden
Beispiel 2 zu.

Beispiel 2

a(X)=y(x)=3x+5x*-3x3+x2+7x-5,
BX)=¢,(x)= 15x4+20x3-9x2+2x+7.

Der Ausdruck des Rechners ist - soweit er ganzzahlig ist - in der rechten Spalte von
Figur 5 festgehalten. Bei ¢4(x) angelangt, hat der Rechner als nichstes mit dem
Faktor h=470232=2213043 849 das zu ¢;(x) assoziierte Polynom zu bestimmen.
Da schon & eine 10stellige Zahl ist, gerdt man mit diesem Schritt iiber den Bereich
der Ganzzahligkeit hinaus. (Fortsetzung im n#chsten Heft.)

M. Jeger, Mathematisches Seminar, ETH Ziirich
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Kleine Mitteilungen

Die Cantorsche Abbildung ist ein Borel-Isomorphismus

Die Cantorsche Abbildung benutzt man im allgemeinen, um zu zeigen, dass
J=]0,1] und JxJ dieselbe Michtigkeit haben. Sie ist folgendermassen definiert
(vgl. [2], S.66): Jedes xeJ hat eine eindeutige Darstellung x= ) * 27491~ ~an
wobei {a,} eine Folge von natiirlichen Zahlen ist. Dies gilt, da sich x in eindeutiger
Weise in einen dyadischen Bruch mit unendlich vielen Einsen entwickeln lidsst. Die
Darstellung liefert fiir jedes ne N [N bezeichnet die natiirlichen Zahlen (ohne Null)]
eine Abbildung X, von J nach N, die durch X,(x)=a, gegeben ist. Fiir alle x,yeJ
sei f(x,y)eJ definiert vermége X,,_(f(x,»)) =X,(x) und X,,(f(x,y)) =X,(),
neN. f ist eine bijektive Abbildung von J X J auf J. Hausdorff ([2], S. 377) nennt sie
Cantorsche Abbildung. Er sagt, sie rithre im Prinzip von Cantor her (vgl. [1]).

Es ist wohlbekannt, dass es keine stetige bijektive Abbildung von JXxJ auf J gibt
(2], S. 377). Also ist f nicht stetig. Es ist nicht schwierig zu zeigen, dass die Unstetig-
keitsstellen von f auf abzihlbar vielen Hyperebenen R X {y} bzw. {x} X R liegen,
wobei x,ye{zeJ:z=k- 27! k,leN} gilt und R die reellen Zahlen bezeichne. Das
Ziel dieser Note ist es, einen elementaren Beweis dafiir zu geben, dass f ein Borel-
Isomorphismus ist.
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Satz. Die Cantorsche Abbildung ist ein Borel-Isomorphismus.

Beweis: Die g-Algebra der Borelschen Mengen von J wird erzeugt von den Mengen
x: X(x)=ky, ..., X, (x)=k,}, wobei n,ky,....k,eN und k,=2 ist. In der Tat, sei

z=2"N4 ... 42-N=~l 7z =0und z;=2""1+ ... + 21—~ Ik wobei
kD, ..., ;€N und k=j sei, dann gilt 10,z]={J%_ Jzx—1.24), Jex—12il=
Uz_dzio+270—lktm g 4= =etm=D]ypd
]zk_1+2—11—-~—(1k+m)’zk_l+2—11—---—(lk+m—l)]

={x: X1x)=1}, ..., X1 ()=l _ 1, Xp ()=l + m}.

fist nun Borel messbar, daf~!{z: X ,(z2)=k\, ..., X,(2)=k,}

={x: X, (X)=kp;_1,i=1,...,[n21+ 8} X {y: X;())=kq,j=1, ..., [n/2]} gilt
(0,=1furn=2m+1und §,=0 fiir n=2m).

Schliesslich ist f~! Borel messbar, da

f({X:XI(X)=k], ---9Xm(x)=km} X {y:Xl(_Y)=l], "°’Xn(Y)=ln})

={z:X,,_ @)=k, X3;2)=1,i=1,...,mj=1, ..., n}gilt.

Die rechte Seite ist ein endlicher Durchschnitt von Mengen {z: X,(z)=s}, r.seN.
Diese Mengen sind Borel messbar wegen der Gleichung {z: X ,.(z)=s}

iy LkJ eN {z: X1(@)=ky, ..., X, _1(@)=k,_1, X, (2)=s}.
P Bret D. Mussmann und D. Plachky, Miinster, Westfalen
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Aufgaben

Aufgabe 819. Zu gegebenem neN bestimme man die grosste natiirliche Zahl ¢ (n)
mit folgender Eigenschaft: In jeder Szeiligen und n-spaltigen Matrix aus Nullen und
Einsen gibt es zwei Zeilen, die in ¢ (n) Spalten jeweils zwei Nullen oder zwei Einsen
enthalten. H. Harborth und J. Mengersen, Braunschweig, BRD

Losung der Aufgabensteller: Jede Spalte einer beliebigen fiinfzeiligen und n-
spaltigen Matrix M aus Nullen und Einsen enthélt mindestens drei Nullen oder drei

) 5 . : .
Einsen. Damit enthilt ein Zeilentripel T der ( ) = 10 moglichen Zeilentripel von

3

M nach dem Schubfachprinzip in mindestens [n/107 Spalten jeweils drei Nullen
oder drei Einsen ([x7 bzw. | x| bezeichnen die kleinste ganze Zahl > x bzw. die
grosste ganze Zahl <x). Da in jeder der uibrigen Spalten in T mindestens zwei
Nullen oder zwei Einsen stehen, enthilt eines der drei Zeilenpaare aus T in
mindestens

[% (n—rn/107) + rn/loﬂ
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