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El. Math. Band 35 Heft 2 Seiten 25-48 Basel, 10. Mirz 1980

Zur Behandlung des euklidischen Algorithmus bei Polynomen
mit einem programmierbaren Taschen-Rechner

Aus der Algebra sind verschiedene Verfahren bekannt, die das Auffinden von
reellen Nullstellen bei Polynomen stark vereinfachen und die allesamt auf dem
euklidischen Algorithmus im Polynomring iiber dem Koirper der reellen Zahlen
beruhen. Sie haben aber fiir den Praktiker den Nachteil, dass sie ohne addquate
Rechen-Prothese nur schwerfillig zu handhaben sind. Im folgenden wird gezeigt,
dass schon ein programmierbarer Taschen-Rechner mit der heute iiblichen
Kapazitit bei der Bewiltigung solcher Probleme sehr niitzlich sein kann.

Der Beitrag verfolgt aber noch ein zweites Ziel. Er mochte gleichzeitig darauf hin-
weisen, dass mit einem programmierbaren Taschen-Rechner im Mathematikunter-
richt neue Akzente gesetzt werden kénnen. Durch den vermehrten Einbau von
Beispielen und Anwendungen wird eine gezielte Pflege des algorithmischen Denkens
moglich. Im Zeitalter der Computer-Mathematik ist der Umgang mit Algorithmen
eine nicht mehr vernachlissigbare Komponente der mathematischen Ausbildung,
und zwar sowohl auf der Gymnasialstufe wie auch auf der universitiren Ebene.
Diese Note befasst sich insbesondere mit dem euklidischen Algorithmus im Poly-
nomring iiber dem Korper der rationalen und iiber dem Koérper der reellen Zahlen.
Bei den Polynomen mit rationalen Koeffizienten besteht bekanntlich die Moglich-
keit, den euklidischen Algorithmus mit ganzen Zahlen zu beschreiben. In
didaktischer Hinsicht weisen Algorithmen im Bereich der Ganzzahligkeit mancher-
lei Vorziige auf. So treten dort iiberhaupt keine Konvergenzfragen auf, und
Genauigkeitsiiberlegungen dringen sich hochstens von der Kapazitit des Rechners
her auf. Algorithmen, die sich vollumfinglich im Ring der ganzen Zahlen bewegen,
begegnet man vor allem in der Kombinatorik!) und in der elementaren Zahlen-
theorie. Die euklidische Ketten-Division im Polynomring iiber dem Korper der
rationalen Zahlen ist ein weiteres interessantes Beispiel, das seine Wurzel in der
elementaren Algebra hat. Der Taschen-Rechner ist aber auch in der Lage, den
euklidischen Algorithmus im Polynomring iiber dem Korper der reellen Zahlen zu
verkraften. Es wird sich herausstellen, dass man sehr oft auch bei Polynomen mit
rationalen Koeffizienten auf diesen allgemeineren Prozess angewiesen ist.

1) Vgl. [2).



26 M. Jeger: Zur Behandlung des euklidischen Algorithmus bei Polynomen

Der euklidische Algorithmus bei Polynomen fiihrt auf ein Programm, das die
Kapazitit heute verfiigbarer, grosserer programmierbarer Taschen-Rechner weit-
gehend ausschopft. Man kann daran sehr hiibsch die Leistungsfiahigkeit solcher
Gerite demonstrieren. Dies ist ein weiterer Aspekt der vorliegenden Note.

1. Der euklidische Algorithmus im Ring der ganzen Zahlen

Der euklidische Algorithmus stiitzt sich auf die Tatsache, dass zu zwei Zahlen
a,be Z,b#0 stets eine eindeutig bestimmte, nichtnegative ganze Zahl ¢’ existiert,
so dass

|blg’s |al < |bl(¢’+1). (1.1)

Aus
,S'_{'_!< ‘+1
q b q
entnimmt man, dass

[l

ist. Mit (1.1) gilt zugleich

a

b

0<|al—|blg’=r<|b]. (1.2)

Aus der Beziehung (1.2) schliesst man nun auf die folgende endliche Kette von
Divisionen mit Rest

lal =|blg" +r; mit O0<ri<b
|b| =riq; +r, mit O<ri<r,

1491 2 2<T
r, =ryq; +r; mit O<ri<r}

(1.3)

’ R ’ ’ : ’ ’
re_2=re_1qs_1+r; mit O<ri<r;_,

’ ot y?
Irs_1=T754;

Die Folge der Reste ist nimlich monoton abnehmend
ri>ry>ry> - >r>0.

2) [x] bezeichnet die grosste ganze Zahl kleiner oder gleich x.
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Daher muss nach endlich vielen Schritten der Rest O erscheinen; die Kette bricht
also sicher ab. Es ist nun offenbar

dland/b<d/bAd/ri<=d/rind/ryes - <d/ri_ nd/ri<d/r.
Fiir den grossten gemeinsamen positiven Teiler von a und b entnimmt man daraus
t=(a,b)=(b,r))=(r},r))=---=(ri_,r)=ri. (14)

Die Berechnung von ¢ mit einem Taschen-Rechner kann etwa anhand des Fluss-
diagrammes in der Figur 1 erfolgen.

U e lay
Vi =\b\

Anzerge vV W= w
Ste?P W= Vv
Viz=mw

Figur 1

2. Euklidische Ringe

Mit dem euklidischen Algorithmus bewegt man sich generell in einem sogenannten
euklidischen Ring. Im Hinblick auf das anvisierte Ziel seien in diesem Abschnitt die
wichtigsten Fakten iiber euklidische Ringe kurz zusammengestelit.

Ein kommutativer Ring [F;+, . ] mit Einselement, der frei von Nullteilern ist, heisst
bekanntlich ein Integritdtsbereich. Die Teiler des Einselementes nennt man Ein-
heiten. Zwei Elemente a,be F, die sich nur um eine Einheit e als Faktor unter-
scheiden, werden assoziiert genannt. Wegen

a=eb <« b=e!l

a

teilen sich assoziierte Elemente gegenseitig, d.h. es gilt zugleich a| b und b|a.
Teilbarkeitsaussagen in einem Integrititsbereich sind daher ihrem Wesen nach stets
Ein Integrititsbereich [F;+, . ] wird als euklidischer Ring bezeichnet, wenn sich
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jedem Element ae F,a#0 eine nichtnegative ganze Zahl g(a) zuordnen lésst, die
folgende Eigenschaften aufweist:

(E)) g(ab)=g(a)furallea,b#0.

(E;) Zu a,be F,b#0 gibt es immer zwei Elemente g,re F, so dass a=bg+r mit
r=0oderr#0und g(r)<g ().

Das einfachste Beispiel ist der Ring der ganzen Zahlen [Z;+, . ]. Die Einheiten in
[Z;+, . ] sind die Zahlen + 1 und —1; eine Klasse von assoziierten Elementen
besteht daher - falls a# 0 ist - aus den beiden Zahlen a und — a. Ferner ist

arg(a)=lal

eine Abbildung mit den Eigenschaften (E,) und (E,). Fiir ganze Zahlen a,b# 0 gilt
nimlich
labl=|allbl=|al,

und aus der Beziehung (1.2)
lal=|blg’+r mit 0<r'<b
kann stets auf das Vorhandensein einer Zerfillung
a=bg+r mit g=xq’ und r=4+r 2.1)
geschlossen werden, die (E,) erfiillt.
Die Eigenschaften (E,) und (E,) garantieren in einem euklidischen Ring [F;+, . ]
+den Prozess der Ketten-Division; zu a,b € F,b#0 gibt es eine abbrechende Kette
von Divisionen mit Rest:
a =bgy +r mit g(r)<g®)
b =rg, +r, mit g(r)<g(r)

rn =rpq; +r3; mit g(r3)<g(ry)
- 22)

rs—-2=r-lqs—l+rs mit g(rs)<g(rs—l)
Fs_1=7sq;

Dass die Konstruktion nach endlich vielen Schritten abbrechen muss, geht aus den
Ungleichungen

gb)>g(r)>g(r)>--->g(r_1)>g(ry)>0

hervor. r, bezeichnet den letzten von Null verschiedenen Rest.
Wie im Abschnitt 1 schliesst man auch hier, dass
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dland/b=d/bAdri< - <dfr._Ad[ri=d/r,.

Zu jedem Teiler d von r; gehort ein Element d’, so dass r,=dd’ ist. Aufgrund von
(E) ist dann

g(r)=g(dd)zg(d).

Das Element r, représentiert also die Klasse assoziierter gemeinsamer Teiler von a
und b mit dem grosstméglichen Wert der Funktion g. Diese Klasse wird der grosste
gemeinsame Teiler von @ und b genannt.

Ein Element a# 0 aus dem euklidischen Ring [F;+, . ] hat stets die vorhandenen
Einheiten und die zu a assoziierten Elemente zu Teilern. Man nennt sie die trivialen
Teiler von a.

Ein Element p, das nicht Einheit ist und nur triviale Teiler aufweist, heisst ein
Primelement des betreffenden euklidischen Ringes.

In einem euklidischen Ring gilt der Satz von der eindeutigen Zerfillung in Prim-
faktoren:

Jedes von 0 verschiedene Element a, das nicht Einheit ist, besitzt eine Darstellung als
Produkt von endlich vielen Primelementen. Diese Zerfdllung ist eindeutig bis auf die
Reihenfolge der Faktoren und ihre Ersetzung durch assoziierte Elemente.

Da dieser Satz fiir die folgenden Uberlegungen nur von untergeordneter Bedeutung

ist, verzichten wir auf eine Wiedergabe des Beweises. Der Leser sei auf die ein-

schldgige Algebraliteratur verwiesen?).

Es sei noch erwihnt, dass die in einem euklidischen Ring geforderte Zerfillung
a=bg+r mit r=0 oder g(r)<g(b)

im allgemeinen nicht eindeutig ist. So bestehen etwa im Ring [Z;+, . Jzua=17 und
b=35 die Zerlegungen

17=5-34+2 und 17=5-4-3,

die beide (E,) geniigen.

3. Der Polynomring iiber einem Korper
Wir betrachten jetzt Polynome
a(x)=a,x"+a,_ x""'+---+ax+ay

mit Koeffizienten aus einem vorgegebenen Korper [K;+, . ]. Der hochst vor-
kommende Exponent n heisst der Grad, und a,x" ist das sogenannte Leitglied des

3) Vgl. etwa [3], S. 120.
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Polynoms. Bezeichnet K[x] die Menge aller Polynome mit Koeffizienten aus X,
dann ist das Verkniipfungsgebilde [K[x];+, . ] stets ein euklidischer Ring. Er wird
der Polynomring iiber dem Korper K genannt.

Nullelement dieses Ringes ist das Polynom v(x)=0, Einselement das Polynom
e (x)=1. Mit

g(a)=grad(a)

lasst sich jedem Polynom a (x)#v(x) eine nichtnegative ganze Zahl zuordnen,
welche die Eigenschaften (E,) und (E,) hat. Es gilt nimlich die Gradregel

g(a-B)=ga)+g(B)=g(a). 3.1

Ferner gibt es zu a (x), f (x)e K [x] und B (x)#v(x) stets zwei Polynome »x (x) und
p (x), so dass

a@)=pFx)-x(x)+p(x) mit p(x)=v(x) oder g(p)<g(B). (3.2)

Man kann zwei solche Polynome mit dem iiblichen Divisionsalgorithmus erhalten,
der sich bekanntlich in K[x] immer bis zu einem Restpolynom fortsetzen lisst,
dessen Grad kleiner als g (8) ist. So bekommt man etwa in [Q[x];+, . ] fur

a(x)=5x3+2x2-3x+4 und B(x)=3x*+2x-1

5 16
% (x) — i e ——
(5x3+ 2x2—  3x+2):(3x2-2x+1) 3 9
2
10 5 p(x) |- —x+ =
3_ 3. = 9 9
5x 3 X+ 3 X
16 14
e v2_
3 X ~—~3 x+2
16 , 22 +16
3 ¥ 79 ¥ g
10 +_z_
9 *T 7

Es ist somit

5 16 10 2
5x3+2x2—3x+-2=(3x2—2x+ l)(—3‘ x+ ‘5—) +<—- Tx+ 3) .

a (x) B (x) % (x) p (%)

Die Einheiten im euklidischen Ring [K[x];+, . ] sind die Teiler des Einselementes.
Ist das Polynom a (x) eine Einheit, dann gibt es dazu ein Polynom ¢ (x), so dass
a (x) - 6 (x)=1ist. Daraus folgt
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g(a-0)=g(a)+g()=0

und dies impliziert

g(a)=g()=0.

Dadurch sind die von Null verschiedenen Elemente des Grundkorpers K gekenn-
zeichnet. Eine Klasse von assoziierten Elementen in K[x] besteht daher aus einem
Polynom a (x) und allen seinen Vielfachen f- a (x) mit f € K| {0}.

Die Primelemente von K[x] werden in der Algebra auch irreduzible Polynome
genannt.

4. Der euklidische Algorithmus im Polynomring iiber dem Korper der rationalen
Zahlen

Im Polynomring iiber dem Korper [Q;+, . ] gibt es in jeder Klasse von assoziierten
Elementen auch solche mit ganzzahligen Koeffizienten. Darunter befinden sich zwei
besonders ausgezeichnete, ndmlich diejenigen mit teilerfremden ganzzahligen
Koeffizienten. Man nennt sie primitive Polynome.

So heissen etwa die zu

3
1

+1
7x

5

2
3 2 7 —
7 Xt

a (x)=

assoziierten primitiven Polynome
a;(x)=105x3+20x2-350x+56 und a,(x)=—105x>-20x2+350x—56.

In der Ketten-Division kann man sich nun bei allen vorkommenden Polynomen auf
einen der beiden ausgezeichneten Reprisentanten festlegen. Der Algorithmus lduft
dann, was die Koeffizienten anbetrifft, vollstindig im Ring [Z;+, . ] ab. Zugleich
erreicht man mit primitiven Polynomen gerade auch noch eine optimale Aus-
nutzung des Rechners, weil dann der Prozess gewissermassen auf der untersten
Stufe der Ganzzahligkeit abliuft.

Anschliessend soll ein Programm beschrieben werden, das mit einem Taschen-
Rechner realisiert werden kann.

Als Kernproblem bei der Aufstellung eines solchen Programmes stellt sich zunéchst
die folgende Aufgabe. Der Divisionsalgorithmus liefert fiir zwei primitive Polynome
a (x) und p (x) eine Zerfallung

a(x)=Fx)x(x)+p(x) mit p(x)=0 oder g(p)<g(B). 4.1)

% (x) und p(x) sind im allgemeinen nicht ganzzahlig. Es ist nun a (x) durch ein
geeignetes assoziiertes ganzzahliges Polynom @ (x) zu ersetzen, so dass aus dem
Divisionsalgorithmus eine ganzzahlige Zerfiallung
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a(x)=p(x)»*(x)+p*(x) mit p*(x)=0 oder g(p*)<g(h) 4.2)
hervorgeht.

Ist nun

a(X)=a,x"+a,_ x" '+ +a,x+a,,

B(x)= b,x" + - +bx+by,
dann ist
d(x)=h-a(x) mit h=|b,|m "+ (4.3)

immer ein Polynom mit der angestrebten Eigenschaft. Man kann dies mit der
folgenden Uberlegung verifizieren.

% (x) und das assoziierte Polynom x* (x) haben den Grad m—n und weisen daher
m—n+ 1 Glieder auf. Der Divisionsalgorithmus besteht somit aus m—n+ 1 Schrit-
ten. Der erste Schritt ist nun offensichtlich ganzzahlig, denn die Leitglieder der
Polynome @ (x) und £ (x) lauten

~n+1
b, ™", x™ und b,x".

Aber auch der zweite Schritt verlduft ganzzahlig; die Leitglieder der massgebenden
Polynome sind nimlich

|6, ™" (1b,la,,_1—a,,sign(b,) x™~! und b,x".
Mit jedem weitern Schritt nimmt nun der Exponent von |b,| im Leitglied des

jeweiligen Restpolynoms um 1 ab. Man schliesst daraus, dass der Divisions-
algorithmus tatséchlich bis zum letzten Schritt ganzzahlig bleibt.

Wir wollen dies noch an unserem fritheren Beispiel aufzeigen. Fiir
a(x)=5x3+2x2—-3x+2 und F(x)=3x*-2x+1

ist A=32=9 und somit
a(x)=45x3+18x2-27x+18.

Der Divisionsalgorithmus fiithrt dann auf

(45x3+18x2—27x+18): 3x2=2x+1) x*(x)l 15x+16
45x3—-30x2+15x -
48x2—42x+18 p* (x) ! —10x+2

48x2—32x+16
—-10x+ 2
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Wie das vorliegende Beispiel zeigt, ist p* (x) nicht notwendigerweise primitiv. Man
erhilt ein assoziiertes primitives Polynom zu p* (x), indem man die Koeffizienten
durch ihren grossten gemeinsamen positiven oder negativen Teiler dividiert.

Ist ¢ (x) ein ganzzahliges Polynom, dann bezeichnen wir fortan mit ¢ (x) das zu-
gehorige primitive Polynom, das sich von ¢ (x) um einen positiven Faktor unter-
scheidet.

Im Hinblick auf eine moglichst vielseitige Verwendbarkeit legen wir nun den
euklidischen Algorithmus zu zwei ganzzahligen Polynomen a (x) und g (x) wie folgt
fest:

@o(x) =a(x)
g (x) =p(x)
Pr—1(X) =9 (x) o4 (X)— @, (x) mit @F,,(x)=0 oder g(pf,)<g(p;)
Prr1(X)=0f (%) (4.4)

@x—1(x) ist das Polynom, das vermoge der zuvor beschriebenen Konstruktion aus
¢x—1(x) und ¢, (x) hervorgeht und die ganzzahlige Division mit Rest garantiert.
Der Algorithmus liefert eine endliche Kette von Polynomen

Po(x).  @1(x),  pa(0), o ps(X).

Das letzte Glied ist ein grosster gemeinsamer primitiver Teiler von a (x) und £ (x).
Sind diese beiden Polynome teilerfremd, dann endet die Kette mit ¢ (x)= £ 1.

Das negative Vorzeichen von g%, | (x) in der Rekursionsformel von (4.4) dient dazu,
dass der Algorithmus auch fiir die Sturmsche Nullstellenzihlung bei einem
Polynom herangezogen werden kann (siehe Abschnitt 6).

5. Ein Programm fiir den Rechner Texas TI 59

Im Hinblick auf die beschrinkte Kapazitit eines Taschen-Rechners (Stellenzahl,
Anzahl der Speicher) ist das folgende Programm fiir ganzzahlige Polynome a (x)
und B (x) mit Graden m,n<9 ausgelegt. Das Programm ist speziell auf den Rechner
Texas TI 59 zugeschnitten, der iiber die notwendige Anzahl von Programmschritten
verfiigt und zudem eine Speicherung des relativ langen Programmes auf Magnet-
karten gestattet. Zum TI 59 ist ausserdem ein Drucker entwickelt worden; es lag
daher nahe, den sukzessiven Ausdruck der Ergebnisse ins Programm einzube-
ziehen. Wer nur iiber den Rechner verfiigt, kann das Programm leicht so modi-
fizieren, dass der Prozess nach jedern Glied in der durch a (x) und £ (x) definierten
Polynom-Kette anhilt.

In den Polynomen a (x) und g (x) stecken aufgrund der verabredeten Beschrinkung
hochstens je 10 Koeffizienten, namlich agy,ay, ..., ag und by, by, ..., be. Diese werden
in den Speichern R, bis R ;o und R, bis R, untergebracht. Die Speicher Ry bis R
sind beim Rechner TI 59 mit einer programmverkiirzenden Speicherarithmetik
ausgeriistet; sie sind aus diesem Grunde fiir die benotigten Rechen-Parameter
reserviert. ‘
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Zur Vereinfachung der Programmbeschreibung werden die Speicher R,y bis Ryqg
fortan als Polynom-Register I, die Speicher R,, bis R,y als Polynom-Register 11

bezeichnet.
Die folgende Zusammenstellung zeigt die verwendete Speicherzuweisung.

R Roi Rpz Rpz Ry Rgs Rgg Ry; Rgg Ry
m n p d=m-nr s k h,g u v

® O ¢ @b

Ry Ry Rp Ry; Ry Ris Rig Ry Rig Ry Polynom-
aa¢ a; a, as a, as ag a3 ag Ay Register 1
Ry Ry Ry Ry Ry Rys Ry Ry Ry Ry Polynom-
bo b] b2 b3 b4 b5 b6 b7 bg b9 Register 11

Die eingefithrten Parameter haben folgende Bedeutung:

rist der Index im Polynom-Register I: a(r)=a,_(; gespeichertin R,,
s ist der Index im Polynom-Register I1: b (s)= b,_,; gespeichert in R,
k ist der Index in der Kette der g-Polynome gemiss (4.4).

u und v werden bei der Berechnung des grossten gemeinsamen Teilers fiir die
jeweiligen Koeffizienten im Polynom-Register I benotigt.

Die beiden ersten Programmabschnitte, beginnend mit Lb1l A und Lb1l B dienen zur
Eingabe der Polynome a (x) und f (x) in die Polynom-Register I und II. Dazu sind
. die eingeklammerten Parameter erforderlich.

Das Eingabekonzept geht aus dem folgenden Flussdiagramm hervor.

= Q- a, b B

v +

\ @ - :
L= taro waerge olo
R LSY 1 o
r =0
. =0 weln
Awzarge 3
by = baA
S‘. = J%A
Muzeige §
sTo?

Figur 2
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Das zugehorige Rechnerprogramm lautet:

000 76 Lbl 016 76 Lbl 032 69 Op
001 11 A 017 12 B 033 20 20
002 42 STO 018 42 STO 034 69 Op
003 00 00 019 03 03 035 22 22
004 85 + 020 43 RCL 036 43 RCL
005 01} 0 021 01 01 037 02 02
006 11 022 32 x=¢ 038 91 R/S
007 95 = 023 43 RCL 039 00 0
008 42 STO 024 00 00 040 85 +
009 01 01 025 67 x= 041 65 *
010 00 0 026 00} - 042 91 R/S
011 42 STO 027 39

012 02 02 028 43 RCL

013 42 STO 029 03 03

014 06 06 030 72 STO Ind

015 91 R/S 031 00 00

Dementsprechend lduft die Eingabe von a (x) und £ (x) wie folgt ab:

Eingabe  Taste Anzeige Eingabe  Taste Anzeige
10 A 0 20 A 0

ag B 1 bO B 1

a, B 2 b 1 B 2

aqg B 10 by B 10

Falls der Grad 9 erreicht ist, erscheint bei nochmaligem Driicken der Taste B in der
Anzeige eine blinkende 0.

Das Hauptprogramm liefert zu a (x) und B (x) die Kette der primitiven Rest-
polynome

po(x),  o0,(x), @5 (x)

mit g, (x)=a (x) und ¢, (x)= B (x). Es wird abgerufen iiber die Taste C.
Fiir ein Polynom ¢, (x) der Kette wird vorerst die Nummer k ausgedruckt; an-
schliessend werden dann die Koeffizienten aufgelistet, und zwar nach fallendem
Index geordnet. Das Prozessende wird mit dem Wort ENDE angezeigt.
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Flussdiagramm

Hauptprogramm

Bl

C'

D'

print
POLYNOM - KETTE

WKiwm ey d
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Rechnerprogramm
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Speicherverteilung 559/49 (5 Op 17)

Hauptprogramm

043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089

091
092
093

76
13
69
26
01
32
43
06
22
67
03
02
69
00
03
03
03
02
02
07
04
05
03
01
69
01
03
02
03
00
02
00
02
06
01
07
69
02
03
07
03
07
01
07
06
02
00
00
69
03
69
05

}

Lbl
C
Op
26

1
x=1
RCL
06
INV
x=1

302
p

SO

CONAN—NWAIWVOOI—~ANONDNOWNW
o

2080
DNy Wiy

095
096
097
098

099
100
101
102
103
104
105
106

107
108
109
110

111
112

113
114
115
116

117
118
119
120
121
122

123
124

125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

71
16
42
00

71
17
69
36
43
06
99
98

71
18
69
26

71
19

71
16
42
01

71
17
43
06
99
98

71
18

71
19
29
69
26
43
00
75
43
01
95
42
03
22
77

SBR
Af
STO
00

SBR
BI
Op
36
RCL
06
Prt
Adv

SBR
CI
Op
26

SBR
DI

SBR
AI
STO
01

SBR
BI
RCL

Adv

SBR
CI

SBR
DI
CpP

26
RCL

RCL
01
STO
03

INV
x=1t

140
141
- 142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
- 173
174
175
176
177
178
179
180
181
182
183
184
185
186
- 187
188
189
190
191

02

48 } 248
69 Op
23 23

43 RCL
00 00
85 +

01

00 10

95 =

42 STO
04 04
43 RCL
01 o0l

85 +

02

00} 20
95 =

42 STO
05 05

73  RCL Ind
05 05
50  |x|
45

43 RCL
03 03
8 +

93

o2 } 0.1
95 =

59 Int
42 STO
07 07
43 RCL
07 07
64 PrdInd
04 04
69 Op
3 34
09 9

32 x=zt
43 RCL
04 04
22 INV
67 x=t
01

73} 173
43 RCL
00 00
8 +

01

00} 10

192
193
194
195
196
197
198
199
200
201
202
203
— 204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243

95
42

73
04
55
73
05
95
42
07
66
73
05
65
43
07
95
22
74

69
34
69
35
01 }
09
32
43
05

22
67

69
30
43
01
32
43

22
77
02}
48
43

01
85

95
42

STO

04

RCL Ind
04

RCL Ind
05

STO

07
PAUSE
RCL Ind
05

RCL

07

INV
SUM Ind
04

Op

34

Op

35

19

x=t
RCL
05
INV

x=t
204

30
RCL
01
xzt

RCL
INV
x=t
248
RCL
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244
245
246
247
— 248
249
250

251
— 252

253
254
255
256
257
258
259
260
261
262
263

05
61
01
87
01
09
42

04
29

73
04
22
67
02
84
69
34
09
32
43

!
}

}

05
GTO

187

19

STO

04
CP

RCL Ind
04

INV
X=1

284

Op

34

9

x=t

RCL

Unterprogramme

323
324
325
326
327
328
- 329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
- 350
351
352
353
354
355

76
16
01
09
42
04
29
73
04
22
67
03
50
69
34
09
35
43
04
22
67
03
29
00
99
91
68
43
04
75
01
00
95

}

}

|

)

Lbl
Al

19

STO

04

CP

RCL Ind
04

INV
x=1

350

Op
34

9
Xzt
RCL
04
INV
x=t

329

0

Prt
R/S
Nop
RCL
04

10

264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283

356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
—372
373
374
375
376
n
378
- 379
380
381
382
383
384
385
386
387
388

04
22
67
02 }
52
69
00
01
07
03
01
01
06
01
07
69
03
69
05
9]

42
02
92
76
17
73
04
50
42
09
29
43
02
67

69
34
73
04
50
42
08
55
43
09
95
59
65
43

95
22

04
INV
x=t

03

05

STO

02

INV SBR
Lbl

BI

RCL Ind
04

| x|

STO

09

CP

RCL

02

x=t

421

Op

34
RClInd
04

x|
STO

08

RCL

09

Int
RCL
09

INV

—284
285
286
287
288
289
290
291

292
293
294
295
296
297

298
299
300
301

389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
- 404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
- 421

43
04
75
01
00
95
42
02

71
17
43
06
99
98

71
18
61
13

08
29
43
08
67
04
04
48

42
08
61
03

}

!

|

79

|
00
32
43
04
22
67
03
72
43
02
85
ot

95
42

}

}

RCL

SBR
B’
RCL
06
Prt
Adv

SBR
CI
GTO

SUM
08
CP
RCL
08
x=1

Exc
09
STO
08
GTO

379

Xzt
RCL
04

INV

x=t
372

RCL
02
+

STO

04 04

02

2

302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322

422
423
424
425
426
427
428
429
430
431
432
433
—434
435
436
437
438
439
440
441
442
443

445
446
447
448
449
450

71
19
43
01
42

43
02
42
01
43

75
43
01
95
42
03
61
01
42

32
43
06
22
7

34
43
09
94
42
09
43
09
22
64
04
69

09
32
43

22
67

34
92
68

)

}

}
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SBR
D!
RCL
01
STO

RCL
02
STO
01
RCL

RCL
01
STO
03
GTO

142

x=t
RCL
06
INV
x2t

434

RCL
09
+/-
STO
09
RCL
09
INV
Prd Ind
04
Op
34

9
xz1
RCL
04
INV
x=t

434

INV SBR
Nop
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451 76 Lbl 466 09 9 478 76 Lbl 494 69 Op
452 18 C 467 32 x=zt 479 19 D’ 495 24 24
453 43 RCL 468 43 RCL 480 01} 10 496 69 Op
454 02 02 469 04 04 481 00 497 25 25
455 85 + 470 22 INV 482 42 STO 498 02} -
456 01} 10 471 67 x=t 483 04 04 499 00
457 00 4n 04} 451 484 02} 30 500 32 x=z=t¢
458 95 = 473 61 485 00 501 43 RCL
459 42 STO 474 98 Adv 486 42 STO 502 04 04
460 04 04 475 98 Adv 487 05 05 503 22 INV
—»461 73 RCLInd 476 92 INVSBR —488 73 RCLInd 504 67 x=t
462 04 04 477 68 Nop 489 04 04 505 04} 84
463 99 Prt 490 63 ExclInd 506 88
464 69 Op 491 05 05 507 92 INV SBR
465 34 34 492 72 STOInd 508 68 Nop
493 04 04 509 68 Nop
Bemerkungen:

1. Das Programm schliesst auch den Fall g(a)<g(f) ein. Die Polynom-Kette
beginnt dann mit

po(x)=p(x); 91 (x)=a(x); @ (x)=—F(x).

2. Im Unterprogramm B’ wird der positive ggT der Koeffizienten a,,a,_j, ..., a1,a9
rekursiv bestimmt gemass

(ap,ap_], ¥54 5 al,a0)=((... ((ap,ap_ ]),ap_ 2) ...,al),ao) .

Sobald ein Zwischenergebnis v=1 vorliegt, steht (@pa,_y, ....,a5,ap)=1 fest, und
man kénnte die Berechnung des ggT an dieser Stelle abbrechen. Mit einem ent-
sprechenden bedingten Sprung liesse sich also hier die Rechenzeit noch etwas
verkiirzen. Um den Aufbau des Programmes moglichst einsichtig zu belassen,
wurde von einer solchen Ergénzung bewusst Abstand genommen.

3. Der vorliegende Algorithmus setzt voraus, dass die auftretenden Zwischenwerte
exakt ganzzahlig sind. Die Schritte 166 bis 170 garantieren die Ganzzahligkeit nach
Anwendung der Operation y*, die im allgemeinen nur gerundete Werte liefert?).

4. Der Programmschritt 203 bewirkt, dass bei der Division mit Rest jeweils die
Koeffizienten von o, (x) kurz aufleuchten, und zwar nach abnehmendem Index
geordnet. Er wurde im Hinblick auf die anschliessend diskutierten Anwendungen
aufgenommen.

Beispiel 1
a(x)=po(x)=3x"+x6—8x3—8x*+20x3+13x2—35x+ 14,
BX)=p,(x)= 6x3+2x%—19x3+40x2—47x+18.

Der Ausdruck des Rechners ist in der linken Spalte der Figur 5 wiedergegeben. Man

4) So erhilt man mit dem Rechner TI 59 etwa bei der Berechnung von [24] unter Verwendung der
Operation y* den falschen Wert 15.
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entnimmt daraus als grossten gemeinsamen Teiler das primitive Polynom
—3 x4+ 5x—2. Die Rechenzeit betriigt rund 300 Sekunden.

Beispiel 2

Beispiel 1 Figur 5

Der Algorithmus lduft nicht in jedem Falle vollig problemlos ab. Es ist durchaus
moglich, dass der obere Plafond der Ganzzahligkeit erreicht wird. Man erkennt dies
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daran, dass der Rechner auf Exponentialanzeige umstellt. Dies trifft beim folgenden
Beispiel 2 zu.

Beispiel 2

a(X)=y(x)=3x+5x*-3x3+x2+7x-5,
BX)=¢,(x)= 15x4+20x3-9x2+2x+7.

Der Ausdruck des Rechners ist - soweit er ganzzahlig ist - in der rechten Spalte von
Figur 5 festgehalten. Bei ¢4(x) angelangt, hat der Rechner als nichstes mit dem
Faktor h=470232=2213043 849 das zu ¢;(x) assoziierte Polynom zu bestimmen.
Da schon & eine 10stellige Zahl ist, gerdt man mit diesem Schritt iiber den Bereich
der Ganzzahligkeit hinaus. (Fortsetzung im n#chsten Heft.)

M. Jeger, Mathematisches Seminar, ETH Ziirich
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Kleine Mitteilungen

Die Cantorsche Abbildung ist ein Borel-Isomorphismus

Die Cantorsche Abbildung benutzt man im allgemeinen, um zu zeigen, dass
J=]0,1] und JxJ dieselbe Michtigkeit haben. Sie ist folgendermassen definiert
(vgl. [2], S.66): Jedes xeJ hat eine eindeutige Darstellung x= ) * 27491~ ~an
wobei {a,} eine Folge von natiirlichen Zahlen ist. Dies gilt, da sich x in eindeutiger
Weise in einen dyadischen Bruch mit unendlich vielen Einsen entwickeln lidsst. Die
Darstellung liefert fiir jedes ne N [N bezeichnet die natiirlichen Zahlen (ohne Null)]
eine Abbildung X, von J nach N, die durch X,(x)=a, gegeben ist. Fiir alle x,yeJ
sei f(x,y)eJ definiert vermége X,,_(f(x,»)) =X,(x) und X,,(f(x,y)) =X,(),
neN. f ist eine bijektive Abbildung von J X J auf J. Hausdorff ([2], S. 377) nennt sie
Cantorsche Abbildung. Er sagt, sie rithre im Prinzip von Cantor her (vgl. [1]).

Es ist wohlbekannt, dass es keine stetige bijektive Abbildung von JXxJ auf J gibt
(2], S. 377). Also ist f nicht stetig. Es ist nicht schwierig zu zeigen, dass die Unstetig-
keitsstellen von f auf abzihlbar vielen Hyperebenen R X {y} bzw. {x} X R liegen,
wobei x,ye{zeJ:z=k- 27! k,leN} gilt und R die reellen Zahlen bezeichne. Das
Ziel dieser Note ist es, einen elementaren Beweis dafiir zu geben, dass f ein Borel-
Isomorphismus ist.
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