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Zur Behandlung des euklidischen Algorithmus bei Polynomen
mit einem programmierbaren Taschen-Rechner

Aus der Algebra smd verschiedene Verfahren bekannt, die das Auffinden von
reellen Nullstellen bei Polynomen stark vereinfachen und die allesamt auf dem
euklidischen Algorithmus im Polynomring uber dem Korper der reellen Zahlen
beruhen Sie haben aber für den Praktiker den Nachteil, dass sie ohne adäquate
Rechen-Prothese nur schwerfällig zu handhaben sind Im folgenden wird gezeigt,
dass schon ein programmierbarer Taschen-Rechner mit der heute üblichen
Kapazität bei der Bewältigung solcher Probleme sehr nützlich sein kann
Der Beitrag verfolgt aber noch ein zweites Ziel Er mochte gleichzeitig darauf
hinweisen, dass mit einem programmierbaren Taschen-Rechner im Mathematikunterricht

neue Akzente gesetzt werden können Durch den vermehrten Einbau von
Beispielen und Anwendungen wird eine gezielte Pflege des algorithmischen Denkens
moghch Im Zeitalter der Computer-Mathematik ist der Umgang mit Algorithmen
eme nicht mehr vernachlassigbare Komponente der mathematischen Ausbildung,
und zwar sowohl auf der Gymnasialstufe wie auch auf der universitären Ebene
Diese Note befasst sich msbesondere mit dem euklidischen Algorithmus im
Polynomring uber dem Korper der rationalen und über dem Körper der reellen Zahlen
Bei den Polynomen mit rationalen Koeffizienten besteht bekanntlich die Möglichkeit,

den eukhdischen Algorithmus mit ganzen Zahlen zu beschreiben In
didaktischer Hinsicht weisen Algorithmen im Bereich der Ganzzahhgkeit mancherlei

Vorzuge auf So treten dort überhaupt keine Konvergenzfragen auf, und
Genauigkeitsuberlegungen drangen sich höchstens von der Kapazität des Rechners
her auf Algorithmen, die sich vollumfanghch im Ring der ganzen Zahlen bewegen,
begegnet man vor allem m der Kombinatorik1) und in der elementaren Zahlentheorie

Die euklidische Ketten-Division im Polynomnng über dem Körper der
rationalen Zahlen ist ein weiteres interessantes Beispiel, das seme Wurzel in der
elementaren Algebra hat Der Taschen-Rechner ist aber auch in der Lage, den
eukhdischen Algorithmus im Polynomnng uber dem Körper der reellen Zahlen zu
verkraften Es wird sich herausstellen, dass man sehr oft auch bei Polynomen mit
rationalen Koeffizienten auf diesen allgemeineren Prozess angewiesen ist

l)Vgl[2]



26 M Jeger: Zur Behandlung des euklidischen Algorithmus bei Polynomen

Der euklidische Algorithmus bei Polynomen führt auf ein Programm, das die
Kapazität heute verfügbarer, grösserer programmierbarer Taschen-Rechner
weitgehend ausschöpft. Man kann daran sehr hübsch die Leistungsfähigkeit solcher
Geräte demonstrieren. Dies ist ein weiterer Aspekt der vorliegenden Note.

1. Der euklidische Algorithmus im Ring der ganzen Zahlen

Der euklidische Algorithmus stützt sich auf die Tatsache, dass zu zwei Zahlen
a,b e Z,b + 0 stets eine eindeutig bestimmte, nichtnegative ganze Zahl q' existiert,
so dass

\b\q'^\a\<\b\(q'+l). (1.1)

Aus

<q'+l

entnimmt man, dass

2\H\j\V
ist. Mit (1.1) gilt zugleich

' 0^\a\-\b\q'=r'<\b\. (1.2)

Aus der Beziehung (1.2) schliesst man nun auf die folgende endliche Kette von
Divisionen mit Rest

\a\=\b\q' +r\ mit 0<r'x<b
\b\ *=r\q\ +r'2 mit 0<r'2<r'x
rx ~r'2q'2 +r'3 mit 0<r'3<r'2

(1.3)

r's-2~r's„xq's_x + r's mit 0<r's<r's.x
r's-i r'sq's

Die Folge der Reste ist nämlich monoton abnehmend

r\>r2>r3> ••• >r's>0.

2) [x] bezeichnet die grosste ganze Zahl kleiner oder gleich x.
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Daher muss nach endlich vielen Schritten der Rest 0 erscheinen; die Kette bricht
also sicher ab. Es ist nun offenbar

d/a/\d/b<=>d/b/\d/r\<*>d/r\/\d/r'2<*> • • • <=>d/r's_{Ad/r's<*d/r's.

Für den grossten gemeinsamen positiven Teiler von a und b entnimmt man daraus

t (a,b)=(b,r'x) (r'x,r'2)=-=(r's_x,r's) r's. (1.4)

Die Berechnung von / mit einem Taschen-Rechner kann etwa anhand des Fluss-
diagrammes in der Figur 1 erfolgen.

U: _ l«M

1 '

u--u-[$:w

i* ^ CL — r\ ^s.

C **i*\

Vi 9k \ü

Figur 1

2. Euklidische Ringe

Mit dem eukhdischen Algorithmus bewegt man sich generell in einem sogenannten
euklidischen Ring. Im Hinblick auf das anvisierte Ziel seien in diesem Abschnitt die

wichtigsten Fakten über euklidische Ringe kurz zusammengestellt.
Ein kommutativer Ring [F; +, ] mit Einselement, der frei von Nullteilern ist, heisst

bekannthch ein Integritätsbereich. Die Teiler des Einselementes nennt man
Einheiten. Zwei Elemente a,beF, die sich nur um eine Einheit e als Faktor
unterscheiden, werden assoziiert genannt. Wegen

a eb <=> b e~xa

teilen sich assoziierte Elemente gegenseitig, d. h. es gilt zugleich a \ b und b | a.

Teilbarkeitsaussagen in einem Integritätsbereich sind daher ihrem Wesen nach stets

Ein Integritätsbereich [F; + ] wird als euklidischer Ring bezeichnet, wenn sich
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jedem Element aeF,a+0 eine nichtnegative ganze Zahl g(a) zuordnen lässt, die
folgende Eigenschaften aufweist:

(Ex) g(ab)^g (a) für alle a,b + 0.

(E2) Zu a,beF,b+0 gibt es immer zwei Elemente q,reF, so dass a bq + r mit
r 0 oder r+ 0 und g(r)<g (b).

Das einfachste Beispiel ist der Ring der ganzen Zahlen [Z; + ]. Die Einheiten in
[Z; +, ] sind die Zahlen +1 und — 1; eine Klasse von assoziierten Elementen
besteht daher - falls a + 0 ist - aus den beiden Zahlen a und — a. Ferner ist

av+g(a)= \a\

eine Abbildung mit den Eigenschaften (Ex) und (E2). Für ganze Zahlen a,b + 0 gilt
namhch

|aft|-|*||6|^|<z|,

und aus der Beziehung (1.2)

\a\ \b\q'+r' mit 0<_r'<&

kann stets auf das Vorhandensein einer Zerfallung

a bq + r mit q=±q' und r= ±r' (2.1)

geschlossen werden, die (E2) erfüllt.
Die Eigenschaften (E^ und (E2) garantieren in einem euklidischen Ring [F; + ]

'den Prozess der Ketten-Division; zu a,b e F,b+0 gibt es eine abbrechende Kette
von Divisionen mit Rest:

a ~bq0 +rx mit g(rx)<g(b)
b =rxqx +r2 mit g(r2)<g(rx)
rx ^r2q2 +r3 mit g(r3)<g(r2)

(2.2)

rs-2~rs_xqs_x + rs mit g(rs)<g(rs_x)
^iÄrs^.

Dass die Konstruktion nach endlich vielen Schritten abbrechen muss, geht aus den

Ungleichungen

g(b)>g(rx)>g(r2)>-'>g(rs_x)>g(rs)>0

hervor. rs bezeichnet den letzten von Null verschiedenen Rest.
Wie im Abschnitt 1 schhesst man auch hier, dass
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d/aAd/b<=>d/bAd/rx<=> • • • <=>d/rs_x ad/rsod/rs.

Zu jedem Teiler d von rs gehört ein Element d', so dass r=dd' ist. Aufgrund von
(Ex) ist dann

g(rs) g(dd')>g(d).

Das Element r. repräsentiert also die Klasse assoziierter gemeinsamer Teiler von a
und b mit dem grösstmöglichen Wert der Funktion g. Diese Klasse wird der grosste
gemeinsame Teiler von a und b genannt.
Ein Element a + 0 aus dem euklidischen Ring [F; +, ] hat stets die vorhandenen
Einheiten und die zu a assoziierten Elemente zu Teilern. Man nennt sie die trivialen
Teiler von a.
Ein Element p, das nicht Einheit ist und nur triviale Teiler aufweist, heisst ein
Primelement des betreffenden euklidischen Ringes.
In einem euklidischen Ring gilt der Satz von der eindeutigen Zerfällung in
Primfaktoren:

Jedes von 0 verschiedene Element a, das nicht Einheit ist, besitzt eine Darstellung als
Produkt von endlich vielen Primelementen. Diese Zerfällung ist eindeutig bis auf die
Reihenfolge der Faktoren und ihre Ersetzung durch assoziierte Elemente.

Da dieser Satz für die folgenden Überlegungen nur von untergeordneter Bedeutung
ist, verzichten wir auf eine Wiedergabe des Beweises. Der Leser sei auf die
einschlägige Algebraliteratur verwiesen3).
Es sei noch erwähnt, dass die in einem euklidischen Ring geforderte Zerfällung

a bq + r mit r=0 oder g(r)<g(b)

im allgemeinen nicht eindeutig ist. So bestehen etwa im Ring [Z; +, ] zu a 17 und
b 5 die Zerlegungen

17 5-3 + 2 und 17 5-4-3,

die beide (E2) genügen.

3. Der Polynomring über einem Körper

Wir betrachten jetzt Polynome

a(x) anxn+an_xxn~x+ ••• +axx + a0

mit Koeffizienten aus einem vorgegebenen Körper [K, + ]. Der höchst
vorkommende Exponent n heisst der Grad, und a„xn ist das sogenannte Leitglied des

3) Vgl. etwa [3], S. 120.
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Polynoms. Bezeichnet K[x] die Menge aller Polynome mit Koeffizienten aus K,
dann ist das Verknüpfungsgebilde [Ä^[jc]; + ] stets ein euklidischer Ring. Er wird
der Polynomring über dem Körper K genannt.
Nullelement dieses Ringes ist das Polynom v(jc) 0, Einselement das Polynom
e(jc)=l.Mit

g(a)=grad(a)

lässt sich jedem Polynom a(x)+v(x) eine nichtnegative ganze Zahl zuordnen,
welche die Eigenschaften (E^ und (E2) hat. Es gilt nämlich die Gradregel

g(aß) g(a)+g(ß)^g(a). (3.1)

Ferner gibt es zu a (x), ß(x)eK[x] und ß(x) + v(x) stets zwei Polynome x (x) und

p (x), so dass

a(x) ß(x)-x(x) + p(x) mit p(x) v(x) oder g(p)<g(ß). (3.2)

Man kann zwei solche Polynome mit dem üblichen Divisionsalgorithmus erhalten,
der sich bekanntlich in K[x] immer bis zu einem Restpolynom fortsetzen lässt,
dessen Grad kleiner als g (ß) ist. So bekommt man etwa in [Q [x]; +, ] für

<z(jc)=5jc3+2x2--3jc + 4 und ß (x)=3x2+2x- 1

(5x3+ 2x2- 3x + 2):(3jc2-2;c+1)

5jc3-
10 5

16 14
~^r x —— x+2

3 3

16 22 16
—Z~ X TT X + ——

3 9 9

10 2
TT X+ —
9 9

Pix)

5 16
-^x+-—3 9

10 2

Es ist somit

/5 16\ / 10 2\
5x3+2x2-3x + 2 (3x2-2x+l)[jx+—)+(--^x+-)

a(x) ß(x) x(x) p(x)

Die Einheiten im eukhdischen Ring [iC[x]; +, ] sind die Teiler des Einselementes.
Ist das Polynom a (x) eine Einheit, dann gibt es dazu ein Polynom ö (x), so dass

a (x) • ö (x)= 1 ist. Daraus folgt
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g(a-ö) g(a) + g(ö)=0

und dies impliziert

g(a) g(ö) 0.

Dadurch sind die von Null verschiedenen Elemente des Grundkörpers K
gekennzeichnet. Eine Klasse von assoziierten Elementen in K[x] besteht daher aus einem
Polynom a (x) und allen seinen Vielfachen/- a (x) mit/ e K\ {0}.
Die Primelemente von K[x] werden in der Algebra auch irreduzible Polynome
genannt.

4. Der euklidische Algorithmus im Polynomring über dem Körper der rationalen
Zahlen

Im Polynomring über dem Körper [Q; +, ] gibt es in jeder Klasse von assoziierten
Elementen auch solche mit ganzzahligen Koeffizienten. Darunter befinden sich zwei
besonders ausgezeichnete, nämlich diejenigen mit teilerfremden ganzzahligen
Koeffizienten. Man nennt sie primitive Polynome.
So heissen etwa die zu

/ x
3

1 l 2
5 2

a W= "4"x + y x 2x+ y
assoziierten primitiven Polynome

a,(jc)=105;t3+20jc2- 350x + 56 und a2(x)= - 105x3-20.x2+350x-56.

In der Ketten-Division kann man sich nun bei allen vorkommenden Polynomen auf
einen der beiden ausgezeichneten Repräsentanten festlegen. Der Algorithmus läuft
dann, was die Koeffizienten anbetrifft, vollständig im Ring [Z; + ] ab. Zugleich
erreicht man mit primitiven Polynomen gerade auch noch eine optimale
Ausnutzung des Rechners, weil dann der Prozess gewissermassen auf der untersten
Stufe der Ganzzahligkeit abläuft.
Anschliessend soll ein Programm beschrieben werden, das mit einem Taschen-
Rechner realisiert werden kann.
Als Kernproblem bei der Aufstellung eines solchen Programmes stellt sich zunächst
die folgende Aufgabe. Der Divisionsalgorithmus liefert für zwei primitive Polynome
a (x) und ß (x) eine Zerfällung

a(x) ß(x)x(x) +p(x) mit p(x) 0 oder g(p)<g(ß). (4.1)

x (x) und p (x) sind im allgemeinen nicht ganzzahlig. Es ist nun a (x) durch ein
geeignetes assoziiertes ganzzahliges Polynom ä(x) zu ersetzen, so dass aus dem

Divisionsalgorithmus eine ganzzahlige Zerfällung
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ä(x) ß(x)x*(x)+p*(x) mit p*(x)=0 oder g(p*)<g(ß) (4.2)

hervorgeht.

Ist nun

a (x) amxm+am_xxm-x+ • • • +axx + a0,
ß(x)= bnxn +---+bxx + b0,

dann ist

ä(x) h a(x) mit h=\bn\m~n+x (4.3)

immer ein Polynom mit der angestrebten Eigenschaft. Man kann dies mit der
folgenden Überlegung verifizieren.
x (x) und das assoziierte Polynom x* (x) haben den Grad m — n und weisen daher
m — n+l Glieder auf. Der Divisionsalgorithmus besteht somit aus m-n+l Schritten.

Der erste Schritt ist nun offensichtlich ganzzahlig, denn die Leitglieder der
Polynome ä (x) und ß (x) lauten

\bn\m~n+xamxm und bnxn.

Aber auch der zweite Schritt verläuft ganzzahlig; die Leitglieder der massgebenden
Polynome sind nämlich

\bn\m-n{\bn\am-x-amsign(bn))xm-x und bnxn.

Mit jedem weitern Schritt nimmt nun der Exponent von \bn\ im Leitglied des

jeweiligen Restpolynoms um 1 ab. Man schliesst daraus, dass der
Divisionsalgorithmus tatsächlich bis zum letzten Schritt ganzzahlig bleibt.

Wir wollen dies noch an unserem früheren Beispiel aufzeigen. Für

a(x) 5x*+2x2—3x + 2 und ß(x) 3x2— 2x+ 1

ist h 32= 9 und somit

ä(x) 45x*+ 18jc2-27jc+18.

Der Divisionsalgorithmus führt dann auf

(45x3+ 18jc2-27x+ 18):(3jc2-2jc+ 1) x*(x) 15*+ 16

45jc3-30x2+15x
48x2-42jc+18 p*(x)
4%x2-31x+l6

-10x+ 2

-lOx + 2
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Wie das vorliegende Beispiel zeigt, ist p* (x) nicht notwendigerweise primitiv. Man
erhält ein assoziiertes primitives Polynom zu p* (x), indem man die Koeffizienten
durch ihren grossten gemeinsamen positiven oder negativen Teiler dividiert.
Ist cp (x) ein ganzzahliges Polynom, dann bezeichnen wir fortan mit cp (x) das
zugehörige primitive Polynom, das sich von cp (x) um einen positiven Faktor
unterscheidet.

Im Hinblick auf eine möglichst vielseitige Verwendbarkeit legen wir nun den
euklidischen Algorithmus zu zwei ganzzahligen Polynomen a (x) und ß (x) wie folgt
fest:

<p0(x) :=a(x)
(p\(x) :=ß(x)
(pk-\(x)=cpk(x)ok(x)-cp*k+x(x) mit pj+1(x) 0 oder g(cp\+x)<g((pk)
^+iW-ft%iW (4-4)

cpk-X(x) ist das Polynom, das vermöge der zuvor beschriebenen Konstruktion aus
cpk_ x (x) und cpk (x) hervorgeht und die ganzzahlige Division mit Rest garantiert.
Der Algorithmus liefert eine endliche Kette von Polynomen

cp0(x), (px(x), (p2(x), cps(x).

Das letzte Glied ist ein grösster gemeinsamer primitiver Teiler von a (x) und ß (x).
Sind diese beiden Polynome teilerfremd, dann endet die Kette mit cps(x)= + 1.

Das negative Vorzeichen von cpk+ x (x) in der Rekursionsformel von (4.4) dient dazu,
dass der Algorithmus auch für die Sturmsche Nullstellenzählung bei einem
Polynom herangezogen werden kann (siehe Abschnitt 6).

5. Ein Programm für den Rechner Texas TI 59

Im Hinblick auf die beschränkte Kapazität eines Taschen-Rechners (Stellenzahl,
Anzahl der Speicher) ist das folgende Programm für ganzzahlige Polynome a (x)
und ß (x) mit Graden m,n^9 ausgelegt. Das Programm ist speziell auf den Rechner
Texas TI 59 zugeschnitten, der über die notwendige Anzahl von Programmschritten
verfügt und zudem eine Speicherung des relativ langen Programmes auf Magnetkarten

gestattet. Zum TI 59 ist ausserdem ein Drucker entwickelt worden; es lag
daher nahe, den sukzessiven Ausdruck der Ergebnisse ins Programm einzube-
ziehen. Wer nur über den Rechner verfügt, kann das Programm leicht so
modifizieren, dass der Prozess nach jederii Glied in der durch a (x) und ß (x) definierten
Polynom-Kette anhält.
In den Polynomen a (x) und ß (x) stecken aufgrund der verabredeten Beschränkung
höchstens je 10 Koeffizienten, nämlich aQ,ax, ...,a9 und b0,bx,..., b9. Diese werden
in den Speichern R10 bis R19 und R20 bis R29 untergebracht. Die Speicher Rqq bis R09

sind beim Rechner TI 59 mit einer programmverkürzenden Speicherarithmetik
ausgerüstet; sie sind aus diesem Grunde für die benötigten Rechen-Parameter
reserviert.
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Zur Vereinfachung der Programmbeschreibung werden die Speicher R10 bis R19

fortan als Polynom-Register I, die Speicher R20 bis R29 als Polynom-Register II
bezeichnet.
Die folgende Zusammenstellung zeigt die verwendete Speicherzuweisung.

R(X) R-01 Ro2 Ro3 Ro4 R-05 Ro6 R()7 Ro8 Ro9

m n p d=m — n r s k h,q u v

(0 (/) (/) (a,b)

RlO

«0

Rn R12

a2

R13

03

R14

a4

Rl5
05

R.6
«6

R.7
<*1

Rl8
*8

R19

R20 ^21 R22

b2

R23

_3

R24

b4

R25 ^26
*6

R27

bn

R28

h
R29

b9

Polynom-
Register I

Polynom-
Register II

Die eingeführten Parameter haben folgende Bedeutung:

r ist der Index im Polynom-Register I: a (r) ar_ 10; gespeichert in Rr,
s ist der Index im Polynom-Register II: b (s) bs_ 20; gespeichert in Rs,
k ist der Index in der Kette der ^-Polynome gemäss (4.4).

u und v werden bei der Berechnung des grossten gemeinsamen Teilers für die
jeweiligen Koeffizienten im Polynom-Register I benötigt.
Die beiden ersten Programmabschnitte, beginnend mit Lbl A und Lbl B dienen zur
Eingabe der Polynome a (x) und ß (x) in die Polynom-Register I und IL Dazu sind
die eingeklammerten Parameter erforderlich.
Das Eingabekonzept geht aus dem folgenden Flussdiagramm hervor.

t fV

'

r

^.5 V*AO

V- « ©

Vi »o
(Vwfefev^e 4

*TöT

<v.V> 3

tf*

*evA

^QVV>

V-M

V--S*-*

Figur 2
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Das zugehörige Rechnerprogramm lautet:

35

000 76 Lbl
001 11 A
002 42 STO
003 00 00
004 85 +
005 Oll

10
006 11/
007 95

008 42 STO
009 01 01

010 00 0
011 42 STO
012 02 02
013 42 STO
014 06 06
015 91 R/S

016 76 Lbl 032 69 Op
017 12 B 033 20 20
018 42 STO 034 69 Op
019 03 03 035 22 22

020 43 RCL 036 43 RCL
021 01 01 037 02 02

022 32 x^t 038 91 R/S
023 43 RCL 039 00 0

024 00 00 040 85 +
025 67 x t 041 65 *
026
027

ool
39/

039
042 91 R/S

028 43 RCL
029 03 03

030 72 STO Ind
031 00 00

Dementsprechend läuft die Eingabe von a (x) und ß (x) wie folgt ab:

Eingabe Taste Anzeige
10 A 0

tf0 B 1

#i B 2

Eingabe Taste Anzeige
20 A 0

bo B 1

b. B 2

a9 B 10 B 10

Falls der Grad 9 erreicht ist, erscheint bei nochmaligem Drücken der Taste B in der

Anzeige eine blinkende 0.

Das Hauptprogramm liefert zu a (x) und ß(x) die Kette der primitiven
Restpolynome

^oW' ^iW. (PS(X)

mit cpQ (x) a (x) und cpx(x) ß (x). Es wird abgerufen über die Taste C.

Für ein Polynom cpk(x) der Kette wird vorerst die Nummer k ausgedruckt;
anschliessend werden dann die Koeffizienten aufgehstet, und zwar nach fallendem
Index geordnet. Das Prozessende wird mit dem Wort ENDE angezeigt.
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Flussdiagramm
Hauptprogramm
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Unterprogramme
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Rechnerprogramm
Speicherverteilung 559/49 (5 Op 17)

Hauptprogramm
043 76 Lbl
044 13 C
045 69 Op
046 26 26
047 01 1

048 32 X^Lt
049 43 RCL
050 06 06
051 22 INV
052 67 x=*t
053 031

302
054 02 j
055 69 Op
056 00 00
057 03 3

058 03 3

059 03 3

060 02 2

061 02 2
062 07 7

063 04 4

064 05 5

065 03 3

066 01 1

067 69 Op
068 01 01

069 03 3

070 02 2

071 03 3

072 00 0
073 02 2

074 00 0
075 02 2

076 06 6
077 01 1

078 07 7

079 69 Op
080 02 02
081 03 3

082 07 7

083 03 3

084 07 7
085 01 1

086 07 7
087 06 6

088 02 2

089 00 0
090 00 0
091 69 Op
092 03 03

093 69 Op
094 05 05

095 71 SBR
096 16 A'
097 42 STO
098 00 00

099 71 SBR
100 17 B'
101 69 Op
102 36 36
103 43 RCL
104 06 06
105 99 Prt
106 98 Adv

107 71 SBR
108 18 C
109 69 Op
110 26 26

111 71 SBR
112 19 D'

113 71 SBR
114 16 A'
115 42 STO
116 01 01

117 71 SBR
118 17 B'
119 43 RCL
120 06 06
121 99 Prt
122 98 Adv

123 71 SBR
124 18 C

125 71 SBR
126 19 D'
127 29 CP
128 69 Op
129 26 26
130 43 RCL
131 00 00
132 75 -
133 43 RCL
134 01 01

135 95
136 42 STO
137 03 03
138 22 INV
139 77 xZat

140 021
248

192 95
141 48J 193 42 STO
142 69 Op 194 04 04
143 23 23 195 73 RCL Ind
144 43 RCL 196 04 04
145 00 00 197 55

146 85 + 198 73 RCL Ind
147 01

10
199 05 05

148 00 200 95
149 95 201 42 STO
150 42 STO 202 07 07
151 04 04 203 66 PAUSE
152 43 RCL ^204 73 RCL Ind
153 01 01 205 05 05

154 85 + 206 65 *
155 02} 20

207 43 RCL
156 00J 208 07 07
157 95 209 95
158 42 STO 210 22 INV
159 05 05 211 74 SUM Ind
160 73 RCL Ind 212 04 04
161 05 05 213 69 Op
162 50 Ul 214 34 34
163 45 y* 215 69 Op
164 43 RCL 216 35 35

165 03 03 217 o.j
09)

19
166 85 + 218

167 93} 01
219 32 x^t

168 01J 220 43 RCL
169 95 221 05 05

170 59 Int 222 22 INV
171 42 STO 223 67 x t
172 07 07 224 02} 204
173 43 RCL 225 04j
174 07 07 226 69 Op
175 64 Prd Ind 227 30 30
176 04 04 228 43 RCL
177 69 Op 229 01 01

178 34 34 230 32 x^t
179 09 9 231 43 RCL
180 32 x^t 232 00 00
181 43 RCL 233 22 INV
182 04 04 234 77 X^lt
183 22 INV 235 02}

248
184 67 x f 236 48/
185 01} 173

237 43 RCL
186 73J 238 01 01

187 43 RCL 239 85 +
188 00 00 240 02} 20
189 85 + 241 OOJ

190 Ol} 10
242 95

191 00) 243 42 STO
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244
245
246

247
+ 248

249
250
251

-252
253
254
255
256
257
258
259
260 34
261 09
262 32
263 43

05

GTO

187

19

STO
04
CP
RCL Ind
04

INV
x t

284

Op
34
9

x^t
RCL

264 04
265 22

Unterprogramme
323 76 Lbl
324
325

326
327

328

-+329
330
331

332
333
334
335
336
337
338

339
340 43
341 04
342
343

344
345
346
347
348
349

-?350 43
351 04
352
353
354
355

22
67

03)
29 j
00
99
91

68

75
01)
ooJ
95

19

STO
04

CP
RCL Ind
04

INV
x t

350

Op
34
9

x^t
RCL
04

INV
x t

329

0

Prt
R/S
Nop
RCL
04

10

266
267
268
269
270
271

272
273
274
275

276
277

67

02)
52J

69
00
01

07
03

01

01

06
01

278 07
279 69
280 03
281 69
282 05
283 91

356 42
357 02
358 92
359 76
360 17

361 73

362 04
363 50
364 42

365 09
366 29
367 43
368 02
369 67

04}
21/

370
371

»372 69
373 34
374 73

375 04
376 50
377 42
378 08

?379 55

380 43
381 09
382 95
383 59
384 65

385 43

386 09
387 95

388 22

04
INV
x t

252

Op
00
1

7

3

1

1

6
1

7

Op
03

Op
05

R/S

STO
02
INV SBR
Lbl
B'
RCL Ind
04
1*1

STO
09
CP
RCL
02

x t

421

Op
34
RC1 Ind
04
1*1

STO
08

RCL
09

Int

RCL
09

INV

284 43 RCL
285 04 04
286 75 -
287
288

01|
00/

10

289 95

290 42 STO
291 02 02

292 71 SBR
293 17 B'
294 43 RCL
295 06 06
296 99 Prt
297 98 Adv

298 71 SBR
299 18 C
300 61 GTO
301 13 C

389
390
391

392

393

394
395

396
397

44
08
29

43
08

67

04}
04/
48

398 09
399 42

400 08
401 61

402 03

403 79

404 01

405 00
406 32

407 43

408 04

409 22
410 67
411 03 1

412 72 j

413 43

414 02
415 85

416 oil
417 00]
418 95

419 42

420 04
?421 02

SUM
08

CP
RCL
08

x t

404

Exe
09
STO
08

GTO

379

10

x^t
RCL
04
INV
x t

372

RCL
02

+

10

STO
04
2

302 71 SBR
303 19 D'
304 43 RCL
305 01 01

306 42 STO
307 00 00
308 43 RCL
309 02 02
310 42 STO
311 01 01

312 43 RCL
313 00 00
314 75 -
315 43 RCL
316 01 01

317 95

318 42 STO
319 03 03
320 61 GTO
321

322
01}
42/ 142

422 32 x^t
423 43 RCL
424 06 06
425 22 INV
426 77 x^t
427
428

04}
34/

434

429 43 RCL
430 09 09
431 94 + /-
432 42 STO
433 09 09
434 43 RCL
435 09 09
436 22 INV
437 64 Prd Ind
438 04 04
439 69 Op
440 34 34
441 09 9
442 32 X%1
443 43 RCL
444 04 04
445 22 INV
446 67 x t
447
448

04}
34/

434

449 92 INV SBR
450 68 Nop
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451 76 Lbl 466 09 9 478 76 Lbl 494 69 Op
452 18 e 467 32 x**t 479 19 D' 495 24 24
453 43 RCL 468 43 RCL 480 01} 10

496 69 Op
454 02 02 469 04 04 481 00/ 497 25 25
455 85 + 470 22 INV 482 42 STO 498 02} 20
456 01} 10

471 67 x t 483 04 04 499 00/
457 00/ 472 04\

461
484 02} 20

500 32 x^t
458 95 473 61/ 485 00 / 501 43 RCL
459 42 STO 474 98 Adv 486 42 STO 502 04 04
460 04 04 475 98 Adv 487 05 05 503 22 INV
461 73 RCL Ind 476 92 INV SBR -+488 73 RCL Ind 504 67 x t
462 04 04 477 68 Nop 489 04 04 505 04}

88/
488

463 99 Prt 490 63 ExeInd 506
464 69 Op 491 05 05 507 92 INV SBR
465 34 34 492 72 STO Ind 508 68 Nop

493 04 04 509 68 Nop

Bemerkungen
1 Das Programm schhesst auch den Fall g(a)<g(ß) em Die Polynom-Kette
begmnt dann mit

cp0(x) ß(x), cpx(x) a(x), cp2(x)=-ß(x)

2 Im Unterprogramm B' wird der positive ggT der Koeffizienten ap,ap_ x, ,ax,a0
rekursiv bestimmt gemäss

(ap,ap-b >ax,a^=(( {(ap,cip-\),ap_l) ,ax),a0)

Sobald em Zwischenergebnis v=l vorliegt, steht (ap,ap_x, ,ax,a0)=l fest, und
man konnte die Berechnung des ggT an dieser Stelle abbrechen Mit einem
entsprechenden bedingten Sprung liesse sich also hier die Rechenzeit noch etwas
verkurzen Um den Aufbau des Programmes möglichst einsichtig zu belassen,
wurde von einer solchen Ergänzung bewusst Abstand genommen
3 Der vorliegende Algonthmus setzt voraus, dass die auftretenden Zwischenwerte
exakt ganzzahlig sind Die Schritte 166 bis 170 garantieren die Ganzzahhgkeit nach

Anwendung der Operation j*, die im allgemeinen nur gerundete Werte liefert4)
4 Der Programmschritt 203 bewirkt, dass bei der Division mit Rest jeweils die
Koeffizienten von ok(x) kurz aufleuchten, und zwar nach abnehmendem Index
geordnet Er wurde im Hinblick auf die anschhessend diskutierten Anwendungen
aufgenommen

Beispiel 1

a(x)=cpQ(x)=3x1+x(>~-%x5-%xA+20x3>+l3x2-35x+l4,
^(X)=__^1(x)= 6jc5+2x4-19x3+40jc2-47x+18

Der Ausdruck des Rechners ist in der linken Spalte der Figur 5 wiedergegeben Man

4) So erhält man mit dem Rechner TI 59 etwa bei der Berechnung von [24] unter Verwendung der

Operation j>* den falschen Wert 15
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entnimmt daraus als grossten gemeinsamen Teiler das primitive Polynom
-3x2+5jc — 2. Die Rechenzeit beträgt rund 300 Sekunden.

POLYNOM -KETTE.'
o.

3.
1.

-S.
-3.
20.
13.

-35.
14.

1.

6.
2.

-19.
40.

-47.
13.

114.
-193.

24.
93.

-33.

-231.
-23493.
39651.

-15922.

-3.
5.

-2.

POLYNOM-KETTE;

-3

15
20
-9

19

-41
41

43
184

619t

47U
5339

Beispiel 2

ENDE

Beispiel 1 Figur 5

Der Algorithmus läuft nicht in jedem Falle völlig problemlos ab. Es ist durchaus
möglich, dass der obere Plafond der Ganzzahligkeit erreicht wird. Man erkennt dies
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daran, dass der Rechner auf Exponentialanzeige umstellt. Dies trifft beim folgenden
Beispiel 2 zu.

Beispiel 2

a(x) cp0(x) 3x5+5x4-3x3+x2+lx-5,
ß(x) cpx(x)= I5x*+20x3-9x2+2x + l.

Der Ausdruck des Rechners ist - soweit er ganzzahlig ist - in der rechten Spalte von
Figur 5 festgehalten. Bei cp4(x) angelangt, hat der Rechner als nächstes mit dem
Faktor A 470232=2213043 849 das zu cp3(x) assoziierte Polynom zu bestimmen.
Da schon h eine lOstellige Zahl ist, gerät man mit diesem Schritt über den Bereich
der Ganzzahligkeit hinaus. (Fortsetzung im nächsten Heft.)

M. Jeger, Mathematisches Seminar, ETH Zürich
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Kleine Mitteilungen

Die Cantorsche Abbildung ist ein Borel-Isomorphismus

Die Cantorsche Abbildung benutzt man im allgemeinen, um zu zeigen, dass

/=]0,1] und JxJ dieselbe Mächtigkeit haben. Sie ist folgendermassen definiert
(vgl. [2], S. 66): Jedes xeJ hat eine eindeutige Darstellung x Yjn=\2~~aX~ ~a",
wobei {an} eine Folge von naturhchen Zahlen ist. Dies gilt, da sich x in eindeutiger
Weise in einen dyadischen Bruch mit unendlich vielen Einsen entwickeln lässt. Die
Darstellung liefert für jedes neN [N bezeichnet die naturhchen Zahlen (ohne Null)]
eine Abbildung Xn von / nach N, die durch Xn(x) an gegeben ist. Für alle x,yeJ
sei f(x,y)eJ definiert vermöge X2n_x(f(x,y))=Xn(x) und X2n(f(x,y)) =Xn(y),
neN. f'ist eine bijektive Abbildung von JxJ auf/. Hausdorff ([2], S. 377) nennt sie
Cantorsche Abbildung. Er sagt, sie rühre im Prinzip von Cantor her (vgl. [1]).
Es ist wohlbekannt, dass es keine stetige bijektive Abbildung von JxJ auf/ gibt
([2], S. 377). Also ist/nicht stetig. Es ist nicht schwierig zu zeigen, dass die Unstetig-
keitsstellen von f auf abzählbar vielen Hyperebenen Rx{>>} bzw. (x}xR liegen,
wobei x,ye{zeJ:z k • 2~l,k,leN} gilt und R die reellen Zahlen bezeichne. Das
Ziel dieser Note ist es, einen elementaren Beweis dafür zu geben, dass/ein Borel-
Isomorphismus ist.
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